github.com/phillinzzz/newBsc@v1.1.6/trie/iterator.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"container/heap"
    22  	"errors"
    23  
    24  	"github.com/phillinzzz/newBsc/common"
    25  	"github.com/phillinzzz/newBsc/ethdb"
    26  	"github.com/phillinzzz/newBsc/rlp"
    27  )
    28  
    29  // Iterator is a key-value trie iterator that traverses a Trie.
    30  type Iterator struct {
    31  	nodeIt NodeIterator
    32  
    33  	Key   []byte // Current data key on which the iterator is positioned on
    34  	Value []byte // Current data value on which the iterator is positioned on
    35  	Err   error
    36  }
    37  
    38  // NewIterator creates a new key-value iterator from a node iterator.
    39  // Note that the value returned by the iterator is raw. If the content is encoded
    40  // (e.g. storage value is RLP-encoded), it's caller's duty to decode it.
    41  func NewIterator(it NodeIterator) *Iterator {
    42  	return &Iterator{
    43  		nodeIt: it,
    44  	}
    45  }
    46  
    47  // Next moves the iterator forward one key-value entry.
    48  func (it *Iterator) Next() bool {
    49  	for it.nodeIt.Next(true) {
    50  		if it.nodeIt.Leaf() {
    51  			it.Key = it.nodeIt.LeafKey()
    52  			it.Value = it.nodeIt.LeafBlob()
    53  			return true
    54  		}
    55  	}
    56  	it.Key = nil
    57  	it.Value = nil
    58  	it.Err = it.nodeIt.Error()
    59  	return false
    60  }
    61  
    62  // Prove generates the Merkle proof for the leaf node the iterator is currently
    63  // positioned on.
    64  func (it *Iterator) Prove() [][]byte {
    65  	return it.nodeIt.LeafProof()
    66  }
    67  
    68  // NodeIterator is an iterator to traverse the trie pre-order.
    69  type NodeIterator interface {
    70  	// Next moves the iterator to the next node. If the parameter is false, any child
    71  	// nodes will be skipped.
    72  	Next(bool) bool
    73  
    74  	// Error returns the error status of the iterator.
    75  	Error() error
    76  
    77  	// Hash returns the hash of the current node.
    78  	Hash() common.Hash
    79  
    80  	// Parent returns the hash of the parent of the current node. The hash may be the one
    81  	// grandparent if the immediate parent is an internal node with no hash.
    82  	Parent() common.Hash
    83  
    84  	// Path returns the hex-encoded path to the current node.
    85  	// Callers must not retain references to the return value after calling Next.
    86  	// For leaf nodes, the last element of the path is the 'terminator symbol' 0x10.
    87  	Path() []byte
    88  
    89  	// Leaf returns true iff the current node is a leaf node.
    90  	Leaf() bool
    91  
    92  	// LeafKey returns the key of the leaf. The method panics if the iterator is not
    93  	// positioned at a leaf. Callers must not retain references to the value after
    94  	// calling Next.
    95  	LeafKey() []byte
    96  
    97  	// LeafBlob returns the content of the leaf. The method panics if the iterator
    98  	// is not positioned at a leaf. Callers must not retain references to the value
    99  	// after calling Next.
   100  	LeafBlob() []byte
   101  
   102  	// LeafProof returns the Merkle proof of the leaf. The method panics if the
   103  	// iterator is not positioned at a leaf. Callers must not retain references
   104  	// to the value after calling Next.
   105  	LeafProof() [][]byte
   106  
   107  	// AddResolver sets an intermediate database to use for looking up trie nodes
   108  	// before reaching into the real persistent layer.
   109  	//
   110  	// This is not required for normal operation, rather is an optimization for
   111  	// cases where trie nodes can be recovered from some external mechanism without
   112  	// reading from disk. In those cases, this resolver allows short circuiting
   113  	// accesses and returning them from memory.
   114  	//
   115  	// Before adding a similar mechanism to any other place in Geth, consider
   116  	// making trie.Database an interface and wrapping at that level. It's a huge
   117  	// refactor, but it could be worth it if another occurrence arises.
   118  	AddResolver(ethdb.KeyValueStore)
   119  }
   120  
   121  // nodeIteratorState represents the iteration state at one particular node of the
   122  // trie, which can be resumed at a later invocation.
   123  type nodeIteratorState struct {
   124  	hash    common.Hash // Hash of the node being iterated (nil if not standalone)
   125  	node    node        // Trie node being iterated
   126  	parent  common.Hash // Hash of the first full ancestor node (nil if current is the root)
   127  	index   int         // Child to be processed next
   128  	pathlen int         // Length of the path to this node
   129  }
   130  
   131  type nodeIterator struct {
   132  	trie  *Trie                // Trie being iterated
   133  	stack []*nodeIteratorState // Hierarchy of trie nodes persisting the iteration state
   134  	path  []byte               // Path to the current node
   135  	err   error                // Failure set in case of an internal error in the iterator
   136  
   137  	resolver ethdb.KeyValueStore // Optional intermediate resolver above the disk layer
   138  }
   139  
   140  // errIteratorEnd is stored in nodeIterator.err when iteration is done.
   141  var errIteratorEnd = errors.New("end of iteration")
   142  
   143  // seekError is stored in nodeIterator.err if the initial seek has failed.
   144  type seekError struct {
   145  	key []byte
   146  	err error
   147  }
   148  
   149  func (e seekError) Error() string {
   150  	return "seek error: " + e.err.Error()
   151  }
   152  
   153  func newNodeIterator(trie *Trie, start []byte) NodeIterator {
   154  	if trie.Hash() == emptyState {
   155  		return new(nodeIterator)
   156  	}
   157  	it := &nodeIterator{trie: trie}
   158  	it.err = it.seek(start)
   159  	return it
   160  }
   161  
   162  func (it *nodeIterator) AddResolver(resolver ethdb.KeyValueStore) {
   163  	it.resolver = resolver
   164  }
   165  
   166  func (it *nodeIterator) Hash() common.Hash {
   167  	if len(it.stack) == 0 {
   168  		return common.Hash{}
   169  	}
   170  	return it.stack[len(it.stack)-1].hash
   171  }
   172  
   173  func (it *nodeIterator) Parent() common.Hash {
   174  	if len(it.stack) == 0 {
   175  		return common.Hash{}
   176  	}
   177  	return it.stack[len(it.stack)-1].parent
   178  }
   179  
   180  func (it *nodeIterator) Leaf() bool {
   181  	return hasTerm(it.path)
   182  }
   183  
   184  func (it *nodeIterator) LeafKey() []byte {
   185  	if len(it.stack) > 0 {
   186  		if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
   187  			return hexToKeybytes(it.path)
   188  		}
   189  	}
   190  	panic("not at leaf")
   191  }
   192  
   193  func (it *nodeIterator) LeafBlob() []byte {
   194  	if len(it.stack) > 0 {
   195  		if node, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
   196  			return node
   197  		}
   198  	}
   199  	panic("not at leaf")
   200  }
   201  
   202  func (it *nodeIterator) LeafProof() [][]byte {
   203  	if len(it.stack) > 0 {
   204  		if _, ok := it.stack[len(it.stack)-1].node.(valueNode); ok {
   205  			hasher := newHasher(false)
   206  			defer returnHasherToPool(hasher)
   207  			proofs := make([][]byte, 0, len(it.stack))
   208  
   209  			for i, item := range it.stack[:len(it.stack)-1] {
   210  				// Gather nodes that end up as hash nodes (or the root)
   211  				node, hashed := hasher.proofHash(item.node)
   212  				if _, ok := hashed.(hashNode); ok || i == 0 {
   213  					enc, _ := rlp.EncodeToBytes(node)
   214  					proofs = append(proofs, enc)
   215  				}
   216  			}
   217  			return proofs
   218  		}
   219  	}
   220  	panic("not at leaf")
   221  }
   222  
   223  func (it *nodeIterator) Path() []byte {
   224  	return it.path
   225  }
   226  
   227  func (it *nodeIterator) Error() error {
   228  	if it.err == errIteratorEnd {
   229  		return nil
   230  	}
   231  	if seek, ok := it.err.(seekError); ok {
   232  		return seek.err
   233  	}
   234  	return it.err
   235  }
   236  
   237  // Next moves the iterator to the next node, returning whether there are any
   238  // further nodes. In case of an internal error this method returns false and
   239  // sets the Error field to the encountered failure. If `descend` is false,
   240  // skips iterating over any subnodes of the current node.
   241  func (it *nodeIterator) Next(descend bool) bool {
   242  	if it.err == errIteratorEnd {
   243  		return false
   244  	}
   245  	if seek, ok := it.err.(seekError); ok {
   246  		if it.err = it.seek(seek.key); it.err != nil {
   247  			return false
   248  		}
   249  	}
   250  	// Otherwise step forward with the iterator and report any errors.
   251  	state, parentIndex, path, err := it.peek(descend)
   252  	it.err = err
   253  	if it.err != nil {
   254  		return false
   255  	}
   256  	it.push(state, parentIndex, path)
   257  	return true
   258  }
   259  
   260  func (it *nodeIterator) seek(prefix []byte) error {
   261  	// The path we're looking for is the hex encoded key without terminator.
   262  	key := keybytesToHex(prefix)
   263  	key = key[:len(key)-1]
   264  	// Move forward until we're just before the closest match to key.
   265  	for {
   266  		state, parentIndex, path, err := it.peekSeek(key)
   267  		if err == errIteratorEnd {
   268  			return errIteratorEnd
   269  		} else if err != nil {
   270  			return seekError{prefix, err}
   271  		} else if bytes.Compare(path, key) >= 0 {
   272  			return nil
   273  		}
   274  		it.push(state, parentIndex, path)
   275  	}
   276  }
   277  
   278  // init initializes the the iterator.
   279  func (it *nodeIterator) init() (*nodeIteratorState, error) {
   280  	root := it.trie.Hash()
   281  	state := &nodeIteratorState{node: it.trie.root, index: -1}
   282  	if root != emptyRoot {
   283  		state.hash = root
   284  	}
   285  	return state, state.resolve(it, nil)
   286  }
   287  
   288  // peek creates the next state of the iterator.
   289  func (it *nodeIterator) peek(descend bool) (*nodeIteratorState, *int, []byte, error) {
   290  	// Initialize the iterator if we've just started.
   291  	if len(it.stack) == 0 {
   292  		state, err := it.init()
   293  		return state, nil, nil, err
   294  	}
   295  	if !descend {
   296  		// If we're skipping children, pop the current node first
   297  		it.pop()
   298  	}
   299  
   300  	// Continue iteration to the next child
   301  	for len(it.stack) > 0 {
   302  		parent := it.stack[len(it.stack)-1]
   303  		ancestor := parent.hash
   304  		if (ancestor == common.Hash{}) {
   305  			ancestor = parent.parent
   306  		}
   307  		state, path, ok := it.nextChild(parent, ancestor)
   308  		if ok {
   309  			if err := state.resolve(it, path); err != nil {
   310  				return parent, &parent.index, path, err
   311  			}
   312  			return state, &parent.index, path, nil
   313  		}
   314  		// No more child nodes, move back up.
   315  		it.pop()
   316  	}
   317  	return nil, nil, nil, errIteratorEnd
   318  }
   319  
   320  // peekSeek is like peek, but it also tries to skip resolving hashes by skipping
   321  // over the siblings that do not lead towards the desired seek position.
   322  func (it *nodeIterator) peekSeek(seekKey []byte) (*nodeIteratorState, *int, []byte, error) {
   323  	// Initialize the iterator if we've just started.
   324  	if len(it.stack) == 0 {
   325  		state, err := it.init()
   326  		return state, nil, nil, err
   327  	}
   328  	if !bytes.HasPrefix(seekKey, it.path) {
   329  		// If we're skipping children, pop the current node first
   330  		it.pop()
   331  	}
   332  
   333  	// Continue iteration to the next child
   334  	for len(it.stack) > 0 {
   335  		parent := it.stack[len(it.stack)-1]
   336  		ancestor := parent.hash
   337  		if (ancestor == common.Hash{}) {
   338  			ancestor = parent.parent
   339  		}
   340  		state, path, ok := it.nextChildAt(parent, ancestor, seekKey)
   341  		if ok {
   342  			if err := state.resolve(it, path); err != nil {
   343  				return parent, &parent.index, path, err
   344  			}
   345  			return state, &parent.index, path, nil
   346  		}
   347  		// No more child nodes, move back up.
   348  		it.pop()
   349  	}
   350  	return nil, nil, nil, errIteratorEnd
   351  }
   352  
   353  func (it *nodeIterator) resolveHash(hash hashNode, path []byte) (node, error) {
   354  	if it.resolver != nil {
   355  		if blob, err := it.resolver.Get(hash); err == nil && len(blob) > 0 {
   356  			if resolved, err := decodeNode(hash, blob); err == nil {
   357  				return resolved, nil
   358  			}
   359  		}
   360  	}
   361  	resolved, err := it.trie.resolveHash(hash, path)
   362  	return resolved, err
   363  }
   364  
   365  func (st *nodeIteratorState) resolve(it *nodeIterator, path []byte) error {
   366  	if hash, ok := st.node.(hashNode); ok {
   367  		resolved, err := it.resolveHash(hash, path)
   368  		if err != nil {
   369  			return err
   370  		}
   371  		st.node = resolved
   372  		st.hash = common.BytesToHash(hash)
   373  	}
   374  	return nil
   375  }
   376  
   377  func findChild(n *fullNode, index int, path []byte, ancestor common.Hash) (node, *nodeIteratorState, []byte, int) {
   378  	var (
   379  		child     node
   380  		state     *nodeIteratorState
   381  		childPath []byte
   382  	)
   383  	for ; index < len(n.Children); index++ {
   384  		if n.Children[index] != nil {
   385  			child = n.Children[index]
   386  			hash, _ := child.cache()
   387  			state = &nodeIteratorState{
   388  				hash:    common.BytesToHash(hash),
   389  				node:    child,
   390  				parent:  ancestor,
   391  				index:   -1,
   392  				pathlen: len(path),
   393  			}
   394  			childPath = append(childPath, path...)
   395  			childPath = append(childPath, byte(index))
   396  			return child, state, childPath, index
   397  		}
   398  	}
   399  	return nil, nil, nil, 0
   400  }
   401  
   402  func (it *nodeIterator) nextChild(parent *nodeIteratorState, ancestor common.Hash) (*nodeIteratorState, []byte, bool) {
   403  	switch node := parent.node.(type) {
   404  	case *fullNode:
   405  		//Full node, move to the first non-nil child.
   406  		if child, state, path, index := findChild(node, parent.index+1, it.path, ancestor); child != nil {
   407  			parent.index = index - 1
   408  			return state, path, true
   409  		}
   410  	case *shortNode:
   411  		// Short node, return the pointer singleton child
   412  		if parent.index < 0 {
   413  			hash, _ := node.Val.cache()
   414  			state := &nodeIteratorState{
   415  				hash:    common.BytesToHash(hash),
   416  				node:    node.Val,
   417  				parent:  ancestor,
   418  				index:   -1,
   419  				pathlen: len(it.path),
   420  			}
   421  			path := append(it.path, node.Key...)
   422  			return state, path, true
   423  		}
   424  	}
   425  	return parent, it.path, false
   426  }
   427  
   428  // nextChildAt is similar to nextChild, except that it targets a child as close to the
   429  // target key as possible, thus skipping siblings.
   430  func (it *nodeIterator) nextChildAt(parent *nodeIteratorState, ancestor common.Hash, key []byte) (*nodeIteratorState, []byte, bool) {
   431  	switch n := parent.node.(type) {
   432  	case *fullNode:
   433  		// Full node, move to the first non-nil child before the desired key position
   434  		child, state, path, index := findChild(n, parent.index+1, it.path, ancestor)
   435  		if child == nil {
   436  			// No more children in this fullnode
   437  			return parent, it.path, false
   438  		}
   439  		// If the child we found is already past the seek position, just return it.
   440  		if bytes.Compare(path, key) >= 0 {
   441  			parent.index = index - 1
   442  			return state, path, true
   443  		}
   444  		// The child is before the seek position. Try advancing
   445  		for {
   446  			nextChild, nextState, nextPath, nextIndex := findChild(n, index+1, it.path, ancestor)
   447  			// If we run out of children, or skipped past the target, return the
   448  			// previous one
   449  			if nextChild == nil || bytes.Compare(nextPath, key) >= 0 {
   450  				parent.index = index - 1
   451  				return state, path, true
   452  			}
   453  			// We found a better child closer to the target
   454  			state, path, index = nextState, nextPath, nextIndex
   455  		}
   456  	case *shortNode:
   457  		// Short node, return the pointer singleton child
   458  		if parent.index < 0 {
   459  			hash, _ := n.Val.cache()
   460  			state := &nodeIteratorState{
   461  				hash:    common.BytesToHash(hash),
   462  				node:    n.Val,
   463  				parent:  ancestor,
   464  				index:   -1,
   465  				pathlen: len(it.path),
   466  			}
   467  			path := append(it.path, n.Key...)
   468  			return state, path, true
   469  		}
   470  	}
   471  	return parent, it.path, false
   472  }
   473  
   474  func (it *nodeIterator) push(state *nodeIteratorState, parentIndex *int, path []byte) {
   475  	it.path = path
   476  	it.stack = append(it.stack, state)
   477  	if parentIndex != nil {
   478  		*parentIndex++
   479  	}
   480  }
   481  
   482  func (it *nodeIterator) pop() {
   483  	parent := it.stack[len(it.stack)-1]
   484  	it.path = it.path[:parent.pathlen]
   485  	it.stack = it.stack[:len(it.stack)-1]
   486  }
   487  
   488  func compareNodes(a, b NodeIterator) int {
   489  	if cmp := bytes.Compare(a.Path(), b.Path()); cmp != 0 {
   490  		return cmp
   491  	}
   492  	if a.Leaf() && !b.Leaf() {
   493  		return -1
   494  	} else if b.Leaf() && !a.Leaf() {
   495  		return 1
   496  	}
   497  	if cmp := bytes.Compare(a.Hash().Bytes(), b.Hash().Bytes()); cmp != 0 {
   498  		return cmp
   499  	}
   500  	if a.Leaf() && b.Leaf() {
   501  		return bytes.Compare(a.LeafBlob(), b.LeafBlob())
   502  	}
   503  	return 0
   504  }
   505  
   506  type differenceIterator struct {
   507  	a, b  NodeIterator // Nodes returned are those in b - a.
   508  	eof   bool         // Indicates a has run out of elements
   509  	count int          // Number of nodes scanned on either trie
   510  }
   511  
   512  // NewDifferenceIterator constructs a NodeIterator that iterates over elements in b that
   513  // are not in a. Returns the iterator, and a pointer to an integer recording the number
   514  // of nodes seen.
   515  func NewDifferenceIterator(a, b NodeIterator) (NodeIterator, *int) {
   516  	a.Next(true)
   517  	it := &differenceIterator{
   518  		a: a,
   519  		b: b,
   520  	}
   521  	return it, &it.count
   522  }
   523  
   524  func (it *differenceIterator) Hash() common.Hash {
   525  	return it.b.Hash()
   526  }
   527  
   528  func (it *differenceIterator) Parent() common.Hash {
   529  	return it.b.Parent()
   530  }
   531  
   532  func (it *differenceIterator) Leaf() bool {
   533  	return it.b.Leaf()
   534  }
   535  
   536  func (it *differenceIterator) LeafKey() []byte {
   537  	return it.b.LeafKey()
   538  }
   539  
   540  func (it *differenceIterator) LeafBlob() []byte {
   541  	return it.b.LeafBlob()
   542  }
   543  
   544  func (it *differenceIterator) LeafProof() [][]byte {
   545  	return it.b.LeafProof()
   546  }
   547  
   548  func (it *differenceIterator) Path() []byte {
   549  	return it.b.Path()
   550  }
   551  
   552  func (it *differenceIterator) AddResolver(resolver ethdb.KeyValueStore) {
   553  	panic("not implemented")
   554  }
   555  
   556  func (it *differenceIterator) Next(bool) bool {
   557  	// Invariants:
   558  	// - We always advance at least one element in b.
   559  	// - At the start of this function, a's path is lexically greater than b's.
   560  	if !it.b.Next(true) {
   561  		return false
   562  	}
   563  	it.count++
   564  
   565  	if it.eof {
   566  		// a has reached eof, so we just return all elements from b
   567  		return true
   568  	}
   569  
   570  	for {
   571  		switch compareNodes(it.a, it.b) {
   572  		case -1:
   573  			// b jumped past a; advance a
   574  			if !it.a.Next(true) {
   575  				it.eof = true
   576  				return true
   577  			}
   578  			it.count++
   579  		case 1:
   580  			// b is before a
   581  			return true
   582  		case 0:
   583  			// a and b are identical; skip this whole subtree if the nodes have hashes
   584  			hasHash := it.a.Hash() == common.Hash{}
   585  			if !it.b.Next(hasHash) {
   586  				return false
   587  			}
   588  			it.count++
   589  			if !it.a.Next(hasHash) {
   590  				it.eof = true
   591  				return true
   592  			}
   593  			it.count++
   594  		}
   595  	}
   596  }
   597  
   598  func (it *differenceIterator) Error() error {
   599  	if err := it.a.Error(); err != nil {
   600  		return err
   601  	}
   602  	return it.b.Error()
   603  }
   604  
   605  type nodeIteratorHeap []NodeIterator
   606  
   607  func (h nodeIteratorHeap) Len() int            { return len(h) }
   608  func (h nodeIteratorHeap) Less(i, j int) bool  { return compareNodes(h[i], h[j]) < 0 }
   609  func (h nodeIteratorHeap) Swap(i, j int)       { h[i], h[j] = h[j], h[i] }
   610  func (h *nodeIteratorHeap) Push(x interface{}) { *h = append(*h, x.(NodeIterator)) }
   611  func (h *nodeIteratorHeap) Pop() interface{} {
   612  	n := len(*h)
   613  	x := (*h)[n-1]
   614  	*h = (*h)[0 : n-1]
   615  	return x
   616  }
   617  
   618  type unionIterator struct {
   619  	items *nodeIteratorHeap // Nodes returned are the union of the ones in these iterators
   620  	count int               // Number of nodes scanned across all tries
   621  }
   622  
   623  // NewUnionIterator constructs a NodeIterator that iterates over elements in the union
   624  // of the provided NodeIterators. Returns the iterator, and a pointer to an integer
   625  // recording the number of nodes visited.
   626  func NewUnionIterator(iters []NodeIterator) (NodeIterator, *int) {
   627  	h := make(nodeIteratorHeap, len(iters))
   628  	copy(h, iters)
   629  	heap.Init(&h)
   630  
   631  	ui := &unionIterator{items: &h}
   632  	return ui, &ui.count
   633  }
   634  
   635  func (it *unionIterator) Hash() common.Hash {
   636  	return (*it.items)[0].Hash()
   637  }
   638  
   639  func (it *unionIterator) Parent() common.Hash {
   640  	return (*it.items)[0].Parent()
   641  }
   642  
   643  func (it *unionIterator) Leaf() bool {
   644  	return (*it.items)[0].Leaf()
   645  }
   646  
   647  func (it *unionIterator) LeafKey() []byte {
   648  	return (*it.items)[0].LeafKey()
   649  }
   650  
   651  func (it *unionIterator) LeafBlob() []byte {
   652  	return (*it.items)[0].LeafBlob()
   653  }
   654  
   655  func (it *unionIterator) LeafProof() [][]byte {
   656  	return (*it.items)[0].LeafProof()
   657  }
   658  
   659  func (it *unionIterator) Path() []byte {
   660  	return (*it.items)[0].Path()
   661  }
   662  
   663  func (it *unionIterator) AddResolver(resolver ethdb.KeyValueStore) {
   664  	panic("not implemented")
   665  }
   666  
   667  // Next returns the next node in the union of tries being iterated over.
   668  //
   669  // It does this by maintaining a heap of iterators, sorted by the iteration
   670  // order of their next elements, with one entry for each source trie. Each
   671  // time Next() is called, it takes the least element from the heap to return,
   672  // advancing any other iterators that also point to that same element. These
   673  // iterators are called with descend=false, since we know that any nodes under
   674  // these nodes will also be duplicates, found in the currently selected iterator.
   675  // Whenever an iterator is advanced, it is pushed back into the heap if it still
   676  // has elements remaining.
   677  //
   678  // In the case that descend=false - eg, we're asked to ignore all subnodes of the
   679  // current node - we also advance any iterators in the heap that have the current
   680  // path as a prefix.
   681  func (it *unionIterator) Next(descend bool) bool {
   682  	if len(*it.items) == 0 {
   683  		return false
   684  	}
   685  
   686  	// Get the next key from the union
   687  	least := heap.Pop(it.items).(NodeIterator)
   688  
   689  	// Skip over other nodes as long as they're identical, or, if we're not descending, as
   690  	// long as they have the same prefix as the current node.
   691  	for len(*it.items) > 0 && ((!descend && bytes.HasPrefix((*it.items)[0].Path(), least.Path())) || compareNodes(least, (*it.items)[0]) == 0) {
   692  		skipped := heap.Pop(it.items).(NodeIterator)
   693  		// Skip the whole subtree if the nodes have hashes; otherwise just skip this node
   694  		if skipped.Next(skipped.Hash() == common.Hash{}) {
   695  			it.count++
   696  			// If there are more elements, push the iterator back on the heap
   697  			heap.Push(it.items, skipped)
   698  		}
   699  	}
   700  	if least.Next(descend) {
   701  		it.count++
   702  		heap.Push(it.items, least)
   703  	}
   704  	return len(*it.items) > 0
   705  }
   706  
   707  func (it *unionIterator) Error() error {
   708  	for i := 0; i < len(*it.items); i++ {
   709  		if err := (*it.items)[i].Error(); err != nil {
   710  			return err
   711  		}
   712  	}
   713  	return nil
   714  }