github.com/powerman/golang-tools@v0.1.11-0.20220410185822-5ad214d8d803/go/ssa/ssa.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 // This package defines a high-level intermediate representation for 8 // Go programs using static single-assignment (SSA) form. 9 10 import ( 11 "fmt" 12 "go/ast" 13 "go/constant" 14 "go/token" 15 "go/types" 16 "sync" 17 18 "github.com/powerman/golang-tools/go/types/typeutil" 19 "github.com/powerman/golang-tools/internal/typeparams" 20 ) 21 22 // A Program is a partial or complete Go program converted to SSA form. 23 type Program struct { 24 Fset *token.FileSet // position information for the files of this Program 25 imported map[string]*Package // all importable Packages, keyed by import path 26 packages map[*types.Package]*Package // all loaded Packages, keyed by object 27 mode BuilderMode // set of mode bits for SSA construction 28 MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets 29 30 canon *canonizer // type canonicalization map 31 ctxt *typeparams.Context // cache for type checking instantiations 32 33 methodsMu sync.Mutex // guards the following maps: 34 methodSets typeutil.Map // maps type to its concrete methodSet 35 runtimeTypes typeutil.Map // types for which rtypes are needed 36 bounds map[boundsKey]*Function // bounds for curried x.Method closures 37 thunks map[selectionKey]*Function // thunks for T.Method expressions 38 instances map[*Function]*instanceSet // instances of generic functions 39 } 40 41 // A Package is a single analyzed Go package containing Members for 42 // all package-level functions, variables, constants and types it 43 // declares. These may be accessed directly via Members, or via the 44 // type-specific accessor methods Func, Type, Var and Const. 45 // 46 // Members also contains entries for "init" (the synthetic package 47 // initializer) and "init#%d", the nth declared init function, 48 // and unspecified other things too. 49 // 50 type Package struct { 51 Prog *Program // the owning program 52 Pkg *types.Package // the corresponding go/types.Package 53 Members map[string]Member // all package members keyed by name (incl. init and init#%d) 54 objects map[types.Object]Member // mapping of package objects to members (incl. methods). Contains *NamedConst, *Global, *Function. 55 init *Function // Func("init"); the package's init function 56 debug bool // include full debug info in this package 57 58 // The following fields are set transiently, then cleared 59 // after building. 60 buildOnce sync.Once // ensures package building occurs once 61 ninit int32 // number of init functions 62 info *types.Info // package type information 63 files []*ast.File // package ASTs 64 created creator // members created as a result of building this package (includes declared functions, wrappers) 65 } 66 67 // A Member is a member of a Go package, implemented by *NamedConst, 68 // *Global, *Function, or *Type; they are created by package-level 69 // const, var, func and type declarations respectively. 70 // 71 type Member interface { 72 Name() string // declared name of the package member 73 String() string // package-qualified name of the package member 74 RelString(*types.Package) string // like String, but relative refs are unqualified 75 Object() types.Object // typechecker's object for this member, if any 76 Pos() token.Pos // position of member's declaration, if known 77 Type() types.Type // type of the package member 78 Token() token.Token // token.{VAR,FUNC,CONST,TYPE} 79 Package() *Package // the containing package 80 } 81 82 // A Type is a Member of a Package representing a package-level named type. 83 type Type struct { 84 object *types.TypeName 85 pkg *Package 86 } 87 88 // A NamedConst is a Member of a Package representing a package-level 89 // named constant. 90 // 91 // Pos() returns the position of the declaring ast.ValueSpec.Names[*] 92 // identifier. 93 // 94 // NB: a NamedConst is not a Value; it contains a constant Value, which 95 // it augments with the name and position of its 'const' declaration. 96 // 97 type NamedConst struct { 98 object *types.Const 99 Value *Const 100 pkg *Package 101 } 102 103 // A Value is an SSA value that can be referenced by an instruction. 104 type Value interface { 105 // Name returns the name of this value, and determines how 106 // this Value appears when used as an operand of an 107 // Instruction. 108 // 109 // This is the same as the source name for Parameters, 110 // Builtins, Functions, FreeVars, Globals. 111 // For constants, it is a representation of the constant's value 112 // and type. For all other Values this is the name of the 113 // virtual register defined by the instruction. 114 // 115 // The name of an SSA Value is not semantically significant, 116 // and may not even be unique within a function. 117 Name() string 118 119 // If this value is an Instruction, String returns its 120 // disassembled form; otherwise it returns unspecified 121 // human-readable information about the Value, such as its 122 // kind, name and type. 123 String() string 124 125 // Type returns the type of this value. Many instructions 126 // (e.g. IndexAddr) change their behaviour depending on the 127 // types of their operands. 128 Type() types.Type 129 130 // Parent returns the function to which this Value belongs. 131 // It returns nil for named Functions, Builtin, Const and Global. 132 Parent() *Function 133 134 // Referrers returns the list of instructions that have this 135 // value as one of their operands; it may contain duplicates 136 // if an instruction has a repeated operand. 137 // 138 // Referrers actually returns a pointer through which the 139 // caller may perform mutations to the object's state. 140 // 141 // Referrers is currently only defined if Parent()!=nil, 142 // i.e. for the function-local values FreeVar, Parameter, 143 // Functions (iff anonymous) and all value-defining instructions. 144 // It returns nil for named Functions, Builtin, Const and Global. 145 // 146 // Instruction.Operands contains the inverse of this relation. 147 Referrers() *[]Instruction 148 149 // Pos returns the location of the AST token most closely 150 // associated with the operation that gave rise to this value, 151 // or token.NoPos if it was not explicit in the source. 152 // 153 // For each ast.Node type, a particular token is designated as 154 // the closest location for the expression, e.g. the Lparen 155 // for an *ast.CallExpr. This permits a compact but 156 // approximate mapping from Values to source positions for use 157 // in diagnostic messages, for example. 158 // 159 // (Do not use this position to determine which Value 160 // corresponds to an ast.Expr; use Function.ValueForExpr 161 // instead. NB: it requires that the function was built with 162 // debug information.) 163 Pos() token.Pos 164 } 165 166 // An Instruction is an SSA instruction that computes a new Value or 167 // has some effect. 168 // 169 // An Instruction that defines a value (e.g. BinOp) also implements 170 // the Value interface; an Instruction that only has an effect (e.g. Store) 171 // does not. 172 // 173 type Instruction interface { 174 // String returns the disassembled form of this value. 175 // 176 // Examples of Instructions that are Values: 177 // "x + y" (BinOp) 178 // "len([])" (Call) 179 // Note that the name of the Value is not printed. 180 // 181 // Examples of Instructions that are not Values: 182 // "return x" (Return) 183 // "*y = x" (Store) 184 // 185 // (The separation Value.Name() from Value.String() is useful 186 // for some analyses which distinguish the operation from the 187 // value it defines, e.g., 'y = local int' is both an allocation 188 // of memory 'local int' and a definition of a pointer y.) 189 String() string 190 191 // Parent returns the function to which this instruction 192 // belongs. 193 Parent() *Function 194 195 // Block returns the basic block to which this instruction 196 // belongs. 197 Block() *BasicBlock 198 199 // setBlock sets the basic block to which this instruction belongs. 200 setBlock(*BasicBlock) 201 202 // Operands returns the operands of this instruction: the 203 // set of Values it references. 204 // 205 // Specifically, it appends their addresses to rands, a 206 // user-provided slice, and returns the resulting slice, 207 // permitting avoidance of memory allocation. 208 // 209 // The operands are appended in undefined order, but the order 210 // is consistent for a given Instruction; the addresses are 211 // always non-nil but may point to a nil Value. Clients may 212 // store through the pointers, e.g. to effect a value 213 // renaming. 214 // 215 // Value.Referrers is a subset of the inverse of this 216 // relation. (Referrers are not tracked for all types of 217 // Values.) 218 Operands(rands []*Value) []*Value 219 220 // Pos returns the location of the AST token most closely 221 // associated with the operation that gave rise to this 222 // instruction, or token.NoPos if it was not explicit in the 223 // source. 224 // 225 // For each ast.Node type, a particular token is designated as 226 // the closest location for the expression, e.g. the Go token 227 // for an *ast.GoStmt. This permits a compact but approximate 228 // mapping from Instructions to source positions for use in 229 // diagnostic messages, for example. 230 // 231 // (Do not use this position to determine which Instruction 232 // corresponds to an ast.Expr; see the notes for Value.Pos. 233 // This position may be used to determine which non-Value 234 // Instruction corresponds to some ast.Stmts, but not all: If 235 // and Jump instructions have no Pos(), for example.) 236 Pos() token.Pos 237 } 238 239 // A Node is a node in the SSA value graph. Every concrete type that 240 // implements Node is also either a Value, an Instruction, or both. 241 // 242 // Node contains the methods common to Value and Instruction, plus the 243 // Operands and Referrers methods generalized to return nil for 244 // non-Instructions and non-Values, respectively. 245 // 246 // Node is provided to simplify SSA graph algorithms. Clients should 247 // use the more specific and informative Value or Instruction 248 // interfaces where appropriate. 249 // 250 type Node interface { 251 // Common methods: 252 String() string 253 Pos() token.Pos 254 Parent() *Function 255 256 // Partial methods: 257 Operands(rands []*Value) []*Value // nil for non-Instructions 258 Referrers() *[]Instruction // nil for non-Values 259 } 260 261 // Function represents the parameters, results, and code of a function 262 // or method. 263 // 264 // If Blocks is nil, this indicates an external function for which no 265 // Go source code is available. In this case, FreeVars and Locals 266 // are nil too. Clients performing whole-program analysis must 267 // handle external functions specially. 268 // 269 // Blocks contains the function's control-flow graph (CFG). 270 // Blocks[0] is the function entry point; block order is not otherwise 271 // semantically significant, though it may affect the readability of 272 // the disassembly. 273 // To iterate over the blocks in dominance order, use DomPreorder(). 274 // 275 // Recover is an optional second entry point to which control resumes 276 // after a recovered panic. The Recover block may contain only a return 277 // statement, preceded by a load of the function's named return 278 // parameters, if any. 279 // 280 // A nested function (Parent()!=nil) that refers to one or more 281 // lexically enclosing local variables ("free variables") has FreeVars. 282 // Such functions cannot be called directly but require a 283 // value created by MakeClosure which, via its Bindings, supplies 284 // values for these parameters. 285 // 286 // If the function is a method (Signature.Recv() != nil) then the first 287 // element of Params is the receiver parameter. 288 // 289 // A Go package may declare many functions called "init". 290 // For each one, Object().Name() returns "init" but Name() returns 291 // "init#1", etc, in declaration order. 292 // 293 // Pos() returns the declaring ast.FuncLit.Type.Func or the position 294 // of the ast.FuncDecl.Name, if the function was explicit in the 295 // source. Synthetic wrappers, for which Synthetic != "", may share 296 // the same position as the function they wrap. 297 // Syntax.Pos() always returns the position of the declaring "func" token. 298 // 299 // Type() returns the function's Signature. 300 // 301 type Function struct { 302 name string 303 object types.Object // a declared *types.Func or one of its wrappers 304 method *types.Selection // info about provenance of synthetic methods 305 Signature *types.Signature 306 pos token.Pos 307 308 Synthetic string // provenance of synthetic function; "" for true source functions 309 syntax ast.Node // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode 310 parent *Function // enclosing function if anon; nil if global 311 Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error) 312 Prog *Program // enclosing program 313 Params []*Parameter // function parameters; for methods, includes receiver 314 FreeVars []*FreeVar // free variables whose values must be supplied by closure 315 Locals []*Alloc // local variables of this function 316 Blocks []*BasicBlock // basic blocks of the function; nil => external 317 Recover *BasicBlock // optional; control transfers here after recovered panic 318 AnonFuncs []*Function // anonymous functions directly beneath this one 319 referrers []Instruction // referring instructions (iff Parent() != nil) 320 built bool // function has completed both CREATE and BUILD phase. 321 322 _Origin *Function // the origin function if this the instantiation of a generic function. nil if Parent() != nil. 323 _TypeParams []*typeparams.TypeParam // the type paramaters of this function. len(TypeParams) == len(_TypeArgs) => runtime function 324 _TypeArgs []types.Type // type arguments for for an instantiation. len(_TypeArgs) != 0 => instantiation 325 326 // The following fields are set transiently during building, 327 // then cleared. 328 currentBlock *BasicBlock // where to emit code 329 objects map[types.Object]Value // addresses of local variables 330 namedResults []*Alloc // tuple of named results 331 targets *targets // linked stack of branch targets 332 lblocks map[*ast.Object]*lblock // labelled blocks 333 info *types.Info // *types.Info to build from. nil for wrappers. 334 subst *subster // type substitution cache 335 } 336 337 // BasicBlock represents an SSA basic block. 338 // 339 // The final element of Instrs is always an explicit transfer of 340 // control (If, Jump, Return, or Panic). 341 // 342 // A block may contain no Instructions only if it is unreachable, 343 // i.e., Preds is nil. Empty blocks are typically pruned. 344 // 345 // BasicBlocks and their Preds/Succs relation form a (possibly cyclic) 346 // graph independent of the SSA Value graph: the control-flow graph or 347 // CFG. It is illegal for multiple edges to exist between the same 348 // pair of blocks. 349 // 350 // Each BasicBlock is also a node in the dominator tree of the CFG. 351 // The tree may be navigated using Idom()/Dominees() and queried using 352 // Dominates(). 353 // 354 // The order of Preds and Succs is significant (to Phi and If 355 // instructions, respectively). 356 // 357 type BasicBlock struct { 358 Index int // index of this block within Parent().Blocks 359 Comment string // optional label; no semantic significance 360 parent *Function // parent function 361 Instrs []Instruction // instructions in order 362 Preds, Succs []*BasicBlock // predecessors and successors 363 succs2 [2]*BasicBlock // initial space for Succs 364 dom domInfo // dominator tree info 365 gaps int // number of nil Instrs (transient) 366 rundefers int // number of rundefers (transient) 367 } 368 369 // Pure values ---------------------------------------- 370 371 // A FreeVar represents a free variable of the function to which it 372 // belongs. 373 // 374 // FreeVars are used to implement anonymous functions, whose free 375 // variables are lexically captured in a closure formed by 376 // MakeClosure. The value of such a free var is an Alloc or another 377 // FreeVar and is considered a potentially escaping heap address, with 378 // pointer type. 379 // 380 // FreeVars are also used to implement bound method closures. Such a 381 // free var represents the receiver value and may be of any type that 382 // has concrete methods. 383 // 384 // Pos() returns the position of the value that was captured, which 385 // belongs to an enclosing function. 386 // 387 type FreeVar struct { 388 name string 389 typ types.Type 390 pos token.Pos 391 parent *Function 392 referrers []Instruction 393 394 // Transiently needed during building. 395 outer Value // the Value captured from the enclosing context. 396 } 397 398 // A Parameter represents an input parameter of a function. 399 // 400 type Parameter struct { 401 name string 402 object types.Object // a *types.Var; nil for non-source locals 403 typ types.Type 404 pos token.Pos 405 parent *Function 406 referrers []Instruction 407 } 408 409 // A Const represents the value of a constant expression. 410 // 411 // The underlying type of a constant may be any boolean, numeric, or 412 // string type. In addition, a Const may represent the nil value of 413 // any reference type---interface, map, channel, pointer, slice, or 414 // function---but not "untyped nil". 415 // 416 // All source-level constant expressions are represented by a Const 417 // of the same type and value. 418 // 419 // Value holds the value of the constant, independent of its Type(), 420 // using go/constant representation, or nil for a typed nil value. 421 // 422 // Pos() returns token.NoPos. 423 // 424 // Example printed form: 425 // 42:int 426 // "hello":untyped string 427 // 3+4i:MyComplex 428 // 429 type Const struct { 430 typ types.Type 431 Value constant.Value 432 } 433 434 // A Global is a named Value holding the address of a package-level 435 // variable. 436 // 437 // Pos() returns the position of the ast.ValueSpec.Names[*] 438 // identifier. 439 // 440 type Global struct { 441 name string 442 object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard 443 typ types.Type 444 pos token.Pos 445 446 Pkg *Package 447 } 448 449 // A Builtin represents a specific use of a built-in function, e.g. len. 450 // 451 // Builtins are immutable values. Builtins do not have addresses. 452 // Builtins can only appear in CallCommon.Value. 453 // 454 // Name() indicates the function: one of the built-in functions from the 455 // Go spec (excluding "make" and "new") or one of these ssa-defined 456 // intrinsics: 457 // 458 // // wrapnilchk returns ptr if non-nil, panics otherwise. 459 // // (For use in indirection wrappers.) 460 // func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T 461 // 462 // Object() returns a *types.Builtin for built-ins defined by the spec, 463 // nil for others. 464 // 465 // Type() returns a *types.Signature representing the effective 466 // signature of the built-in for this call. 467 // 468 type Builtin struct { 469 name string 470 sig *types.Signature 471 } 472 473 // Value-defining instructions ---------------------------------------- 474 475 // The Alloc instruction reserves space for a variable of the given type, 476 // zero-initializes it, and yields its address. 477 // 478 // Alloc values are always addresses, and have pointer types, so the 479 // type of the allocated variable is actually 480 // Type().Underlying().(*types.Pointer).Elem(). 481 // 482 // If Heap is false, Alloc allocates space in the function's 483 // activation record (frame); we refer to an Alloc(Heap=false) as a 484 // "local" alloc. Each local Alloc returns the same address each time 485 // it is executed within the same activation; the space is 486 // re-initialized to zero. 487 // 488 // If Heap is true, Alloc allocates space in the heap; we 489 // refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc 490 // returns a different address each time it is executed. 491 // 492 // When Alloc is applied to a channel, map or slice type, it returns 493 // the address of an uninitialized (nil) reference of that kind; store 494 // the result of MakeSlice, MakeMap or MakeChan in that location to 495 // instantiate these types. 496 // 497 // Pos() returns the ast.CompositeLit.Lbrace for a composite literal, 498 // or the ast.CallExpr.Rparen for a call to new() or for a call that 499 // allocates a varargs slice. 500 // 501 // Example printed form: 502 // t0 = local int 503 // t1 = new int 504 // 505 type Alloc struct { 506 register 507 Comment string 508 Heap bool 509 index int // dense numbering; for lifting 510 } 511 512 // The Phi instruction represents an SSA φ-node, which combines values 513 // that differ across incoming control-flow edges and yields a new 514 // value. Within a block, all φ-nodes must appear before all non-φ 515 // nodes. 516 // 517 // Pos() returns the position of the && or || for short-circuit 518 // control-flow joins, or that of the *Alloc for φ-nodes inserted 519 // during SSA renaming. 520 // 521 // Example printed form: 522 // t2 = phi [0: t0, 1: t1] 523 // 524 type Phi struct { 525 register 526 Comment string // a hint as to its purpose 527 Edges []Value // Edges[i] is value for Block().Preds[i] 528 } 529 530 // The Call instruction represents a function or method call. 531 // 532 // The Call instruction yields the function result if there is exactly 533 // one. Otherwise it returns a tuple, the components of which are 534 // accessed via Extract. 535 // 536 // See CallCommon for generic function call documentation. 537 // 538 // Pos() returns the ast.CallExpr.Lparen, if explicit in the source. 539 // 540 // Example printed form: 541 // t2 = println(t0, t1) 542 // t4 = t3() 543 // t7 = invoke t5.Println(...t6) 544 // 545 type Call struct { 546 register 547 Call CallCommon 548 } 549 550 // The BinOp instruction yields the result of binary operation X Op Y. 551 // 552 // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source. 553 // 554 // Example printed form: 555 // t1 = t0 + 1:int 556 // 557 type BinOp struct { 558 register 559 // One of: 560 // ADD SUB MUL QUO REM + - * / % 561 // AND OR XOR SHL SHR AND_NOT & | ^ << >> &^ 562 // EQL NEQ LSS LEQ GTR GEQ == != < <= < >= 563 Op token.Token 564 X, Y Value 565 } 566 567 // The UnOp instruction yields the result of Op X. 568 // ARROW is channel receive. 569 // MUL is pointer indirection (load). 570 // XOR is bitwise complement. 571 // SUB is negation. 572 // NOT is logical negation. 573 // 574 // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above 575 // and a boolean indicating the success of the receive. The 576 // components of the tuple are accessed using Extract. 577 // 578 // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source. 579 // For receive operations (ARROW) implicit in ranging over a channel, 580 // Pos() returns the ast.RangeStmt.For. 581 // For implicit memory loads (STAR), Pos() returns the position of the 582 // most closely associated source-level construct; the details are not 583 // specified. 584 // 585 // Example printed form: 586 // t0 = *x 587 // t2 = <-t1,ok 588 // 589 type UnOp struct { 590 register 591 Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^ 592 X Value 593 CommaOk bool 594 } 595 596 // The ChangeType instruction applies to X a value-preserving type 597 // change to Type(). 598 // 599 // Type changes are permitted: 600 // - between a named type and its underlying type. 601 // - between two named types of the same underlying type. 602 // - between (possibly named) pointers to identical base types. 603 // - from a bidirectional channel to a read- or write-channel, 604 // optionally adding/removing a name. 605 // 606 // This operation cannot fail dynamically. 607 // 608 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 609 // from an explicit conversion in the source. 610 // 611 // Example printed form: 612 // t1 = changetype *int <- IntPtr (t0) 613 // 614 type ChangeType struct { 615 register 616 X Value 617 } 618 619 // The Convert instruction yields the conversion of value X to type 620 // Type(). One or both of those types is basic (but possibly named). 621 // 622 // A conversion may change the value and representation of its operand. 623 // Conversions are permitted: 624 // - between real numeric types. 625 // - between complex numeric types. 626 // - between string and []byte or []rune. 627 // - between pointers and unsafe.Pointer. 628 // - between unsafe.Pointer and uintptr. 629 // - from (Unicode) integer to (UTF-8) string. 630 // A conversion may imply a type name change also. 631 // 632 // This operation cannot fail dynamically. 633 // 634 // Conversions of untyped string/number/bool constants to a specific 635 // representation are eliminated during SSA construction. 636 // 637 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 638 // from an explicit conversion in the source. 639 // 640 // Example printed form: 641 // t1 = convert []byte <- string (t0) 642 // 643 type Convert struct { 644 register 645 X Value 646 } 647 648 // ChangeInterface constructs a value of one interface type from a 649 // value of another interface type known to be assignable to it. 650 // This operation cannot fail. 651 // 652 // Pos() returns the ast.CallExpr.Lparen if the instruction arose from 653 // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the 654 // instruction arose from an explicit e.(T) operation; or token.NoPos 655 // otherwise. 656 // 657 // Example printed form: 658 // t1 = change interface interface{} <- I (t0) 659 // 660 type ChangeInterface struct { 661 register 662 X Value 663 } 664 665 // The SliceToArrayPointer instruction yields the conversion of slice X to 666 // array pointer. 667 // 668 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 669 // from an explicit conversion in the source. 670 // 671 // Example printed form: 672 // t1 = slice to array pointer *[4]byte <- []byte (t0) 673 // 674 type SliceToArrayPointer struct { 675 register 676 X Value 677 } 678 679 // MakeInterface constructs an instance of an interface type from a 680 // value of a concrete type. 681 // 682 // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set 683 // of X, and Program.MethodValue(m) to find the implementation of a method. 684 // 685 // To construct the zero value of an interface type T, use: 686 // NewConst(constant.MakeNil(), T, pos) 687 // 688 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 689 // from an explicit conversion in the source. 690 // 691 // Example printed form: 692 // t1 = make interface{} <- int (42:int) 693 // t2 = make Stringer <- t0 694 // 695 type MakeInterface struct { 696 register 697 X Value 698 } 699 700 // The MakeClosure instruction yields a closure value whose code is 701 // Fn and whose free variables' values are supplied by Bindings. 702 // 703 // Type() returns a (possibly named) *types.Signature. 704 // 705 // Pos() returns the ast.FuncLit.Type.Func for a function literal 706 // closure or the ast.SelectorExpr.Sel for a bound method closure. 707 // 708 // Example printed form: 709 // t0 = make closure anon@1.2 [x y z] 710 // t1 = make closure bound$(main.I).add [i] 711 // 712 type MakeClosure struct { 713 register 714 Fn Value // always a *Function 715 Bindings []Value // values for each free variable in Fn.FreeVars 716 } 717 718 // The MakeMap instruction creates a new hash-table-based map object 719 // and yields a value of kind map. 720 // 721 // Type() returns a (possibly named) *types.Map. 722 // 723 // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or 724 // the ast.CompositeLit.Lbrack if created by a literal. 725 // 726 // Example printed form: 727 // t1 = make map[string]int t0 728 // t1 = make StringIntMap t0 729 // 730 type MakeMap struct { 731 register 732 Reserve Value // initial space reservation; nil => default 733 } 734 735 // The MakeChan instruction creates a new channel object and yields a 736 // value of kind chan. 737 // 738 // Type() returns a (possibly named) *types.Chan. 739 // 740 // Pos() returns the ast.CallExpr.Lparen for the make(chan) that 741 // created it. 742 // 743 // Example printed form: 744 // t0 = make chan int 0 745 // t0 = make IntChan 0 746 // 747 type MakeChan struct { 748 register 749 Size Value // int; size of buffer; zero => synchronous. 750 } 751 752 // The MakeSlice instruction yields a slice of length Len backed by a 753 // newly allocated array of length Cap. 754 // 755 // Both Len and Cap must be non-nil Values of integer type. 756 // 757 // (Alloc(types.Array) followed by Slice will not suffice because 758 // Alloc can only create arrays of constant length.) 759 // 760 // Type() returns a (possibly named) *types.Slice. 761 // 762 // Pos() returns the ast.CallExpr.Lparen for the make([]T) that 763 // created it. 764 // 765 // Example printed form: 766 // t1 = make []string 1:int t0 767 // t1 = make StringSlice 1:int t0 768 // 769 type MakeSlice struct { 770 register 771 Len Value 772 Cap Value 773 } 774 775 // The Slice instruction yields a slice of an existing string, slice 776 // or *array X between optional integer bounds Low and High. 777 // 778 // Dynamically, this instruction panics if X evaluates to a nil *array 779 // pointer. 780 // 781 // Type() returns string if the type of X was string, otherwise a 782 // *types.Slice with the same element type as X. 783 // 784 // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice 785 // operation, the ast.CompositeLit.Lbrace if created by a literal, or 786 // NoPos if not explicit in the source (e.g. a variadic argument slice). 787 // 788 // Example printed form: 789 // t1 = slice t0[1:] 790 // 791 type Slice struct { 792 register 793 X Value // slice, string, or *array 794 Low, High, Max Value // each may be nil 795 } 796 797 // The FieldAddr instruction yields the address of Field of *struct X. 798 // 799 // The field is identified by its index within the field list of the 800 // struct type of X. 801 // 802 // Dynamically, this instruction panics if X evaluates to a nil 803 // pointer. 804 // 805 // Type() returns a (possibly named) *types.Pointer. 806 // 807 // Pos() returns the position of the ast.SelectorExpr.Sel for the 808 // field, if explicit in the source. For implicit selections, returns 809 // the position of the inducing explicit selection. 810 // 811 // Example printed form: 812 // t1 = &t0.name [#1] 813 // 814 type FieldAddr struct { 815 register 816 X Value // *struct 817 Field int // field is X.Type().Underlying().(*types.Pointer).Elem().Underlying().(*types.Struct).Field(Field) 818 } 819 820 // The Field instruction yields the Field of struct X. 821 // 822 // The field is identified by its index within the field list of the 823 // struct type of X; by using numeric indices we avoid ambiguity of 824 // package-local identifiers and permit compact representations. 825 // 826 // Pos() returns the position of the ast.SelectorExpr.Sel for the 827 // field, if explicit in the source. For implicit selections, returns 828 // the position of the inducing explicit selection. 829 830 // 831 // Example printed form: 832 // t1 = t0.name [#1] 833 // 834 type Field struct { 835 register 836 X Value // struct 837 Field int // index into X.Type().(*types.Struct).Fields 838 } 839 840 // The IndexAddr instruction yields the address of the element at 841 // index Index of collection X. Index is an integer expression. 842 // 843 // The elements of maps and strings are not addressable; use Lookup or 844 // MapUpdate instead. 845 // 846 // Dynamically, this instruction panics if X evaluates to a nil *array 847 // pointer. 848 // 849 // Type() returns a (possibly named) *types.Pointer. 850 // 851 // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if 852 // explicit in the source. 853 // 854 // Example printed form: 855 // t2 = &t0[t1] 856 // 857 type IndexAddr struct { 858 register 859 X Value // slice or *array, 860 Index Value // numeric index 861 } 862 863 // The Index instruction yields element Index of array X. 864 // 865 // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if 866 // explicit in the source. 867 // 868 // Example printed form: 869 // t2 = t0[t1] 870 // 871 type Index struct { 872 register 873 X Value // array 874 Index Value // integer index 875 } 876 877 // The Lookup instruction yields element Index of collection X, a map 878 // or string. Index is an integer expression if X is a string or the 879 // appropriate key type if X is a map. 880 // 881 // If CommaOk, the result is a 2-tuple of the value above and a 882 // boolean indicating the result of a map membership test for the key. 883 // The components of the tuple are accessed using Extract. 884 // 885 // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. 886 // 887 // Example printed form: 888 // t2 = t0[t1] 889 // t5 = t3[t4],ok 890 // 891 type Lookup struct { 892 register 893 X Value // string or map 894 Index Value // numeric or key-typed index 895 CommaOk bool // return a value,ok pair 896 } 897 898 // SelectState is a helper for Select. 899 // It represents one goal state and its corresponding communication. 900 // 901 type SelectState struct { 902 Dir types.ChanDir // direction of case (SendOnly or RecvOnly) 903 Chan Value // channel to use (for send or receive) 904 Send Value // value to send (for send) 905 Pos token.Pos // position of token.ARROW 906 DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode] 907 } 908 909 // The Select instruction tests whether (or blocks until) one 910 // of the specified sent or received states is entered. 911 // 912 // Let n be the number of States for which Dir==RECV and T_i (0<=i<n) 913 // be the element type of each such state's Chan. 914 // Select returns an n+2-tuple 915 // (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1) 916 // The tuple's components, described below, must be accessed via the 917 // Extract instruction. 918 // 919 // If Blocking, select waits until exactly one state holds, i.e. a 920 // channel becomes ready for the designated operation of sending or 921 // receiving; select chooses one among the ready states 922 // pseudorandomly, performs the send or receive operation, and sets 923 // 'index' to the index of the chosen channel. 924 // 925 // If !Blocking, select doesn't block if no states hold; instead it 926 // returns immediately with index equal to -1. 927 // 928 // If the chosen channel was used for a receive, the r_i component is 929 // set to the received value, where i is the index of that state among 930 // all n receive states; otherwise r_i has the zero value of type T_i. 931 // Note that the receive index i is not the same as the state 932 // index index. 933 // 934 // The second component of the triple, recvOk, is a boolean whose value 935 // is true iff the selected operation was a receive and the receive 936 // successfully yielded a value. 937 // 938 // Pos() returns the ast.SelectStmt.Select. 939 // 940 // Example printed form: 941 // t3 = select nonblocking [<-t0, t1<-t2] 942 // t4 = select blocking [] 943 // 944 type Select struct { 945 register 946 States []*SelectState 947 Blocking bool 948 } 949 950 // The Range instruction yields an iterator over the domain and range 951 // of X, which must be a string or map. 952 // 953 // Elements are accessed via Next. 954 // 955 // Type() returns an opaque and degenerate "rangeIter" type. 956 // 957 // Pos() returns the ast.RangeStmt.For. 958 // 959 // Example printed form: 960 // t0 = range "hello":string 961 // 962 type Range struct { 963 register 964 X Value // string or map 965 } 966 967 // The Next instruction reads and advances the (map or string) 968 // iterator Iter and returns a 3-tuple value (ok, k, v). If the 969 // iterator is not exhausted, ok is true and k and v are the next 970 // elements of the domain and range, respectively. Otherwise ok is 971 // false and k and v are undefined. 972 // 973 // Components of the tuple are accessed using Extract. 974 // 975 // The IsString field distinguishes iterators over strings from those 976 // over maps, as the Type() alone is insufficient: consider 977 // map[int]rune. 978 // 979 // Type() returns a *types.Tuple for the triple (ok, k, v). 980 // The types of k and/or v may be types.Invalid. 981 // 982 // Example printed form: 983 // t1 = next t0 984 // 985 type Next struct { 986 register 987 Iter Value 988 IsString bool // true => string iterator; false => map iterator. 989 } 990 991 // The TypeAssert instruction tests whether interface value X has type 992 // AssertedType. 993 // 994 // If !CommaOk, on success it returns v, the result of the conversion 995 // (defined below); on failure it panics. 996 // 997 // If CommaOk: on success it returns a pair (v, true) where v is the 998 // result of the conversion; on failure it returns (z, false) where z 999 // is AssertedType's zero value. The components of the pair must be 1000 // accessed using the Extract instruction. 1001 // 1002 // If AssertedType is a concrete type, TypeAssert checks whether the 1003 // dynamic type in interface X is equal to it, and if so, the result 1004 // of the conversion is a copy of the value in the interface. 1005 // 1006 // If AssertedType is an interface, TypeAssert checks whether the 1007 // dynamic type of the interface is assignable to it, and if so, the 1008 // result of the conversion is a copy of the interface value X. 1009 // If AssertedType is a superinterface of X.Type(), the operation will 1010 // fail iff the operand is nil. (Contrast with ChangeInterface, which 1011 // performs no nil-check.) 1012 // 1013 // Type() reflects the actual type of the result, possibly a 1014 // 2-types.Tuple; AssertedType is the asserted type. 1015 // 1016 // Pos() returns the ast.CallExpr.Lparen if the instruction arose from 1017 // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the 1018 // instruction arose from an explicit e.(T) operation; or the 1019 // ast.CaseClause.Case if the instruction arose from a case of a 1020 // type-switch statement. 1021 // 1022 // Example printed form: 1023 // t1 = typeassert t0.(int) 1024 // t3 = typeassert,ok t2.(T) 1025 // 1026 type TypeAssert struct { 1027 register 1028 X Value 1029 AssertedType types.Type 1030 CommaOk bool 1031 } 1032 1033 // The Extract instruction yields component Index of Tuple. 1034 // 1035 // This is used to access the results of instructions with multiple 1036 // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and 1037 // IndexExpr(Map). 1038 // 1039 // Example printed form: 1040 // t1 = extract t0 #1 1041 // 1042 type Extract struct { 1043 register 1044 Tuple Value 1045 Index int 1046 } 1047 1048 // Instructions executed for effect. They do not yield a value. -------------------- 1049 1050 // The Jump instruction transfers control to the sole successor of its 1051 // owning block. 1052 // 1053 // A Jump must be the last instruction of its containing BasicBlock. 1054 // 1055 // Pos() returns NoPos. 1056 // 1057 // Example printed form: 1058 // jump done 1059 // 1060 type Jump struct { 1061 anInstruction 1062 } 1063 1064 // The If instruction transfers control to one of the two successors 1065 // of its owning block, depending on the boolean Cond: the first if 1066 // true, the second if false. 1067 // 1068 // An If instruction must be the last instruction of its containing 1069 // BasicBlock. 1070 // 1071 // Pos() returns NoPos. 1072 // 1073 // Example printed form: 1074 // if t0 goto done else body 1075 // 1076 type If struct { 1077 anInstruction 1078 Cond Value 1079 } 1080 1081 // The Return instruction returns values and control back to the calling 1082 // function. 1083 // 1084 // len(Results) is always equal to the number of results in the 1085 // function's signature. 1086 // 1087 // If len(Results) > 1, Return returns a tuple value with the specified 1088 // components which the caller must access using Extract instructions. 1089 // 1090 // There is no instruction to return a ready-made tuple like those 1091 // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or 1092 // a tail-call to a function with multiple result parameters. 1093 // 1094 // Return must be the last instruction of its containing BasicBlock. 1095 // Such a block has no successors. 1096 // 1097 // Pos() returns the ast.ReturnStmt.Return, if explicit in the source. 1098 // 1099 // Example printed form: 1100 // return 1101 // return nil:I, 2:int 1102 // 1103 type Return struct { 1104 anInstruction 1105 Results []Value 1106 pos token.Pos 1107 } 1108 1109 // The RunDefers instruction pops and invokes the entire stack of 1110 // procedure calls pushed by Defer instructions in this function. 1111 // 1112 // It is legal to encounter multiple 'rundefers' instructions in a 1113 // single control-flow path through a function; this is useful in 1114 // the combined init() function, for example. 1115 // 1116 // Pos() returns NoPos. 1117 // 1118 // Example printed form: 1119 // rundefers 1120 // 1121 type RunDefers struct { 1122 anInstruction 1123 } 1124 1125 // The Panic instruction initiates a panic with value X. 1126 // 1127 // A Panic instruction must be the last instruction of its containing 1128 // BasicBlock, which must have no successors. 1129 // 1130 // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; 1131 // they are treated as calls to a built-in function. 1132 // 1133 // Pos() returns the ast.CallExpr.Lparen if this panic was explicit 1134 // in the source. 1135 // 1136 // Example printed form: 1137 // panic t0 1138 // 1139 type Panic struct { 1140 anInstruction 1141 X Value // an interface{} 1142 pos token.Pos 1143 } 1144 1145 // The Go instruction creates a new goroutine and calls the specified 1146 // function within it. 1147 // 1148 // See CallCommon for generic function call documentation. 1149 // 1150 // Pos() returns the ast.GoStmt.Go. 1151 // 1152 // Example printed form: 1153 // go println(t0, t1) 1154 // go t3() 1155 // go invoke t5.Println(...t6) 1156 // 1157 type Go struct { 1158 anInstruction 1159 Call CallCommon 1160 pos token.Pos 1161 } 1162 1163 // The Defer instruction pushes the specified call onto a stack of 1164 // functions to be called by a RunDefers instruction or by a panic. 1165 // 1166 // See CallCommon for generic function call documentation. 1167 // 1168 // Pos() returns the ast.DeferStmt.Defer. 1169 // 1170 // Example printed form: 1171 // defer println(t0, t1) 1172 // defer t3() 1173 // defer invoke t5.Println(...t6) 1174 // 1175 type Defer struct { 1176 anInstruction 1177 Call CallCommon 1178 pos token.Pos 1179 } 1180 1181 // The Send instruction sends X on channel Chan. 1182 // 1183 // Pos() returns the ast.SendStmt.Arrow, if explicit in the source. 1184 // 1185 // Example printed form: 1186 // send t0 <- t1 1187 // 1188 type Send struct { 1189 anInstruction 1190 Chan, X Value 1191 pos token.Pos 1192 } 1193 1194 // The Store instruction stores Val at address Addr. 1195 // Stores can be of arbitrary types. 1196 // 1197 // Pos() returns the position of the source-level construct most closely 1198 // associated with the memory store operation. 1199 // Since implicit memory stores are numerous and varied and depend upon 1200 // implementation choices, the details are not specified. 1201 // 1202 // Example printed form: 1203 // *x = y 1204 // 1205 type Store struct { 1206 anInstruction 1207 Addr Value 1208 Val Value 1209 pos token.Pos 1210 } 1211 1212 // The MapUpdate instruction updates the association of Map[Key] to 1213 // Value. 1214 // 1215 // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack, 1216 // if explicit in the source. 1217 // 1218 // Example printed form: 1219 // t0[t1] = t2 1220 // 1221 type MapUpdate struct { 1222 anInstruction 1223 Map Value 1224 Key Value 1225 Value Value 1226 pos token.Pos 1227 } 1228 1229 // A DebugRef instruction maps a source-level expression Expr to the 1230 // SSA value X that represents the value (!IsAddr) or address (IsAddr) 1231 // of that expression. 1232 // 1233 // DebugRef is a pseudo-instruction: it has no dynamic effect. 1234 // 1235 // Pos() returns Expr.Pos(), the start position of the source-level 1236 // expression. This is not the same as the "designated" token as 1237 // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the 1238 // position of the ("designated") Lparen token. 1239 // 1240 // If Expr is an *ast.Ident denoting a var or func, Object() returns 1241 // the object; though this information can be obtained from the type 1242 // checker, including it here greatly facilitates debugging. 1243 // For non-Ident expressions, Object() returns nil. 1244 // 1245 // DebugRefs are generated only for functions built with debugging 1246 // enabled; see Package.SetDebugMode() and the GlobalDebug builder 1247 // mode flag. 1248 // 1249 // DebugRefs are not emitted for ast.Idents referring to constants or 1250 // predeclared identifiers, since they are trivial and numerous. 1251 // Nor are they emitted for ast.ParenExprs. 1252 // 1253 // (By representing these as instructions, rather than out-of-band, 1254 // consistency is maintained during transformation passes by the 1255 // ordinary SSA renaming machinery.) 1256 // 1257 // Example printed form: 1258 // ; *ast.CallExpr @ 102:9 is t5 1259 // ; var x float64 @ 109:72 is x 1260 // ; address of *ast.CompositeLit @ 216:10 is t0 1261 // 1262 type DebugRef struct { 1263 anInstruction 1264 Expr ast.Expr // the referring expression (never *ast.ParenExpr) 1265 object types.Object // the identity of the source var/func 1266 IsAddr bool // Expr is addressable and X is the address it denotes 1267 X Value // the value or address of Expr 1268 } 1269 1270 // Embeddable mix-ins and helpers for common parts of other structs. ----------- 1271 1272 // register is a mix-in embedded by all SSA values that are also 1273 // instructions, i.e. virtual registers, and provides a uniform 1274 // implementation of most of the Value interface: Value.Name() is a 1275 // numbered register (e.g. "t0"); the other methods are field accessors. 1276 // 1277 // Temporary names are automatically assigned to each register on 1278 // completion of building a function in SSA form. 1279 // 1280 // Clients must not assume that the 'id' value (and the Name() derived 1281 // from it) is unique within a function. As always in this API, 1282 // semantics are determined only by identity; names exist only to 1283 // facilitate debugging. 1284 // 1285 type register struct { 1286 anInstruction 1287 num int // "name" of virtual register, e.g. "t0". Not guaranteed unique. 1288 typ types.Type // type of virtual register 1289 pos token.Pos // position of source expression, or NoPos 1290 referrers []Instruction 1291 } 1292 1293 // anInstruction is a mix-in embedded by all Instructions. 1294 // It provides the implementations of the Block and setBlock methods. 1295 type anInstruction struct { 1296 block *BasicBlock // the basic block of this instruction 1297 } 1298 1299 // CallCommon is contained by Go, Defer and Call to hold the 1300 // common parts of a function or method call. 1301 // 1302 // Each CallCommon exists in one of two modes, function call and 1303 // interface method invocation, or "call" and "invoke" for short. 1304 // 1305 // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon 1306 // represents an ordinary function call of the value in Value, 1307 // which may be a *Builtin, a *Function or any other value of kind 1308 // 'func'. 1309 // 1310 // Value may be one of: 1311 // (a) a *Function, indicating a statically dispatched call 1312 // to a package-level function, an anonymous function, or 1313 // a method of a named type. 1314 // (b) a *MakeClosure, indicating an immediately applied 1315 // function literal with free variables. 1316 // (c) a *Builtin, indicating a statically dispatched call 1317 // to a built-in function. 1318 // (d) any other value, indicating a dynamically dispatched 1319 // function call. 1320 // StaticCallee returns the identity of the callee in cases 1321 // (a) and (b), nil otherwise. 1322 // 1323 // Args contains the arguments to the call. If Value is a method, 1324 // Args[0] contains the receiver parameter. 1325 // 1326 // Example printed form: 1327 // t2 = println(t0, t1) 1328 // go t3() 1329 // defer t5(...t6) 1330 // 1331 // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon 1332 // represents a dynamically dispatched call to an interface method. 1333 // In this mode, Value is the interface value and Method is the 1334 // interface's abstract method. Note: an abstract method may be 1335 // shared by multiple interfaces due to embedding; Value.Type() 1336 // provides the specific interface used for this call. 1337 // 1338 // Value is implicitly supplied to the concrete method implementation 1339 // as the receiver parameter; in other words, Args[0] holds not the 1340 // receiver but the first true argument. 1341 // 1342 // Example printed form: 1343 // t1 = invoke t0.String() 1344 // go invoke t3.Run(t2) 1345 // defer invoke t4.Handle(...t5) 1346 // 1347 // For all calls to variadic functions (Signature().Variadic()), 1348 // the last element of Args is a slice. 1349 // 1350 type CallCommon struct { 1351 Value Value // receiver (invoke mode) or func value (call mode) 1352 Method *types.Func // abstract method (invoke mode) 1353 Args []Value // actual parameters (in static method call, includes receiver) 1354 pos token.Pos // position of CallExpr.Lparen, iff explicit in source 1355 } 1356 1357 // IsInvoke returns true if this call has "invoke" (not "call") mode. 1358 func (c *CallCommon) IsInvoke() bool { 1359 return c.Method != nil 1360 } 1361 1362 func (c *CallCommon) Pos() token.Pos { return c.pos } 1363 1364 // Signature returns the signature of the called function. 1365 // 1366 // For an "invoke"-mode call, the signature of the interface method is 1367 // returned. 1368 // 1369 // In either "call" or "invoke" mode, if the callee is a method, its 1370 // receiver is represented by sig.Recv, not sig.Params().At(0). 1371 // 1372 func (c *CallCommon) Signature() *types.Signature { 1373 if c.Method != nil { 1374 return c.Method.Type().(*types.Signature) 1375 } 1376 return c.Value.Type().Underlying().(*types.Signature) 1377 } 1378 1379 // StaticCallee returns the callee if this is a trivially static 1380 // "call"-mode call to a function. 1381 func (c *CallCommon) StaticCallee() *Function { 1382 switch fn := c.Value.(type) { 1383 case *Function: 1384 return fn 1385 case *MakeClosure: 1386 return fn.Fn.(*Function) 1387 } 1388 return nil 1389 } 1390 1391 // Description returns a description of the mode of this call suitable 1392 // for a user interface, e.g., "static method call". 1393 func (c *CallCommon) Description() string { 1394 switch fn := c.Value.(type) { 1395 case *Builtin: 1396 return "built-in function call" 1397 case *MakeClosure: 1398 return "static function closure call" 1399 case *Function: 1400 if fn.Signature.Recv() != nil { 1401 return "static method call" 1402 } 1403 return "static function call" 1404 } 1405 if c.IsInvoke() { 1406 return "dynamic method call" // ("invoke" mode) 1407 } 1408 return "dynamic function call" 1409 } 1410 1411 // The CallInstruction interface, implemented by *Go, *Defer and *Call, 1412 // exposes the common parts of function-calling instructions, 1413 // yet provides a way back to the Value defined by *Call alone. 1414 // 1415 type CallInstruction interface { 1416 Instruction 1417 Common() *CallCommon // returns the common parts of the call 1418 Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer) 1419 } 1420 1421 func (s *Call) Common() *CallCommon { return &s.Call } 1422 func (s *Defer) Common() *CallCommon { return &s.Call } 1423 func (s *Go) Common() *CallCommon { return &s.Call } 1424 1425 func (s *Call) Value() *Call { return s } 1426 func (s *Defer) Value() *Call { return nil } 1427 func (s *Go) Value() *Call { return nil } 1428 1429 func (v *Builtin) Type() types.Type { return v.sig } 1430 func (v *Builtin) Name() string { return v.name } 1431 func (*Builtin) Referrers() *[]Instruction { return nil } 1432 func (v *Builtin) Pos() token.Pos { return token.NoPos } 1433 func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) } 1434 func (v *Builtin) Parent() *Function { return nil } 1435 1436 func (v *FreeVar) Type() types.Type { return v.typ } 1437 func (v *FreeVar) Name() string { return v.name } 1438 func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers } 1439 func (v *FreeVar) Pos() token.Pos { return v.pos } 1440 func (v *FreeVar) Parent() *Function { return v.parent } 1441 1442 func (v *Global) Type() types.Type { return v.typ } 1443 func (v *Global) Name() string { return v.name } 1444 func (v *Global) Parent() *Function { return nil } 1445 func (v *Global) Pos() token.Pos { return v.pos } 1446 func (v *Global) Referrers() *[]Instruction { return nil } 1447 func (v *Global) Token() token.Token { return token.VAR } 1448 func (v *Global) Object() types.Object { return v.object } 1449 func (v *Global) String() string { return v.RelString(nil) } 1450 func (v *Global) Package() *Package { return v.Pkg } 1451 func (v *Global) RelString(from *types.Package) string { return relString(v, from) } 1452 1453 func (v *Function) Name() string { return v.name } 1454 func (v *Function) Type() types.Type { return v.Signature } 1455 func (v *Function) Pos() token.Pos { return v.pos } 1456 func (v *Function) Token() token.Token { return token.FUNC } 1457 func (v *Function) Object() types.Object { return v.object } 1458 func (v *Function) String() string { return v.RelString(nil) } 1459 func (v *Function) Package() *Package { return v.Pkg } 1460 func (v *Function) Parent() *Function { return v.parent } 1461 func (v *Function) Referrers() *[]Instruction { 1462 if v.parent != nil { 1463 return &v.referrers 1464 } 1465 return nil 1466 } 1467 1468 func (v *Parameter) Type() types.Type { return v.typ } 1469 func (v *Parameter) Name() string { return v.name } 1470 func (v *Parameter) Object() types.Object { return v.object } 1471 func (v *Parameter) Referrers() *[]Instruction { return &v.referrers } 1472 func (v *Parameter) Pos() token.Pos { return v.pos } 1473 func (v *Parameter) Parent() *Function { return v.parent } 1474 1475 func (v *Alloc) Type() types.Type { return v.typ } 1476 func (v *Alloc) Referrers() *[]Instruction { return &v.referrers } 1477 func (v *Alloc) Pos() token.Pos { return v.pos } 1478 1479 func (v *register) Type() types.Type { return v.typ } 1480 func (v *register) setType(typ types.Type) { v.typ = typ } 1481 func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) } 1482 func (v *register) setNum(num int) { v.num = num } 1483 func (v *register) Referrers() *[]Instruction { return &v.referrers } 1484 func (v *register) Pos() token.Pos { return v.pos } 1485 func (v *register) setPos(pos token.Pos) { v.pos = pos } 1486 1487 func (v *anInstruction) Parent() *Function { return v.block.parent } 1488 func (v *anInstruction) Block() *BasicBlock { return v.block } 1489 func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block } 1490 func (v *anInstruction) Referrers() *[]Instruction { return nil } 1491 1492 func (t *Type) Name() string { return t.object.Name() } 1493 func (t *Type) Pos() token.Pos { return t.object.Pos() } 1494 func (t *Type) Type() types.Type { return t.object.Type() } 1495 func (t *Type) Token() token.Token { return token.TYPE } 1496 func (t *Type) Object() types.Object { return t.object } 1497 func (t *Type) String() string { return t.RelString(nil) } 1498 func (t *Type) Package() *Package { return t.pkg } 1499 func (t *Type) RelString(from *types.Package) string { return relString(t, from) } 1500 1501 func (c *NamedConst) Name() string { return c.object.Name() } 1502 func (c *NamedConst) Pos() token.Pos { return c.object.Pos() } 1503 func (c *NamedConst) String() string { return c.RelString(nil) } 1504 func (c *NamedConst) Type() types.Type { return c.object.Type() } 1505 func (c *NamedConst) Token() token.Token { return token.CONST } 1506 func (c *NamedConst) Object() types.Object { return c.object } 1507 func (c *NamedConst) Package() *Package { return c.pkg } 1508 func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) } 1509 1510 func (d *DebugRef) Object() types.Object { return d.object } 1511 1512 // Func returns the package-level function of the specified name, 1513 // or nil if not found. 1514 // 1515 func (p *Package) Func(name string) (f *Function) { 1516 f, _ = p.Members[name].(*Function) 1517 return 1518 } 1519 1520 // Var returns the package-level variable of the specified name, 1521 // or nil if not found. 1522 // 1523 func (p *Package) Var(name string) (g *Global) { 1524 g, _ = p.Members[name].(*Global) 1525 return 1526 } 1527 1528 // Const returns the package-level constant of the specified name, 1529 // or nil if not found. 1530 // 1531 func (p *Package) Const(name string) (c *NamedConst) { 1532 c, _ = p.Members[name].(*NamedConst) 1533 return 1534 } 1535 1536 // Type returns the package-level type of the specified name, 1537 // or nil if not found. 1538 // 1539 func (p *Package) Type(name string) (t *Type) { 1540 t, _ = p.Members[name].(*Type) 1541 return 1542 } 1543 1544 func (v *Call) Pos() token.Pos { return v.Call.pos } 1545 func (s *Defer) Pos() token.Pos { return s.pos } 1546 func (s *Go) Pos() token.Pos { return s.pos } 1547 func (s *MapUpdate) Pos() token.Pos { return s.pos } 1548 func (s *Panic) Pos() token.Pos { return s.pos } 1549 func (s *Return) Pos() token.Pos { return s.pos } 1550 func (s *Send) Pos() token.Pos { return s.pos } 1551 func (s *Store) Pos() token.Pos { return s.pos } 1552 func (s *If) Pos() token.Pos { return token.NoPos } 1553 func (s *Jump) Pos() token.Pos { return token.NoPos } 1554 func (s *RunDefers) Pos() token.Pos { return token.NoPos } 1555 func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() } 1556 1557 // Operands. 1558 1559 func (v *Alloc) Operands(rands []*Value) []*Value { 1560 return rands 1561 } 1562 1563 func (v *BinOp) Operands(rands []*Value) []*Value { 1564 return append(rands, &v.X, &v.Y) 1565 } 1566 1567 func (c *CallCommon) Operands(rands []*Value) []*Value { 1568 rands = append(rands, &c.Value) 1569 for i := range c.Args { 1570 rands = append(rands, &c.Args[i]) 1571 } 1572 return rands 1573 } 1574 1575 func (s *Go) Operands(rands []*Value) []*Value { 1576 return s.Call.Operands(rands) 1577 } 1578 1579 func (s *Call) Operands(rands []*Value) []*Value { 1580 return s.Call.Operands(rands) 1581 } 1582 1583 func (s *Defer) Operands(rands []*Value) []*Value { 1584 return s.Call.Operands(rands) 1585 } 1586 1587 func (v *ChangeInterface) Operands(rands []*Value) []*Value { 1588 return append(rands, &v.X) 1589 } 1590 1591 func (v *ChangeType) Operands(rands []*Value) []*Value { 1592 return append(rands, &v.X) 1593 } 1594 1595 func (v *Convert) Operands(rands []*Value) []*Value { 1596 return append(rands, &v.X) 1597 } 1598 1599 func (v *SliceToArrayPointer) Operands(rands []*Value) []*Value { 1600 return append(rands, &v.X) 1601 } 1602 1603 func (s *DebugRef) Operands(rands []*Value) []*Value { 1604 return append(rands, &s.X) 1605 } 1606 1607 func (v *Extract) Operands(rands []*Value) []*Value { 1608 return append(rands, &v.Tuple) 1609 } 1610 1611 func (v *Field) Operands(rands []*Value) []*Value { 1612 return append(rands, &v.X) 1613 } 1614 1615 func (v *FieldAddr) Operands(rands []*Value) []*Value { 1616 return append(rands, &v.X) 1617 } 1618 1619 func (s *If) Operands(rands []*Value) []*Value { 1620 return append(rands, &s.Cond) 1621 } 1622 1623 func (v *Index) Operands(rands []*Value) []*Value { 1624 return append(rands, &v.X, &v.Index) 1625 } 1626 1627 func (v *IndexAddr) Operands(rands []*Value) []*Value { 1628 return append(rands, &v.X, &v.Index) 1629 } 1630 1631 func (*Jump) Operands(rands []*Value) []*Value { 1632 return rands 1633 } 1634 1635 func (v *Lookup) Operands(rands []*Value) []*Value { 1636 return append(rands, &v.X, &v.Index) 1637 } 1638 1639 func (v *MakeChan) Operands(rands []*Value) []*Value { 1640 return append(rands, &v.Size) 1641 } 1642 1643 func (v *MakeClosure) Operands(rands []*Value) []*Value { 1644 rands = append(rands, &v.Fn) 1645 for i := range v.Bindings { 1646 rands = append(rands, &v.Bindings[i]) 1647 } 1648 return rands 1649 } 1650 1651 func (v *MakeInterface) Operands(rands []*Value) []*Value { 1652 return append(rands, &v.X) 1653 } 1654 1655 func (v *MakeMap) Operands(rands []*Value) []*Value { 1656 return append(rands, &v.Reserve) 1657 } 1658 1659 func (v *MakeSlice) Operands(rands []*Value) []*Value { 1660 return append(rands, &v.Len, &v.Cap) 1661 } 1662 1663 func (v *MapUpdate) Operands(rands []*Value) []*Value { 1664 return append(rands, &v.Map, &v.Key, &v.Value) 1665 } 1666 1667 func (v *Next) Operands(rands []*Value) []*Value { 1668 return append(rands, &v.Iter) 1669 } 1670 1671 func (s *Panic) Operands(rands []*Value) []*Value { 1672 return append(rands, &s.X) 1673 } 1674 1675 func (v *Phi) Operands(rands []*Value) []*Value { 1676 for i := range v.Edges { 1677 rands = append(rands, &v.Edges[i]) 1678 } 1679 return rands 1680 } 1681 1682 func (v *Range) Operands(rands []*Value) []*Value { 1683 return append(rands, &v.X) 1684 } 1685 1686 func (s *Return) Operands(rands []*Value) []*Value { 1687 for i := range s.Results { 1688 rands = append(rands, &s.Results[i]) 1689 } 1690 return rands 1691 } 1692 1693 func (*RunDefers) Operands(rands []*Value) []*Value { 1694 return rands 1695 } 1696 1697 func (v *Select) Operands(rands []*Value) []*Value { 1698 for i := range v.States { 1699 rands = append(rands, &v.States[i].Chan, &v.States[i].Send) 1700 } 1701 return rands 1702 } 1703 1704 func (s *Send) Operands(rands []*Value) []*Value { 1705 return append(rands, &s.Chan, &s.X) 1706 } 1707 1708 func (v *Slice) Operands(rands []*Value) []*Value { 1709 return append(rands, &v.X, &v.Low, &v.High, &v.Max) 1710 } 1711 1712 func (s *Store) Operands(rands []*Value) []*Value { 1713 return append(rands, &s.Addr, &s.Val) 1714 } 1715 1716 func (v *TypeAssert) Operands(rands []*Value) []*Value { 1717 return append(rands, &v.X) 1718 } 1719 1720 func (v *UnOp) Operands(rands []*Value) []*Value { 1721 return append(rands, &v.X) 1722 } 1723 1724 // Non-Instruction Values: 1725 func (v *Builtin) Operands(rands []*Value) []*Value { return rands } 1726 func (v *FreeVar) Operands(rands []*Value) []*Value { return rands } 1727 func (v *Const) Operands(rands []*Value) []*Value { return rands } 1728 func (v *Function) Operands(rands []*Value) []*Value { return rands } 1729 func (v *Global) Operands(rands []*Value) []*Value { return rands } 1730 func (v *Parameter) Operands(rands []*Value) []*Value { return rands }