github.com/powerman/golang-tools@v0.1.11-0.20220410185822-5ad214d8d803/go/callgraph/vta/internal/trie/bits.go (about) 1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package trie 6 7 import ( 8 "math/bits" 9 ) 10 11 // This file contains bit twiddling functions for Patricia tries. 12 // Consult this paper for details. 13 // C. Okasaki and A. Gill, “Fast mergeable integer maps,” in ACM SIGPLAN 14 // Workshop on ML, September 1998, pp. 77–86. 15 16 // key is a key in a Map. 17 type key uint64 18 19 // bitpos is the position of a bit. A position is represented by having a 1 20 // bit in that position. 21 // Examples: 22 // * 0b0010 is the position of the `1` bit in 2. 23 // It is the 3rd most specific bit position in big endian encoding 24 // (0b0 and 0b1 are more specific). 25 // * 0b0100 is the position of the bit that 1 and 5 disagree on. 26 // * 0b0 is a special value indicating that all bit agree. 27 type bitpos uint64 28 29 // prefixes represent a set of keys that all agree with the 30 // prefix up to a bitpos m. 31 // 32 // The value for a prefix is determined by the mask(k, m) function. 33 // (See mask for details on the values.) 34 // A `p` prefix for position `m` matches a key `k` iff mask(k, m) == p. 35 // A prefix always mask(p, m) == p. 36 // 37 // A key is its own prefix for the bit position 64, 38 // e.g. seeing a `prefix(key)` is not a problem. 39 // Prefixes should never be turned into keys. 40 type prefix uint64 41 42 // branchingBit returns the position of the first bit in `x` and `y` 43 // that are not equal. 44 func branchingBit(x, y prefix) bitpos { 45 p := x ^ y 46 if p == 0 { 47 return 0 48 } 49 return bitpos(1) << uint(bits.Len64(uint64(p))-1) // uint conversion needed for go1.12 50 } 51 52 // zeroBit returns true if k has a 0 bit at position `b`. 53 func zeroBit(k prefix, b bitpos) bool { 54 return (uint64(k) & uint64(b)) == 0 55 } 56 57 // matchPrefix returns true if a prefix k matches a prefix p up to position `b`. 58 func matchPrefix(k prefix, p prefix, b bitpos) bool { 59 return mask(k, b) == p 60 } 61 62 // mask returns a prefix of `k` with all bits after and including `b` zeroed out. 63 // 64 // In big endian encoding, this value is the [64-(m-1)] most significant bits of k 65 // followed by a `0` bit at bitpos m, followed m-1 `1` bits. 66 // Examples: 67 // prefix(0b1011) for a bitpos 0b0100 represents the keys: 68 // 0b1000, 0b1001, 0b1010, 0b1011, 0b1100, 0b1101, 0b1110, 0b1111 69 // 70 // This mask function has the property that if matchPrefix(k, p, b), then 71 // k <= p if and only if zeroBit(k, m). This induces binary search tree tries. 72 // See Okasaki & Gill for more details about this choice of mask function. 73 // 74 // mask is idempotent for a given `b`, i.e. mask(mask(p, b), b) == mask(p,b). 75 func mask(k prefix, b bitpos) prefix { 76 return prefix((uint64(k) | (uint64(b) - 1)) & (^uint64(b))) 77 } 78 79 // ord returns true if m comes before n in the bit ordering. 80 func ord(m, n bitpos) bool { 81 return m > n // big endian encoding 82 } 83 84 // prefixesOverlap returns true if there is some key a prefix `p` for bitpos `m` 85 // can hold that can also be held by a prefix `q` for some bitpos `n`. 86 // 87 // This is equivalent to: 88 // m ==n && p == q, 89 // higher(m, n) && matchPrefix(q, p, m), or 90 // higher(n, m) && matchPrefix(p, q, n) 91 func prefixesOverlap(p prefix, m bitpos, q prefix, n bitpos) bool { 92 fbb := n 93 if ord(m, n) { 94 fbb = m 95 } 96 return mask(p, fbb) == mask(q, fbb) 97 // Lemma: 98 // mask(p, fbb) == mask(q, fbb) 99 // iff 100 // m > n && matchPrefix(q, p, m) or (note: big endian encoding) 101 // m < n && matchPrefix(p, q, n) or (note: big endian encoding) 102 // m ==n && p == q 103 // Quick-n-dirty proof: 104 // p == mask(p0, m) for some p0 by precondition. 105 // q == mask(q0, n) for some q0 by precondition. 106 // So mask(p, m) == p and mask(q, n) == q as mask(*, n') is idempotent. 107 // 108 // [=> proof] 109 // Suppose mask(p, fbb) == mask(q, fbb). 110 // if m ==n, p == mask(p, m) == mask(p, fbb) == mask(q, fbb) == mask(q, n) == q 111 // if m > n, fbb = firstBranchBit(m, n) = m (big endian). 112 // p == mask(p, m) == mask(p, fbb) == mask(q, fbb) == mask(q, m) 113 // so mask(q, m) == p or matchPrefix(q, p, m) 114 // if m < n, is symmetric to the above. 115 // 116 // [<= proof] 117 // case m ==n && p == q. Then mask(p, fbb) == mask(q, fbb) 118 // 119 // case m > n && matchPrefix(q, p, m). 120 // fbb == firstBranchBit(m, n) == m (by m>n). 121 // mask(q, fbb) == mask(q, m) == p == mask(p, m) == mask(p, fbb) 122 // 123 // case m < n && matchPrefix(p, q, n) is symmetric. 124 }