github.com/poctek/mev-geth@v1.9.7/accounts/abi/type.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package abi
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"reflect"
    23  	"regexp"
    24  	"strconv"
    25  	"strings"
    26  )
    27  
    28  // Type enumerator
    29  const (
    30  	IntTy byte = iota
    31  	UintTy
    32  	BoolTy
    33  	StringTy
    34  	SliceTy
    35  	ArrayTy
    36  	TupleTy
    37  	AddressTy
    38  	FixedBytesTy
    39  	BytesTy
    40  	HashTy
    41  	FixedPointTy
    42  	FunctionTy
    43  )
    44  
    45  // Type is the reflection of the supported argument type
    46  type Type struct {
    47  	Elem *Type
    48  	Kind reflect.Kind
    49  	Type reflect.Type
    50  	Size int
    51  	T    byte // Our own type checking
    52  
    53  	stringKind string // holds the unparsed string for deriving signatures
    54  
    55  	// Tuple relative fields
    56  	TupleRawName  string   // Raw struct name defined in source code, may be empty.
    57  	TupleElems    []*Type  // Type information of all tuple fields
    58  	TupleRawNames []string // Raw field name of all tuple fields
    59  }
    60  
    61  var (
    62  	// typeRegex parses the abi sub types
    63  	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
    64  )
    65  
    66  // NewType creates a new reflection type of abi type given in t.
    67  func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
    68  	// check that array brackets are equal if they exist
    69  	if strings.Count(t, "[") != strings.Count(t, "]") {
    70  		return Type{}, fmt.Errorf("invalid arg type in abi")
    71  	}
    72  	typ.stringKind = t
    73  
    74  	// if there are brackets, get ready to go into slice/array mode and
    75  	// recursively create the type
    76  	if strings.Count(t, "[") != 0 {
    77  		// Note internalType can be empty here.
    78  		subInternal := internalType
    79  		if i := strings.LastIndex(internalType, "["); i != -1 {
    80  			subInternal = subInternal[:i]
    81  		}
    82  		// recursively embed the type
    83  		i := strings.LastIndex(t, "[")
    84  		embeddedType, err := NewType(t[:i], subInternal, components)
    85  		if err != nil {
    86  			return Type{}, err
    87  		}
    88  		// grab the last cell and create a type from there
    89  		sliced := t[i:]
    90  		// grab the slice size with regexp
    91  		re := regexp.MustCompile("[0-9]+")
    92  		intz := re.FindAllString(sliced, -1)
    93  
    94  		if len(intz) == 0 {
    95  			// is a slice
    96  			typ.T = SliceTy
    97  			typ.Kind = reflect.Slice
    98  			typ.Elem = &embeddedType
    99  			typ.Type = reflect.SliceOf(embeddedType.Type)
   100  			typ.stringKind = embeddedType.stringKind + sliced
   101  		} else if len(intz) == 1 {
   102  			// is a array
   103  			typ.T = ArrayTy
   104  			typ.Kind = reflect.Array
   105  			typ.Elem = &embeddedType
   106  			typ.Size, err = strconv.Atoi(intz[0])
   107  			if err != nil {
   108  				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   109  			}
   110  			typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type)
   111  			typ.stringKind = embeddedType.stringKind + sliced
   112  		} else {
   113  			return Type{}, fmt.Errorf("invalid formatting of array type")
   114  		}
   115  		return typ, err
   116  	}
   117  	// parse the type and size of the abi-type.
   118  	matches := typeRegex.FindAllStringSubmatch(t, -1)
   119  	if len(matches) == 0 {
   120  		return Type{}, fmt.Errorf("invalid type '%v'", t)
   121  	}
   122  	parsedType := matches[0]
   123  
   124  	// varSize is the size of the variable
   125  	var varSize int
   126  	if len(parsedType[3]) > 0 {
   127  		var err error
   128  		varSize, err = strconv.Atoi(parsedType[2])
   129  		if err != nil {
   130  			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   131  		}
   132  	} else {
   133  		if parsedType[0] == "uint" || parsedType[0] == "int" {
   134  			// this should fail because it means that there's something wrong with
   135  			// the abi type (the compiler should always format it to the size...always)
   136  			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   137  		}
   138  	}
   139  	// varType is the parsed abi type
   140  	switch varType := parsedType[1]; varType {
   141  	case "int":
   142  		typ.Kind, typ.Type = reflectIntKindAndType(false, varSize)
   143  		typ.Size = varSize
   144  		typ.T = IntTy
   145  	case "uint":
   146  		typ.Kind, typ.Type = reflectIntKindAndType(true, varSize)
   147  		typ.Size = varSize
   148  		typ.T = UintTy
   149  	case "bool":
   150  		typ.Kind = reflect.Bool
   151  		typ.T = BoolTy
   152  		typ.Type = reflect.TypeOf(bool(false))
   153  	case "address":
   154  		typ.Kind = reflect.Array
   155  		typ.Type = addressT
   156  		typ.Size = 20
   157  		typ.T = AddressTy
   158  	case "string":
   159  		typ.Kind = reflect.String
   160  		typ.Type = reflect.TypeOf("")
   161  		typ.T = StringTy
   162  	case "bytes":
   163  		if varSize == 0 {
   164  			typ.T = BytesTy
   165  			typ.Kind = reflect.Slice
   166  			typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0)))
   167  		} else {
   168  			typ.T = FixedBytesTy
   169  			typ.Kind = reflect.Array
   170  			typ.Size = varSize
   171  			typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0)))
   172  		}
   173  	case "tuple":
   174  		var (
   175  			fields     []reflect.StructField
   176  			elems      []*Type
   177  			names      []string
   178  			expression string // canonical parameter expression
   179  		)
   180  		expression += "("
   181  		for idx, c := range components {
   182  			cType, err := NewType(c.Type, c.InternalType, c.Components)
   183  			if err != nil {
   184  				return Type{}, err
   185  			}
   186  			if ToCamelCase(c.Name) == "" {
   187  				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
   188  			}
   189  			fields = append(fields, reflect.StructField{
   190  				Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field.
   191  				Type: cType.Type,
   192  				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
   193  			})
   194  			elems = append(elems, &cType)
   195  			names = append(names, c.Name)
   196  			expression += cType.stringKind
   197  			if idx != len(components)-1 {
   198  				expression += ","
   199  			}
   200  		}
   201  		expression += ")"
   202  		typ.Kind = reflect.Struct
   203  		typ.Type = reflect.StructOf(fields)
   204  		typ.TupleElems = elems
   205  		typ.TupleRawNames = names
   206  		typ.T = TupleTy
   207  		typ.stringKind = expression
   208  
   209  		const structPrefix = "struct "
   210  		// After solidity 0.5.10, a new field of abi "internalType"
   211  		// is introduced. From that we can obtain the struct name
   212  		// user defined in the source code.
   213  		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
   214  			// Foo.Bar type definition is not allowed in golang,
   215  			// convert the format to FooBar
   216  			typ.TupleRawName = strings.Replace(internalType[len(structPrefix):], ".", "", -1)
   217  		}
   218  
   219  	case "function":
   220  		typ.Kind = reflect.Array
   221  		typ.T = FunctionTy
   222  		typ.Size = 24
   223  		typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
   224  	default:
   225  		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   226  	}
   227  
   228  	return
   229  }
   230  
   231  // String implements Stringer
   232  func (t Type) String() (out string) {
   233  	return t.stringKind
   234  }
   235  
   236  func (t Type) pack(v reflect.Value) ([]byte, error) {
   237  	// dereference pointer first if it's a pointer
   238  	v = indirect(v)
   239  	if err := typeCheck(t, v); err != nil {
   240  		return nil, err
   241  	}
   242  
   243  	switch t.T {
   244  	case SliceTy, ArrayTy:
   245  		var ret []byte
   246  
   247  		if t.requiresLengthPrefix() {
   248  			// append length
   249  			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
   250  		}
   251  
   252  		// calculate offset if any
   253  		offset := 0
   254  		offsetReq := isDynamicType(*t.Elem)
   255  		if offsetReq {
   256  			offset = getTypeSize(*t.Elem) * v.Len()
   257  		}
   258  		var tail []byte
   259  		for i := 0; i < v.Len(); i++ {
   260  			val, err := t.Elem.pack(v.Index(i))
   261  			if err != nil {
   262  				return nil, err
   263  			}
   264  			if !offsetReq {
   265  				ret = append(ret, val...)
   266  				continue
   267  			}
   268  			ret = append(ret, packNum(reflect.ValueOf(offset))...)
   269  			offset += len(val)
   270  			tail = append(tail, val...)
   271  		}
   272  		return append(ret, tail...), nil
   273  	case TupleTy:
   274  		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
   275  		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
   276  		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
   277  		// type as
   278  		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
   279  		// and as
   280  		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
   281  		//     tail(X(i)) = enc(X(i))
   282  		// otherwise, i.e. if Ti is a dynamic type.
   283  		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
   284  		if err != nil {
   285  			return nil, err
   286  		}
   287  		// Calculate prefix occupied size.
   288  		offset := 0
   289  		for _, elem := range t.TupleElems {
   290  			offset += getTypeSize(*elem)
   291  		}
   292  		var ret, tail []byte
   293  		for i, elem := range t.TupleElems {
   294  			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
   295  			if !field.IsValid() {
   296  				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
   297  			}
   298  			val, err := elem.pack(field)
   299  			if err != nil {
   300  				return nil, err
   301  			}
   302  			if isDynamicType(*elem) {
   303  				ret = append(ret, packNum(reflect.ValueOf(offset))...)
   304  				tail = append(tail, val...)
   305  				offset += len(val)
   306  			} else {
   307  				ret = append(ret, val...)
   308  			}
   309  		}
   310  		return append(ret, tail...), nil
   311  
   312  	default:
   313  		return packElement(t, v), nil
   314  	}
   315  }
   316  
   317  // requireLengthPrefix returns whether the type requires any sort of length
   318  // prefixing.
   319  func (t Type) requiresLengthPrefix() bool {
   320  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
   321  }
   322  
   323  // isDynamicType returns true if the type is dynamic.
   324  // The following types are called “dynamic”:
   325  // * bytes
   326  // * string
   327  // * T[] for any T
   328  // * T[k] for any dynamic T and any k >= 0
   329  // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
   330  func isDynamicType(t Type) bool {
   331  	if t.T == TupleTy {
   332  		for _, elem := range t.TupleElems {
   333  			if isDynamicType(*elem) {
   334  				return true
   335  			}
   336  		}
   337  		return false
   338  	}
   339  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
   340  }
   341  
   342  // getTypeSize returns the size that this type needs to occupy.
   343  // We distinguish static and dynamic types. Static types are encoded in-place
   344  // and dynamic types are encoded at a separately allocated location after the
   345  // current block.
   346  // So for a static variable, the size returned represents the size that the
   347  // variable actually occupies.
   348  // For a dynamic variable, the returned size is fixed 32 bytes, which is used
   349  // to store the location reference for actual value storage.
   350  func getTypeSize(t Type) int {
   351  	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
   352  		// Recursively calculate type size if it is a nested array
   353  		if t.Elem.T == ArrayTy {
   354  			return t.Size * getTypeSize(*t.Elem)
   355  		}
   356  		return t.Size * 32
   357  	} else if t.T == TupleTy && !isDynamicType(t) {
   358  		total := 0
   359  		for _, elem := range t.TupleElems {
   360  			total += getTypeSize(*elem)
   361  		}
   362  		return total
   363  	}
   364  	return 32
   365  }