github.com/powerman/golang-tools@v0.1.11-0.20220410185822-5ad214d8d803/internal/apidiff/correspondence.go (about) 1 // Copyright 2019 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package apidiff 6 7 import ( 8 "go/types" 9 "sort" 10 ) 11 12 // Two types are correspond if they are identical except for defined types, 13 // which must correspond. 14 // 15 // Two defined types correspond if they can be interchanged in the old and new APIs, 16 // possibly after a renaming. 17 // 18 // This is not a pure function. If we come across named types while traversing, 19 // we establish correspondence. 20 func (d *differ) correspond(old, new types.Type) bool { 21 return d.corr(old, new, nil) 22 } 23 24 // corr determines whether old and new correspond. The argument p is a list of 25 // known interface identities, to avoid infinite recursion. 26 // 27 // corr calls itself recursively as much as possible, to establish more 28 // correspondences and so check more of the API. E.g. if the new function has more 29 // parameters than the old, compare all the old ones before returning false. 30 // 31 // Compare this to the implementation of go/types.Identical. 32 func (d *differ) corr(old, new types.Type, p *ifacePair) bool { 33 // Structure copied from types.Identical. 34 switch old := old.(type) { 35 case *types.Basic: 36 return types.Identical(old, new) 37 38 case *types.Array: 39 if new, ok := new.(*types.Array); ok { 40 return d.corr(old.Elem(), new.Elem(), p) && old.Len() == new.Len() 41 } 42 43 case *types.Slice: 44 if new, ok := new.(*types.Slice); ok { 45 return d.corr(old.Elem(), new.Elem(), p) 46 } 47 48 case *types.Map: 49 if new, ok := new.(*types.Map); ok { 50 return d.corr(old.Key(), new.Key(), p) && d.corr(old.Elem(), new.Elem(), p) 51 } 52 53 case *types.Chan: 54 if new, ok := new.(*types.Chan); ok { 55 return d.corr(old.Elem(), new.Elem(), p) && old.Dir() == new.Dir() 56 } 57 58 case *types.Pointer: 59 if new, ok := new.(*types.Pointer); ok { 60 return d.corr(old.Elem(), new.Elem(), p) 61 } 62 63 case *types.Signature: 64 if new, ok := new.(*types.Signature); ok { 65 pe := d.corr(old.Params(), new.Params(), p) 66 re := d.corr(old.Results(), new.Results(), p) 67 return old.Variadic() == new.Variadic() && pe && re 68 } 69 70 case *types.Tuple: 71 if new, ok := new.(*types.Tuple); ok { 72 for i := 0; i < old.Len(); i++ { 73 if i >= new.Len() || !d.corr(old.At(i).Type(), new.At(i).Type(), p) { 74 return false 75 } 76 } 77 return old.Len() == new.Len() 78 } 79 80 case *types.Struct: 81 if new, ok := new.(*types.Struct); ok { 82 for i := 0; i < old.NumFields(); i++ { 83 if i >= new.NumFields() { 84 return false 85 } 86 of := old.Field(i) 87 nf := new.Field(i) 88 if of.Anonymous() != nf.Anonymous() || 89 old.Tag(i) != new.Tag(i) || 90 !d.corr(of.Type(), nf.Type(), p) || 91 !d.corrFieldNames(of, nf) { 92 return false 93 } 94 } 95 return old.NumFields() == new.NumFields() 96 } 97 98 case *types.Interface: 99 if new, ok := new.(*types.Interface); ok { 100 // Deal with circularity. See the comment in types.Identical. 101 q := &ifacePair{old, new, p} 102 for p != nil { 103 if p.identical(q) { 104 return true // same pair was compared before 105 } 106 p = p.prev 107 } 108 oldms := d.sortedMethods(old) 109 newms := d.sortedMethods(new) 110 for i, om := range oldms { 111 if i >= len(newms) { 112 return false 113 } 114 nm := newms[i] 115 if d.methodID(om) != d.methodID(nm) || !d.corr(om.Type(), nm.Type(), q) { 116 return false 117 } 118 } 119 return old.NumMethods() == new.NumMethods() 120 } 121 122 case *types.Named: 123 if new, ok := new.(*types.Named); ok { 124 return d.establishCorrespondence(old, new) 125 } 126 if new, ok := new.(*types.Basic); ok { 127 // Basic types are defined types, too, so we have to support them. 128 129 return d.establishCorrespondence(old, new) 130 } 131 132 default: 133 panic("unknown type kind") 134 } 135 return false 136 } 137 138 // Compare old and new field names. We are determining correspondence across packages, 139 // so just compare names, not packages. For an unexported, embedded field of named 140 // type (non-named embedded fields are possible with aliases), we check that the type 141 // names correspond. We check the types for correspondence before this is called, so 142 // we've established correspondence. 143 func (d *differ) corrFieldNames(of, nf *types.Var) bool { 144 if of.Anonymous() && nf.Anonymous() && !of.Exported() && !nf.Exported() { 145 if on, ok := of.Type().(*types.Named); ok { 146 nn := nf.Type().(*types.Named) 147 return d.establishCorrespondence(on, nn) 148 } 149 } 150 return of.Name() == nf.Name() 151 } 152 153 // Establish that old corresponds with new if it does not already 154 // correspond to something else. 155 func (d *differ) establishCorrespondence(old *types.Named, new types.Type) bool { 156 oldname := old.Obj() 157 oldc := d.correspondMap[oldname] 158 if oldc == nil { 159 // For now, assume the types don't correspond unless they are from the old 160 // and new packages, respectively. 161 // 162 // This is too conservative. For instance, 163 // [old] type A = q.B; [new] type A q.C 164 // could be OK if in package q, B is an alias for C. 165 // Or, using p as the name of the current old/new packages: 166 // [old] type A = q.B; [new] type A int 167 // could be OK if in q, 168 // [old] type B int; [new] type B = p.A 169 // In this case, p.A and q.B name the same type in both old and new worlds. 170 // Note that this case doesn't imply circular package imports: it's possible 171 // that in the old world, p imports q, but in the new, q imports p. 172 // 173 // However, if we didn't do something here, then we'd incorrectly allow cases 174 // like the first one above in which q.B is not an alias for q.C 175 // 176 // What we should do is check that the old type, in the new world's package 177 // of the same path, doesn't correspond to something other than the new type. 178 // That is a bit hard, because there is no easy way to find a new package 179 // matching an old one. 180 if newn, ok := new.(*types.Named); ok { 181 if old.Obj().Pkg() != d.old || newn.Obj().Pkg() != d.new { 182 return old.Obj().Id() == newn.Obj().Id() 183 } 184 } 185 // If there is no correspondence, create one. 186 d.correspondMap[oldname] = new 187 // Check that the corresponding types are compatible. 188 d.checkCompatibleDefined(oldname, old, new) 189 return true 190 } 191 return types.Identical(oldc, new) 192 } 193 194 func (d *differ) sortedMethods(iface *types.Interface) []*types.Func { 195 ms := make([]*types.Func, iface.NumMethods()) 196 for i := 0; i < iface.NumMethods(); i++ { 197 ms[i] = iface.Method(i) 198 } 199 sort.Slice(ms, func(i, j int) bool { return d.methodID(ms[i]) < d.methodID(ms[j]) }) 200 return ms 201 } 202 203 func (d *differ) methodID(m *types.Func) string { 204 // If the method belongs to one of the two packages being compared, use 205 // just its name even if it's unexported. That lets us treat unexported names 206 // from the old and new packages as equal. 207 if m.Pkg() == d.old || m.Pkg() == d.new { 208 return m.Name() 209 } 210 return m.Id() 211 } 212 213 // Copied from the go/types package: 214 215 // An ifacePair is a node in a stack of interface type pairs compared for identity. 216 type ifacePair struct { 217 x, y *types.Interface 218 prev *ifacePair 219 } 220 221 func (p *ifacePair) identical(q *ifacePair) bool { 222 return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x 223 }