github.com/powerman/golang-tools@v0.1.11-0.20220410185822-5ad214d8d803/cmd/stringer/stringer.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Stringer is a tool to automate the creation of methods that satisfy the fmt.Stringer 6 // interface. Given the name of a (signed or unsigned) integer type T that has constants 7 // defined, stringer will create a new self-contained Go source file implementing 8 // func (t T) String() string 9 // The file is created in the same package and directory as the package that defines T. 10 // It has helpful defaults designed for use with go generate. 11 // 12 // Stringer works best with constants that are consecutive values such as created using iota, 13 // but creates good code regardless. In the future it might also provide custom support for 14 // constant sets that are bit patterns. 15 // 16 // For example, given this snippet, 17 // 18 // package painkiller 19 // 20 // type Pill int 21 // 22 // const ( 23 // Placebo Pill = iota 24 // Aspirin 25 // Ibuprofen 26 // Paracetamol 27 // Acetaminophen = Paracetamol 28 // ) 29 // 30 // running this command 31 // 32 // stringer -type=Pill 33 // 34 // in the same directory will create the file pill_string.go, in package painkiller, 35 // containing a definition of 36 // 37 // func (Pill) String() string 38 // 39 // That method will translate the value of a Pill constant to the string representation 40 // of the respective constant name, so that the call fmt.Print(painkiller.Aspirin) will 41 // print the string "Aspirin". 42 // 43 // Typically this process would be run using go generate, like this: 44 // 45 // //go:generate stringer -type=Pill 46 // 47 // If multiple constants have the same value, the lexically first matching name will 48 // be used (in the example, Acetaminophen will print as "Paracetamol"). 49 // 50 // With no arguments, it processes the package in the current directory. 51 // Otherwise, the arguments must name a single directory holding a Go package 52 // or a set of Go source files that represent a single Go package. 53 // 54 // The -type flag accepts a comma-separated list of types so a single run can 55 // generate methods for multiple types. The default output file is t_string.go, 56 // where t is the lower-cased name of the first type listed. It can be overridden 57 // with the -output flag. 58 // 59 // The -linecomment flag tells stringer to generate the text of any line comment, trimmed 60 // of leading spaces, instead of the constant name. For instance, if the constants above had a 61 // Pill prefix, one could write 62 // 63 // PillAspirin // Aspirin 64 // 65 // to suppress it in the output. 66 package main // import "github.com/powerman/golang-tools/cmd/stringer" 67 68 import ( 69 "bytes" 70 "flag" 71 "fmt" 72 "go/ast" 73 "go/constant" 74 "go/format" 75 "go/token" 76 "go/types" 77 "io/ioutil" 78 "log" 79 "os" 80 "path/filepath" 81 "sort" 82 "strings" 83 84 "github.com/powerman/golang-tools/go/packages" 85 ) 86 87 var ( 88 typeNames = flag.String("type", "", "comma-separated list of type names; must be set") 89 output = flag.String("output", "", "output file name; default srcdir/<type>_string.go") 90 trimprefix = flag.String("trimprefix", "", "trim the `prefix` from the generated constant names") 91 linecomment = flag.Bool("linecomment", false, "use line comment text as printed text when present") 92 buildTags = flag.String("tags", "", "comma-separated list of build tags to apply") 93 ) 94 95 // Usage is a replacement usage function for the flags package. 96 func Usage() { 97 fmt.Fprintf(os.Stderr, "Usage of stringer:\n") 98 fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T [directory]\n") 99 fmt.Fprintf(os.Stderr, "\tstringer [flags] -type T files... # Must be a single package\n") 100 fmt.Fprintf(os.Stderr, "For more information, see:\n") 101 fmt.Fprintf(os.Stderr, "\thttps://pkg.go.dev/github.com/powerman/golang-tools/cmd/stringer\n") 102 fmt.Fprintf(os.Stderr, "Flags:\n") 103 flag.PrintDefaults() 104 } 105 106 func main() { 107 log.SetFlags(0) 108 log.SetPrefix("stringer: ") 109 flag.Usage = Usage 110 flag.Parse() 111 if len(*typeNames) == 0 { 112 flag.Usage() 113 os.Exit(2) 114 } 115 types := strings.Split(*typeNames, ",") 116 var tags []string 117 if len(*buildTags) > 0 { 118 tags = strings.Split(*buildTags, ",") 119 } 120 121 // We accept either one directory or a list of files. Which do we have? 122 args := flag.Args() 123 if len(args) == 0 { 124 // Default: process whole package in current directory. 125 args = []string{"."} 126 } 127 128 // Parse the package once. 129 var dir string 130 g := Generator{ 131 trimPrefix: *trimprefix, 132 lineComment: *linecomment, 133 } 134 // TODO(suzmue): accept other patterns for packages (directories, list of files, import paths, etc). 135 if len(args) == 1 && isDirectory(args[0]) { 136 dir = args[0] 137 } else { 138 if len(tags) != 0 { 139 log.Fatal("-tags option applies only to directories, not when files are specified") 140 } 141 dir = filepath.Dir(args[0]) 142 } 143 144 g.parsePackage(args, tags) 145 146 // Print the header and package clause. 147 g.Printf("// Code generated by \"stringer %s\"; DO NOT EDIT.\n", strings.Join(os.Args[1:], " ")) 148 g.Printf("\n") 149 g.Printf("package %s", g.pkg.name) 150 g.Printf("\n") 151 g.Printf("import \"strconv\"\n") // Used by all methods. 152 153 // Run generate for each type. 154 for _, typeName := range types { 155 g.generate(typeName) 156 } 157 158 // Format the output. 159 src := g.format() 160 161 // Write to file. 162 outputName := *output 163 if outputName == "" { 164 baseName := fmt.Sprintf("%s_string.go", types[0]) 165 outputName = filepath.Join(dir, strings.ToLower(baseName)) 166 } 167 err := ioutil.WriteFile(outputName, src, 0644) 168 if err != nil { 169 log.Fatalf("writing output: %s", err) 170 } 171 } 172 173 // isDirectory reports whether the named file is a directory. 174 func isDirectory(name string) bool { 175 info, err := os.Stat(name) 176 if err != nil { 177 log.Fatal(err) 178 } 179 return info.IsDir() 180 } 181 182 // Generator holds the state of the analysis. Primarily used to buffer 183 // the output for format.Source. 184 type Generator struct { 185 buf bytes.Buffer // Accumulated output. 186 pkg *Package // Package we are scanning. 187 188 trimPrefix string 189 lineComment bool 190 } 191 192 func (g *Generator) Printf(format string, args ...interface{}) { 193 fmt.Fprintf(&g.buf, format, args...) 194 } 195 196 // File holds a single parsed file and associated data. 197 type File struct { 198 pkg *Package // Package to which this file belongs. 199 file *ast.File // Parsed AST. 200 // These fields are reset for each type being generated. 201 typeName string // Name of the constant type. 202 values []Value // Accumulator for constant values of that type. 203 204 trimPrefix string 205 lineComment bool 206 } 207 208 type Package struct { 209 name string 210 defs map[*ast.Ident]types.Object 211 files []*File 212 } 213 214 // parsePackage analyzes the single package constructed from the patterns and tags. 215 // parsePackage exits if there is an error. 216 func (g *Generator) parsePackage(patterns []string, tags []string) { 217 cfg := &packages.Config{ 218 Mode: packages.LoadSyntax, 219 // TODO: Need to think about constants in test files. Maybe write type_string_test.go 220 // in a separate pass? For later. 221 Tests: false, 222 BuildFlags: []string{fmt.Sprintf("-tags=%s", strings.Join(tags, " "))}, 223 } 224 pkgs, err := packages.Load(cfg, patterns...) 225 if err != nil { 226 log.Fatal(err) 227 } 228 if len(pkgs) != 1 { 229 log.Fatalf("error: %d packages found", len(pkgs)) 230 } 231 g.addPackage(pkgs[0]) 232 } 233 234 // addPackage adds a type checked Package and its syntax files to the generator. 235 func (g *Generator) addPackage(pkg *packages.Package) { 236 g.pkg = &Package{ 237 name: pkg.Name, 238 defs: pkg.TypesInfo.Defs, 239 files: make([]*File, len(pkg.Syntax)), 240 } 241 242 for i, file := range pkg.Syntax { 243 g.pkg.files[i] = &File{ 244 file: file, 245 pkg: g.pkg, 246 trimPrefix: g.trimPrefix, 247 lineComment: g.lineComment, 248 } 249 } 250 } 251 252 // generate produces the String method for the named type. 253 func (g *Generator) generate(typeName string) { 254 values := make([]Value, 0, 100) 255 for _, file := range g.pkg.files { 256 // Set the state for this run of the walker. 257 file.typeName = typeName 258 file.values = nil 259 if file.file != nil { 260 ast.Inspect(file.file, file.genDecl) 261 values = append(values, file.values...) 262 } 263 } 264 265 if len(values) == 0 { 266 log.Fatalf("no values defined for type %s", typeName) 267 } 268 // Generate code that will fail if the constants change value. 269 g.Printf("func _() {\n") 270 g.Printf("\t// An \"invalid array index\" compiler error signifies that the constant values have changed.\n") 271 g.Printf("\t// Re-run the stringer command to generate them again.\n") 272 g.Printf("\tvar x [1]struct{}\n") 273 for _, v := range values { 274 g.Printf("\t_ = x[%s - %s]\n", v.originalName, v.str) 275 } 276 g.Printf("}\n") 277 runs := splitIntoRuns(values) 278 // The decision of which pattern to use depends on the number of 279 // runs in the numbers. If there's only one, it's easy. For more than 280 // one, there's a tradeoff between complexity and size of the data 281 // and code vs. the simplicity of a map. A map takes more space, 282 // but so does the code. The decision here (crossover at 10) is 283 // arbitrary, but considers that for large numbers of runs the cost 284 // of the linear scan in the switch might become important, and 285 // rather than use yet another algorithm such as binary search, 286 // we punt and use a map. In any case, the likelihood of a map 287 // being necessary for any realistic example other than bitmasks 288 // is very low. And bitmasks probably deserve their own analysis, 289 // to be done some other day. 290 switch { 291 case len(runs) == 1: 292 g.buildOneRun(runs, typeName) 293 case len(runs) <= 10: 294 g.buildMultipleRuns(runs, typeName) 295 default: 296 g.buildMap(runs, typeName) 297 } 298 } 299 300 // splitIntoRuns breaks the values into runs of contiguous sequences. 301 // For example, given 1,2,3,5,6,7 it returns {1,2,3},{5,6,7}. 302 // The input slice is known to be non-empty. 303 func splitIntoRuns(values []Value) [][]Value { 304 // We use stable sort so the lexically first name is chosen for equal elements. 305 sort.Stable(byValue(values)) 306 // Remove duplicates. Stable sort has put the one we want to print first, 307 // so use that one. The String method won't care about which named constant 308 // was the argument, so the first name for the given value is the only one to keep. 309 // We need to do this because identical values would cause the switch or map 310 // to fail to compile. 311 j := 1 312 for i := 1; i < len(values); i++ { 313 if values[i].value != values[i-1].value { 314 values[j] = values[i] 315 j++ 316 } 317 } 318 values = values[:j] 319 runs := make([][]Value, 0, 10) 320 for len(values) > 0 { 321 // One contiguous sequence per outer loop. 322 i := 1 323 for i < len(values) && values[i].value == values[i-1].value+1 { 324 i++ 325 } 326 runs = append(runs, values[:i]) 327 values = values[i:] 328 } 329 return runs 330 } 331 332 // format returns the gofmt-ed contents of the Generator's buffer. 333 func (g *Generator) format() []byte { 334 src, err := format.Source(g.buf.Bytes()) 335 if err != nil { 336 // Should never happen, but can arise when developing this code. 337 // The user can compile the output to see the error. 338 log.Printf("warning: internal error: invalid Go generated: %s", err) 339 log.Printf("warning: compile the package to analyze the error") 340 return g.buf.Bytes() 341 } 342 return src 343 } 344 345 // Value represents a declared constant. 346 type Value struct { 347 originalName string // The name of the constant. 348 name string // The name with trimmed prefix. 349 // The value is stored as a bit pattern alone. The boolean tells us 350 // whether to interpret it as an int64 or a uint64; the only place 351 // this matters is when sorting. 352 // Much of the time the str field is all we need; it is printed 353 // by Value.String. 354 value uint64 // Will be converted to int64 when needed. 355 signed bool // Whether the constant is a signed type. 356 str string // The string representation given by the "go/constant" package. 357 } 358 359 func (v *Value) String() string { 360 return v.str 361 } 362 363 // byValue lets us sort the constants into increasing order. 364 // We take care in the Less method to sort in signed or unsigned order, 365 // as appropriate. 366 type byValue []Value 367 368 func (b byValue) Len() int { return len(b) } 369 func (b byValue) Swap(i, j int) { b[i], b[j] = b[j], b[i] } 370 func (b byValue) Less(i, j int) bool { 371 if b[i].signed { 372 return int64(b[i].value) < int64(b[j].value) 373 } 374 return b[i].value < b[j].value 375 } 376 377 // genDecl processes one declaration clause. 378 func (f *File) genDecl(node ast.Node) bool { 379 decl, ok := node.(*ast.GenDecl) 380 if !ok || decl.Tok != token.CONST { 381 // We only care about const declarations. 382 return true 383 } 384 // The name of the type of the constants we are declaring. 385 // Can change if this is a multi-element declaration. 386 typ := "" 387 // Loop over the elements of the declaration. Each element is a ValueSpec: 388 // a list of names possibly followed by a type, possibly followed by values. 389 // If the type and value are both missing, we carry down the type (and value, 390 // but the "go/types" package takes care of that). 391 for _, spec := range decl.Specs { 392 vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST. 393 if vspec.Type == nil && len(vspec.Values) > 0 { 394 // "X = 1". With no type but a value. If the constant is untyped, 395 // skip this vspec and reset the remembered type. 396 typ = "" 397 398 // If this is a simple type conversion, remember the type. 399 // We don't mind if this is actually a call; a qualified call won't 400 // be matched (that will be SelectorExpr, not Ident), and only unusual 401 // situations will result in a function call that appears to be 402 // a type conversion. 403 ce, ok := vspec.Values[0].(*ast.CallExpr) 404 if !ok { 405 continue 406 } 407 id, ok := ce.Fun.(*ast.Ident) 408 if !ok { 409 continue 410 } 411 typ = id.Name 412 } 413 if vspec.Type != nil { 414 // "X T". We have a type. Remember it. 415 ident, ok := vspec.Type.(*ast.Ident) 416 if !ok { 417 continue 418 } 419 typ = ident.Name 420 } 421 if typ != f.typeName { 422 // This is not the type we're looking for. 423 continue 424 } 425 // We now have a list of names (from one line of source code) all being 426 // declared with the desired type. 427 // Grab their names and actual values and store them in f.values. 428 for _, name := range vspec.Names { 429 if name.Name == "_" { 430 continue 431 } 432 // This dance lets the type checker find the values for us. It's a 433 // bit tricky: look up the object declared by the name, find its 434 // types.Const, and extract its value. 435 obj, ok := f.pkg.defs[name] 436 if !ok { 437 log.Fatalf("no value for constant %s", name) 438 } 439 info := obj.Type().Underlying().(*types.Basic).Info() 440 if info&types.IsInteger == 0 { 441 log.Fatalf("can't handle non-integer constant type %s", typ) 442 } 443 value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST. 444 if value.Kind() != constant.Int { 445 log.Fatalf("can't happen: constant is not an integer %s", name) 446 } 447 i64, isInt := constant.Int64Val(value) 448 u64, isUint := constant.Uint64Val(value) 449 if !isInt && !isUint { 450 log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String()) 451 } 452 if !isInt { 453 u64 = uint64(i64) 454 } 455 v := Value{ 456 originalName: name.Name, 457 value: u64, 458 signed: info&types.IsUnsigned == 0, 459 str: value.String(), 460 } 461 if c := vspec.Comment; f.lineComment && c != nil && len(c.List) == 1 { 462 v.name = strings.TrimSpace(c.Text()) 463 } else { 464 v.name = strings.TrimPrefix(v.originalName, f.trimPrefix) 465 } 466 f.values = append(f.values, v) 467 } 468 } 469 return false 470 } 471 472 // Helpers 473 474 // usize returns the number of bits of the smallest unsigned integer 475 // type that will hold n. Used to create the smallest possible slice of 476 // integers to use as indexes into the concatenated strings. 477 func usize(n int) int { 478 switch { 479 case n < 1<<8: 480 return 8 481 case n < 1<<16: 482 return 16 483 default: 484 // 2^32 is enough constants for anyone. 485 return 32 486 } 487 } 488 489 // declareIndexAndNameVars declares the index slices and concatenated names 490 // strings representing the runs of values. 491 func (g *Generator) declareIndexAndNameVars(runs [][]Value, typeName string) { 492 var indexes, names []string 493 for i, run := range runs { 494 index, name := g.createIndexAndNameDecl(run, typeName, fmt.Sprintf("_%d", i)) 495 if len(run) != 1 { 496 indexes = append(indexes, index) 497 } 498 names = append(names, name) 499 } 500 g.Printf("const (\n") 501 for _, name := range names { 502 g.Printf("\t%s\n", name) 503 } 504 g.Printf(")\n\n") 505 506 if len(indexes) > 0 { 507 g.Printf("var (") 508 for _, index := range indexes { 509 g.Printf("\t%s\n", index) 510 } 511 g.Printf(")\n\n") 512 } 513 } 514 515 // declareIndexAndNameVar is the single-run version of declareIndexAndNameVars 516 func (g *Generator) declareIndexAndNameVar(run []Value, typeName string) { 517 index, name := g.createIndexAndNameDecl(run, typeName, "") 518 g.Printf("const %s\n", name) 519 g.Printf("var %s\n", index) 520 } 521 522 // createIndexAndNameDecl returns the pair of declarations for the run. The caller will add "const" and "var". 523 func (g *Generator) createIndexAndNameDecl(run []Value, typeName string, suffix string) (string, string) { 524 b := new(bytes.Buffer) 525 indexes := make([]int, len(run)) 526 for i := range run { 527 b.WriteString(run[i].name) 528 indexes[i] = b.Len() 529 } 530 nameConst := fmt.Sprintf("_%s_name%s = %q", typeName, suffix, b.String()) 531 nameLen := b.Len() 532 b.Reset() 533 fmt.Fprintf(b, "_%s_index%s = [...]uint%d{0, ", typeName, suffix, usize(nameLen)) 534 for i, v := range indexes { 535 if i > 0 { 536 fmt.Fprintf(b, ", ") 537 } 538 fmt.Fprintf(b, "%d", v) 539 } 540 fmt.Fprintf(b, "}") 541 return b.String(), nameConst 542 } 543 544 // declareNameVars declares the concatenated names string representing all the values in the runs. 545 func (g *Generator) declareNameVars(runs [][]Value, typeName string, suffix string) { 546 g.Printf("const _%s_name%s = \"", typeName, suffix) 547 for _, run := range runs { 548 for i := range run { 549 g.Printf("%s", run[i].name) 550 } 551 } 552 g.Printf("\"\n") 553 } 554 555 // buildOneRun generates the variables and String method for a single run of contiguous values. 556 func (g *Generator) buildOneRun(runs [][]Value, typeName string) { 557 values := runs[0] 558 g.Printf("\n") 559 g.declareIndexAndNameVar(values, typeName) 560 // The generated code is simple enough to write as a Printf format. 561 lessThanZero := "" 562 if values[0].signed { 563 lessThanZero = "i < 0 || " 564 } 565 if values[0].value == 0 { // Signed or unsigned, 0 is still 0. 566 g.Printf(stringOneRun, typeName, usize(len(values)), lessThanZero) 567 } else { 568 g.Printf(stringOneRunWithOffset, typeName, values[0].String(), usize(len(values)), lessThanZero) 569 } 570 } 571 572 // Arguments to format are: 573 // [1]: type name 574 // [2]: size of index element (8 for uint8 etc.) 575 // [3]: less than zero check (for signed types) 576 const stringOneRun = `func (i %[1]s) String() string { 577 if %[3]si >= %[1]s(len(_%[1]s_index)-1) { 578 return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")" 579 } 580 return _%[1]s_name[_%[1]s_index[i]:_%[1]s_index[i+1]] 581 } 582 ` 583 584 // Arguments to format are: 585 // [1]: type name 586 // [2]: lowest defined value for type, as a string 587 // [3]: size of index element (8 for uint8 etc.) 588 // [4]: less than zero check (for signed types) 589 /* 590 */ 591 const stringOneRunWithOffset = `func (i %[1]s) String() string { 592 i -= %[2]s 593 if %[4]si >= %[1]s(len(_%[1]s_index)-1) { 594 return "%[1]s(" + strconv.FormatInt(int64(i + %[2]s), 10) + ")" 595 } 596 return _%[1]s_name[_%[1]s_index[i] : _%[1]s_index[i+1]] 597 } 598 ` 599 600 // buildMultipleRuns generates the variables and String method for multiple runs of contiguous values. 601 // For this pattern, a single Printf format won't do. 602 func (g *Generator) buildMultipleRuns(runs [][]Value, typeName string) { 603 g.Printf("\n") 604 g.declareIndexAndNameVars(runs, typeName) 605 g.Printf("func (i %s) String() string {\n", typeName) 606 g.Printf("\tswitch {\n") 607 for i, values := range runs { 608 if len(values) == 1 { 609 g.Printf("\tcase i == %s:\n", &values[0]) 610 g.Printf("\t\treturn _%s_name_%d\n", typeName, i) 611 continue 612 } 613 if values[0].value == 0 && !values[0].signed { 614 // For an unsigned lower bound of 0, "0 <= i" would be redundant. 615 g.Printf("\tcase i <= %s:\n", &values[len(values)-1]) 616 } else { 617 g.Printf("\tcase %s <= i && i <= %s:\n", &values[0], &values[len(values)-1]) 618 } 619 if values[0].value != 0 { 620 g.Printf("\t\ti -= %s\n", &values[0]) 621 } 622 g.Printf("\t\treturn _%s_name_%d[_%s_index_%d[i]:_%s_index_%d[i+1]]\n", 623 typeName, i, typeName, i, typeName, i) 624 } 625 g.Printf("\tdefault:\n") 626 g.Printf("\t\treturn \"%s(\" + strconv.FormatInt(int64(i), 10) + \")\"\n", typeName) 627 g.Printf("\t}\n") 628 g.Printf("}\n") 629 } 630 631 // buildMap handles the case where the space is so sparse a map is a reasonable fallback. 632 // It's a rare situation but has simple code. 633 func (g *Generator) buildMap(runs [][]Value, typeName string) { 634 g.Printf("\n") 635 g.declareNameVars(runs, typeName, "") 636 g.Printf("\nvar _%s_map = map[%s]string{\n", typeName, typeName) 637 n := 0 638 for _, values := range runs { 639 for _, value := range values { 640 g.Printf("\t%s: _%s_name[%d:%d],\n", &value, typeName, n, n+len(value.name)) 641 n += len(value.name) 642 } 643 } 644 g.Printf("}\n\n") 645 g.Printf(stringMap, typeName) 646 } 647 648 // Argument to format is the type name. 649 const stringMap = `func (i %[1]s) String() string { 650 if str, ok := _%[1]s_map[i]; ok { 651 return str 652 } 653 return "%[1]s(" + strconv.FormatInt(int64(i), 10) + ")" 654 } 655 `