github.com/powerman/golang-tools@v0.1.11-0.20220410185822-5ad214d8d803/go/ssa/source.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This file defines utilities for working with source positions
     8  // or source-level named entities ("objects").
     9  
    10  // TODO(adonovan): test that {Value,Instruction}.Pos() positions match
    11  // the originating syntax, as specified.
    12  
    13  import (
    14  	"go/ast"
    15  	"go/token"
    16  	"go/types"
    17  
    18  	"github.com/powerman/golang-tools/internal/typeparams"
    19  )
    20  
    21  // EnclosingFunction returns the function that contains the syntax
    22  // node denoted by path.
    23  //
    24  // Syntax associated with package-level variable specifications is
    25  // enclosed by the package's init() function.
    26  //
    27  // Returns nil if not found; reasons might include:
    28  //    - the node is not enclosed by any function.
    29  //    - the node is within an anonymous function (FuncLit) and
    30  //      its SSA function has not been created yet
    31  //      (pkg.Build() has not yet been called).
    32  //
    33  func EnclosingFunction(pkg *Package, path []ast.Node) *Function {
    34  	// Start with package-level function...
    35  	fn := findEnclosingPackageLevelFunction(pkg, path)
    36  	if fn == nil {
    37  		return nil // not in any function
    38  	}
    39  
    40  	// ...then walk down the nested anonymous functions.
    41  	n := len(path)
    42  outer:
    43  	for i := range path {
    44  		if lit, ok := path[n-1-i].(*ast.FuncLit); ok {
    45  			for _, anon := range fn.AnonFuncs {
    46  				if anon.Pos() == lit.Type.Func {
    47  					fn = anon
    48  					continue outer
    49  				}
    50  			}
    51  			// SSA function not found:
    52  			// - package not yet built, or maybe
    53  			// - builder skipped FuncLit in dead block
    54  			//   (in principle; but currently the Builder
    55  			//   generates even dead FuncLits).
    56  			return nil
    57  		}
    58  	}
    59  	return fn
    60  }
    61  
    62  // HasEnclosingFunction returns true if the AST node denoted by path
    63  // is contained within the declaration of some function or
    64  // package-level variable.
    65  //
    66  // Unlike EnclosingFunction, the behaviour of this function does not
    67  // depend on whether SSA code for pkg has been built, so it can be
    68  // used to quickly reject check inputs that will cause
    69  // EnclosingFunction to fail, prior to SSA building.
    70  //
    71  func HasEnclosingFunction(pkg *Package, path []ast.Node) bool {
    72  	return findEnclosingPackageLevelFunction(pkg, path) != nil
    73  }
    74  
    75  // findEnclosingPackageLevelFunction returns the Function
    76  // corresponding to the package-level function enclosing path.
    77  //
    78  func findEnclosingPackageLevelFunction(pkg *Package, path []ast.Node) *Function {
    79  	if n := len(path); n >= 2 { // [... {Gen,Func}Decl File]
    80  		switch decl := path[n-2].(type) {
    81  		case *ast.GenDecl:
    82  			if decl.Tok == token.VAR && n >= 3 {
    83  				// Package-level 'var' initializer.
    84  				return pkg.init
    85  			}
    86  
    87  		case *ast.FuncDecl:
    88  			if decl.Recv == nil && decl.Name.Name == "init" {
    89  				// Explicit init() function.
    90  				for _, b := range pkg.init.Blocks {
    91  					for _, instr := range b.Instrs {
    92  						if instr, ok := instr.(*Call); ok {
    93  							if callee, ok := instr.Call.Value.(*Function); ok && callee.Pkg == pkg && callee.Pos() == decl.Name.NamePos {
    94  								return callee
    95  							}
    96  						}
    97  					}
    98  				}
    99  				// Hack: return non-nil when SSA is not yet
   100  				// built so that HasEnclosingFunction works.
   101  				return pkg.init
   102  			}
   103  			// Declared function/method.
   104  			return findNamedFunc(pkg, decl.Name.NamePos)
   105  		}
   106  	}
   107  	return nil // not in any function
   108  }
   109  
   110  // findNamedFunc returns the named function whose FuncDecl.Ident is at
   111  // position pos.
   112  //
   113  func findNamedFunc(pkg *Package, pos token.Pos) *Function {
   114  	// Look at all package members and method sets of named types.
   115  	// Not very efficient.
   116  	for _, mem := range pkg.Members {
   117  		switch mem := mem.(type) {
   118  		case *Function:
   119  			if mem.Pos() == pos {
   120  				return mem
   121  			}
   122  		case *Type:
   123  			mset := pkg.Prog.MethodSets.MethodSet(types.NewPointer(mem.Type()))
   124  			for i, n := 0, mset.Len(); i < n; i++ {
   125  				// Don't call Program.Method: avoid creating wrappers.
   126  				obj := mset.At(i).Obj().(*types.Func)
   127  				if obj.Pos() == pos {
   128  					return pkg.objects[obj].(*Function)
   129  				}
   130  			}
   131  		}
   132  	}
   133  	return nil
   134  }
   135  
   136  // ValueForExpr returns the SSA Value that corresponds to non-constant
   137  // expression e.
   138  //
   139  // It returns nil if no value was found, e.g.
   140  //    - the expression is not lexically contained within f;
   141  //    - f was not built with debug information; or
   142  //    - e is a constant expression.  (For efficiency, no debug
   143  //      information is stored for constants. Use
   144  //      go/types.Info.Types[e].Value instead.)
   145  //    - e is a reference to nil or a built-in function.
   146  //    - the value was optimised away.
   147  //
   148  // If e is an addressable expression used in an lvalue context,
   149  // value is the address denoted by e, and isAddr is true.
   150  //
   151  // The types of e (or &e, if isAddr) and the result are equal
   152  // (modulo "untyped" bools resulting from comparisons).
   153  //
   154  // (Tip: to find the ssa.Value given a source position, use
   155  // astutil.PathEnclosingInterval to locate the ast.Node, then
   156  // EnclosingFunction to locate the Function, then ValueForExpr to find
   157  // the ssa.Value.)
   158  //
   159  func (f *Function) ValueForExpr(e ast.Expr) (value Value, isAddr bool) {
   160  	if f.debugInfo() { // (opt)
   161  		e = unparen(e)
   162  		for _, b := range f.Blocks {
   163  			for _, instr := range b.Instrs {
   164  				if ref, ok := instr.(*DebugRef); ok {
   165  					if ref.Expr == e {
   166  						return ref.X, ref.IsAddr
   167  					}
   168  				}
   169  			}
   170  		}
   171  	}
   172  	return
   173  }
   174  
   175  // --- Lookup functions for source-level named entities (types.Objects) ---
   176  
   177  // Package returns the SSA Package corresponding to the specified
   178  // type-checker package object.
   179  // It returns nil if no such SSA package has been created.
   180  //
   181  func (prog *Program) Package(obj *types.Package) *Package {
   182  	return prog.packages[obj]
   183  }
   184  
   185  // packageLevelMember returns the package-level member corresponding to
   186  // the specified named object, which may be a package-level const
   187  // (*NamedConst), var (*Global) or func (*Function) of some package in
   188  // prog.  It returns nil if the object is not found.
   189  //
   190  func (prog *Program) packageLevelMember(obj types.Object) Member {
   191  	if pkg, ok := prog.packages[obj.Pkg()]; ok {
   192  		return pkg.objects[obj]
   193  	}
   194  	return nil
   195  }
   196  
   197  // originFunc returns the package-level generic function that is the
   198  // origin of obj. If returns nil if the generic function is not found.
   199  func (prog *Program) originFunc(obj *types.Func) *Function {
   200  	return prog.declaredFunc(typeparams.OriginMethod(obj))
   201  }
   202  
   203  // FuncValue returns the concrete Function denoted by the source-level
   204  // named function obj, or nil if obj denotes an interface method.
   205  //
   206  // TODO(adonovan): check the invariant that obj.Type() matches the
   207  // result's Signature, both in the params/results and in the receiver.
   208  //
   209  func (prog *Program) FuncValue(obj *types.Func) *Function {
   210  	fn, _ := prog.packageLevelMember(obj).(*Function)
   211  	return fn
   212  }
   213  
   214  // ConstValue returns the SSA Value denoted by the source-level named
   215  // constant obj.
   216  //
   217  func (prog *Program) ConstValue(obj *types.Const) *Const {
   218  	// TODO(adonovan): opt: share (don't reallocate)
   219  	// Consts for const objects and constant ast.Exprs.
   220  
   221  	// Universal constant? {true,false,nil}
   222  	if obj.Parent() == types.Universe {
   223  		return NewConst(obj.Val(), obj.Type())
   224  	}
   225  	// Package-level named constant?
   226  	if v := prog.packageLevelMember(obj); v != nil {
   227  		return v.(*NamedConst).Value
   228  	}
   229  	return NewConst(obj.Val(), obj.Type())
   230  }
   231  
   232  // VarValue returns the SSA Value that corresponds to a specific
   233  // identifier denoting the source-level named variable obj.
   234  //
   235  // VarValue returns nil if a local variable was not found, perhaps
   236  // because its package was not built, the debug information was not
   237  // requested during SSA construction, or the value was optimized away.
   238  //
   239  // ref is the path to an ast.Ident (e.g. from PathEnclosingInterval),
   240  // and that ident must resolve to obj.
   241  //
   242  // pkg is the package enclosing the reference.  (A reference to a var
   243  // always occurs within a function, so we need to know where to find it.)
   244  //
   245  // If the identifier is a field selector and its base expression is
   246  // non-addressable, then VarValue returns the value of that field.
   247  // For example:
   248  //    func f() struct {x int}
   249  //    f().x  // VarValue(x) returns a *Field instruction of type int
   250  //
   251  // All other identifiers denote addressable locations (variables).
   252  // For them, VarValue may return either the variable's address or its
   253  // value, even when the expression is evaluated only for its value; the
   254  // situation is reported by isAddr, the second component of the result.
   255  //
   256  // If !isAddr, the returned value is the one associated with the
   257  // specific identifier.  For example,
   258  //       var x int    // VarValue(x) returns Const 0 here
   259  //       x = 1        // VarValue(x) returns Const 1 here
   260  //
   261  // It is not specified whether the value or the address is returned in
   262  // any particular case, as it may depend upon optimizations performed
   263  // during SSA code generation, such as registerization, constant
   264  // folding, avoidance of materialization of subexpressions, etc.
   265  //
   266  func (prog *Program) VarValue(obj *types.Var, pkg *Package, ref []ast.Node) (value Value, isAddr bool) {
   267  	// All references to a var are local to some function, possibly init.
   268  	fn := EnclosingFunction(pkg, ref)
   269  	if fn == nil {
   270  		return // e.g. def of struct field; SSA not built?
   271  	}
   272  
   273  	id := ref[0].(*ast.Ident)
   274  
   275  	// Defining ident of a parameter?
   276  	if id.Pos() == obj.Pos() {
   277  		for _, param := range fn.Params {
   278  			if param.Object() == obj {
   279  				return param, false
   280  			}
   281  		}
   282  	}
   283  
   284  	// Other ident?
   285  	for _, b := range fn.Blocks {
   286  		for _, instr := range b.Instrs {
   287  			if dr, ok := instr.(*DebugRef); ok {
   288  				if dr.Pos() == id.Pos() {
   289  					return dr.X, dr.IsAddr
   290  				}
   291  			}
   292  		}
   293  	}
   294  
   295  	// Defining ident of package-level var?
   296  	if v := prog.packageLevelMember(obj); v != nil {
   297  		return v.(*Global), true
   298  	}
   299  
   300  	return // e.g. debug info not requested, or var optimized away
   301  }