github.com/prajjawalk/go-ethereum@v1.9.7/trie/database.go (about) 1 // Copyright 2018 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "encoding/binary" 21 "errors" 22 "fmt" 23 "io" 24 "reflect" 25 "sync" 26 "time" 27 28 "github.com/allegro/bigcache" 29 "github.com/ethereum/go-ethereum/common" 30 "github.com/ethereum/go-ethereum/ethdb" 31 "github.com/ethereum/go-ethereum/log" 32 "github.com/ethereum/go-ethereum/metrics" 33 "github.com/ethereum/go-ethereum/rlp" 34 ) 35 36 var ( 37 memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil) 38 memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil) 39 memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil) 40 memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil) 41 42 memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil) 43 memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil) 44 memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil) 45 46 memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil) 47 memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil) 48 memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil) 49 50 memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil) 51 memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil) 52 memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil) 53 ) 54 55 // secureKeyPrefix is the database key prefix used to store trie node preimages. 56 var secureKeyPrefix = []byte("secure-key-") 57 58 // secureKeyLength is the length of the above prefix + 32byte hash. 59 const secureKeyLength = 11 + 32 60 61 // Database is an intermediate write layer between the trie data structures and 62 // the disk database. The aim is to accumulate trie writes in-memory and only 63 // periodically flush a couple tries to disk, garbage collecting the remainder. 64 // 65 // Note, the trie Database is **not** thread safe in its mutations, but it **is** 66 // thread safe in providing individual, independent node access. The rationale 67 // behind this split design is to provide read access to RPC handlers and sync 68 // servers even while the trie is executing expensive garbage collection. 69 type Database struct { 70 diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes 71 72 cleans *bigcache.BigCache // GC friendly memory cache of clean node RLPs 73 dirties map[common.Hash]*cachedNode // Data and references relationships of dirty nodes 74 oldest common.Hash // Oldest tracked node, flush-list head 75 newest common.Hash // Newest tracked node, flush-list tail 76 77 preimages map[common.Hash][]byte // Preimages of nodes from the secure trie 78 seckeybuf [secureKeyLength]byte // Ephemeral buffer for calculating preimage keys 79 80 gctime time.Duration // Time spent on garbage collection since last commit 81 gcnodes uint64 // Nodes garbage collected since last commit 82 gcsize common.StorageSize // Data storage garbage collected since last commit 83 84 flushtime time.Duration // Time spent on data flushing since last commit 85 flushnodes uint64 // Nodes flushed since last commit 86 flushsize common.StorageSize // Data storage flushed since last commit 87 88 dirtiesSize common.StorageSize // Storage size of the dirty node cache (exc. metadata) 89 childrenSize common.StorageSize // Storage size of the external children tracking 90 preimagesSize common.StorageSize // Storage size of the preimages cache 91 92 lock sync.RWMutex 93 } 94 95 // rawNode is a simple binary blob used to differentiate between collapsed trie 96 // nodes and already encoded RLP binary blobs (while at the same time store them 97 // in the same cache fields). 98 type rawNode []byte 99 100 func (n rawNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") } 101 func (n rawNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } 102 func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") } 103 104 // rawFullNode represents only the useful data content of a full node, with the 105 // caches and flags stripped out to minimize its data storage. This type honors 106 // the same RLP encoding as the original parent. 107 type rawFullNode [17]node 108 109 func (n rawFullNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") } 110 func (n rawFullNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } 111 func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") } 112 113 func (n rawFullNode) EncodeRLP(w io.Writer) error { 114 var nodes [17]node 115 116 for i, child := range n { 117 if child != nil { 118 nodes[i] = child 119 } else { 120 nodes[i] = nilValueNode 121 } 122 } 123 return rlp.Encode(w, nodes) 124 } 125 126 // rawShortNode represents only the useful data content of a short node, with the 127 // caches and flags stripped out to minimize its data storage. This type honors 128 // the same RLP encoding as the original parent. 129 type rawShortNode struct { 130 Key []byte 131 Val node 132 } 133 134 func (n rawShortNode) canUnload(uint16, uint16) bool { panic("this should never end up in a live trie") } 135 func (n rawShortNode) cache() (hashNode, bool) { panic("this should never end up in a live trie") } 136 func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") } 137 138 // cachedNode is all the information we know about a single cached node in the 139 // memory database write layer. 140 type cachedNode struct { 141 node node // Cached collapsed trie node, or raw rlp data 142 size uint16 // Byte size of the useful cached data 143 144 parents uint32 // Number of live nodes referencing this one 145 children map[common.Hash]uint16 // External children referenced by this node 146 147 flushPrev common.Hash // Previous node in the flush-list 148 flushNext common.Hash // Next node in the flush-list 149 } 150 151 // cachedNodeSize is the raw size of a cachedNode data structure without any 152 // node data included. It's an approximate size, but should be a lot better 153 // than not counting them. 154 var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size()) 155 156 // cachedNodeChildrenSize is the raw size of an initialized but empty external 157 // reference map. 158 const cachedNodeChildrenSize = 48 159 160 // rlp returns the raw rlp encoded blob of the cached node, either directly from 161 // the cache, or by regenerating it from the collapsed node. 162 func (n *cachedNode) rlp() []byte { 163 if node, ok := n.node.(rawNode); ok { 164 return node 165 } 166 blob, err := rlp.EncodeToBytes(n.node) 167 if err != nil { 168 panic(err) 169 } 170 return blob 171 } 172 173 // obj returns the decoded and expanded trie node, either directly from the cache, 174 // or by regenerating it from the rlp encoded blob. 175 func (n *cachedNode) obj(hash common.Hash) node { 176 if node, ok := n.node.(rawNode); ok { 177 return mustDecodeNode(hash[:], node) 178 } 179 return expandNode(hash[:], n.node) 180 } 181 182 // childs returns all the tracked children of this node, both the implicit ones 183 // from inside the node as well as the explicit ones from outside the node. 184 func (n *cachedNode) childs() []common.Hash { 185 children := make([]common.Hash, 0, 16) 186 for child := range n.children { 187 children = append(children, child) 188 } 189 if _, ok := n.node.(rawNode); !ok { 190 gatherChildren(n.node, &children) 191 } 192 return children 193 } 194 195 // gatherChildren traverses the node hierarchy of a collapsed storage node and 196 // retrieves all the hashnode children. 197 func gatherChildren(n node, children *[]common.Hash) { 198 switch n := n.(type) { 199 case *rawShortNode: 200 gatherChildren(n.Val, children) 201 202 case rawFullNode: 203 for i := 0; i < 16; i++ { 204 gatherChildren(n[i], children) 205 } 206 case hashNode: 207 *children = append(*children, common.BytesToHash(n)) 208 209 case valueNode, nil: 210 211 default: 212 panic(fmt.Sprintf("unknown node type: %T", n)) 213 } 214 } 215 216 // simplifyNode traverses the hierarchy of an expanded memory node and discards 217 // all the internal caches, returning a node that only contains the raw data. 218 func simplifyNode(n node) node { 219 switch n := n.(type) { 220 case *shortNode: 221 // Short nodes discard the flags and cascade 222 return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)} 223 224 case *fullNode: 225 // Full nodes discard the flags and cascade 226 node := rawFullNode(n.Children) 227 for i := 0; i < len(node); i++ { 228 if node[i] != nil { 229 node[i] = simplifyNode(node[i]) 230 } 231 } 232 return node 233 234 case valueNode, hashNode, rawNode: 235 return n 236 237 default: 238 panic(fmt.Sprintf("unknown node type: %T", n)) 239 } 240 } 241 242 // expandNode traverses the node hierarchy of a collapsed storage node and converts 243 // all fields and keys into expanded memory form. 244 func expandNode(hash hashNode, n node) node { 245 switch n := n.(type) { 246 case *rawShortNode: 247 // Short nodes need key and child expansion 248 return &shortNode{ 249 Key: compactToHex(n.Key), 250 Val: expandNode(nil, n.Val), 251 flags: nodeFlag{ 252 hash: hash, 253 }, 254 } 255 256 case rawFullNode: 257 // Full nodes need child expansion 258 node := &fullNode{ 259 flags: nodeFlag{ 260 hash: hash, 261 }, 262 } 263 for i := 0; i < len(node.Children); i++ { 264 if n[i] != nil { 265 node.Children[i] = expandNode(nil, n[i]) 266 } 267 } 268 return node 269 270 case valueNode, hashNode: 271 return n 272 273 default: 274 panic(fmt.Sprintf("unknown node type: %T", n)) 275 } 276 } 277 278 // trienodeHasher is a struct to be used with BigCache, which uses a Hasher to 279 // determine which shard to place an entry into. It's not a cryptographic hash, 280 // just to provide a bit of anti-collision (default is FNV64a). 281 // 282 // Since trie keys are already hashes, we can just use the key directly to 283 // map shard id. 284 type trienodeHasher struct{} 285 286 // Sum64 implements the bigcache.Hasher interface. 287 func (t trienodeHasher) Sum64(key string) uint64 { 288 return binary.BigEndian.Uint64([]byte(key)) 289 } 290 291 // NewDatabase creates a new trie database to store ephemeral trie content before 292 // its written out to disk or garbage collected. No read cache is created, so all 293 // data retrievals will hit the underlying disk database. 294 func NewDatabase(diskdb ethdb.KeyValueStore) *Database { 295 return NewDatabaseWithCache(diskdb, 0) 296 } 297 298 // NewDatabaseWithCache creates a new trie database to store ephemeral trie content 299 // before its written out to disk or garbage collected. It also acts as a read cache 300 // for nodes loaded from disk. 301 func NewDatabaseWithCache(diskdb ethdb.KeyValueStore, cache int) *Database { 302 var cleans *bigcache.BigCache 303 if cache > 0 { 304 cleans, _ = bigcache.NewBigCache(bigcache.Config{ 305 Shards: 1024, 306 LifeWindow: time.Hour, 307 MaxEntriesInWindow: cache * 1024, 308 MaxEntrySize: 512, 309 HardMaxCacheSize: cache, 310 Hasher: trienodeHasher{}, 311 }) 312 } 313 return &Database{ 314 diskdb: diskdb, 315 cleans: cleans, 316 dirties: map[common.Hash]*cachedNode{{}: { 317 children: make(map[common.Hash]uint16), 318 }}, 319 preimages: make(map[common.Hash][]byte), 320 } 321 } 322 323 // DiskDB retrieves the persistent storage backing the trie database. 324 func (db *Database) DiskDB() ethdb.KeyValueReader { 325 return db.diskdb 326 } 327 328 // InsertBlob writes a new reference tracked blob to the memory database if it's 329 // yet unknown. This method should only be used for non-trie nodes that require 330 // reference counting, since trie nodes are garbage collected directly through 331 // their embedded children. 332 func (db *Database) InsertBlob(hash common.Hash, blob []byte) { 333 db.lock.Lock() 334 defer db.lock.Unlock() 335 336 db.insert(hash, blob, rawNode(blob)) 337 } 338 339 // insert inserts a collapsed trie node into the memory database. This method is 340 // a more generic version of InsertBlob, supporting both raw blob insertions as 341 // well ex trie node insertions. The blob must always be specified to allow proper 342 // size tracking. 343 func (db *Database) insert(hash common.Hash, blob []byte, node node) { 344 // If the node's already cached, skip 345 if _, ok := db.dirties[hash]; ok { 346 return 347 } 348 // Create the cached entry for this node 349 entry := &cachedNode{ 350 node: simplifyNode(node), 351 size: uint16(len(blob)), 352 flushPrev: db.newest, 353 } 354 for _, child := range entry.childs() { 355 if c := db.dirties[child]; c != nil { 356 c.parents++ 357 } 358 } 359 db.dirties[hash] = entry 360 361 // Update the flush-list endpoints 362 if db.oldest == (common.Hash{}) { 363 db.oldest, db.newest = hash, hash 364 } else { 365 db.dirties[db.newest].flushNext, db.newest = hash, hash 366 } 367 db.dirtiesSize += common.StorageSize(common.HashLength + entry.size) 368 } 369 370 // insertPreimage writes a new trie node pre-image to the memory database if it's 371 // yet unknown. The method will make a copy of the slice. 372 // 373 // Note, this method assumes that the database's lock is held! 374 func (db *Database) insertPreimage(hash common.Hash, preimage []byte) { 375 if _, ok := db.preimages[hash]; ok { 376 return 377 } 378 db.preimages[hash] = common.CopyBytes(preimage) 379 db.preimagesSize += common.StorageSize(common.HashLength + len(preimage)) 380 } 381 382 // node retrieves a cached trie node from memory, or returns nil if none can be 383 // found in the memory cache. 384 func (db *Database) node(hash common.Hash) node { 385 // Retrieve the node from the clean cache if available 386 if db.cleans != nil { 387 if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil { 388 memcacheCleanHitMeter.Mark(1) 389 memcacheCleanReadMeter.Mark(int64(len(enc))) 390 return mustDecodeNode(hash[:], enc) 391 } 392 } 393 // Retrieve the node from the dirty cache if available 394 db.lock.RLock() 395 dirty := db.dirties[hash] 396 db.lock.RUnlock() 397 398 if dirty != nil { 399 return dirty.obj(hash) 400 } 401 // Content unavailable in memory, attempt to retrieve from disk 402 enc, err := db.diskdb.Get(hash[:]) 403 if err != nil || enc == nil { 404 return nil 405 } 406 if db.cleans != nil { 407 db.cleans.Set(string(hash[:]), enc) 408 memcacheCleanMissMeter.Mark(1) 409 memcacheCleanWriteMeter.Mark(int64(len(enc))) 410 } 411 return mustDecodeNode(hash[:], enc) 412 } 413 414 // Node retrieves an encoded cached trie node from memory. If it cannot be found 415 // cached, the method queries the persistent database for the content. 416 func (db *Database) Node(hash common.Hash) ([]byte, error) { 417 // It doens't make sense to retrieve the metaroot 418 if hash == (common.Hash{}) { 419 return nil, errors.New("not found") 420 } 421 // Retrieve the node from the clean cache if available 422 if db.cleans != nil { 423 if enc, err := db.cleans.Get(string(hash[:])); err == nil && enc != nil { 424 memcacheCleanHitMeter.Mark(1) 425 memcacheCleanReadMeter.Mark(int64(len(enc))) 426 return enc, nil 427 } 428 } 429 // Retrieve the node from the dirty cache if available 430 db.lock.RLock() 431 dirty := db.dirties[hash] 432 db.lock.RUnlock() 433 434 if dirty != nil { 435 return dirty.rlp(), nil 436 } 437 // Content unavailable in memory, attempt to retrieve from disk 438 enc, err := db.diskdb.Get(hash[:]) 439 if err == nil && enc != nil { 440 if db.cleans != nil { 441 db.cleans.Set(string(hash[:]), enc) 442 memcacheCleanMissMeter.Mark(1) 443 memcacheCleanWriteMeter.Mark(int64(len(enc))) 444 } 445 } 446 return enc, err 447 } 448 449 // preimage retrieves a cached trie node pre-image from memory. If it cannot be 450 // found cached, the method queries the persistent database for the content. 451 func (db *Database) preimage(hash common.Hash) ([]byte, error) { 452 // Retrieve the node from cache if available 453 db.lock.RLock() 454 preimage := db.preimages[hash] 455 db.lock.RUnlock() 456 457 if preimage != nil { 458 return preimage, nil 459 } 460 // Content unavailable in memory, attempt to retrieve from disk 461 return db.diskdb.Get(db.secureKey(hash[:])) 462 } 463 464 // secureKey returns the database key for the preimage of key, as an ephemeral 465 // buffer. The caller must not hold onto the return value because it will become 466 // invalid on the next call. 467 func (db *Database) secureKey(key []byte) []byte { 468 buf := append(db.seckeybuf[:0], secureKeyPrefix...) 469 buf = append(buf, key...) 470 return buf 471 } 472 473 // Nodes retrieves the hashes of all the nodes cached within the memory database. 474 // This method is extremely expensive and should only be used to validate internal 475 // states in test code. 476 func (db *Database) Nodes() []common.Hash { 477 db.lock.RLock() 478 defer db.lock.RUnlock() 479 480 var hashes = make([]common.Hash, 0, len(db.dirties)) 481 for hash := range db.dirties { 482 if hash != (common.Hash{}) { // Special case for "root" references/nodes 483 hashes = append(hashes, hash) 484 } 485 } 486 return hashes 487 } 488 489 // Reference adds a new reference from a parent node to a child node. 490 func (db *Database) Reference(child common.Hash, parent common.Hash) { 491 db.lock.Lock() 492 defer db.lock.Unlock() 493 494 db.reference(child, parent) 495 } 496 497 // reference is the private locked version of Reference. 498 func (db *Database) reference(child common.Hash, parent common.Hash) { 499 // If the node does not exist, it's a node pulled from disk, skip 500 node, ok := db.dirties[child] 501 if !ok { 502 return 503 } 504 // If the reference already exists, only duplicate for roots 505 if db.dirties[parent].children == nil { 506 db.dirties[parent].children = make(map[common.Hash]uint16) 507 db.childrenSize += cachedNodeChildrenSize 508 } else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) { 509 return 510 } 511 node.parents++ 512 db.dirties[parent].children[child]++ 513 if db.dirties[parent].children[child] == 1 { 514 db.childrenSize += common.HashLength + 2 // uint16 counter 515 } 516 } 517 518 // Dereference removes an existing reference from a root node. 519 func (db *Database) Dereference(root common.Hash) { 520 // Sanity check to ensure that the meta-root is not removed 521 if root == (common.Hash{}) { 522 log.Error("Attempted to dereference the trie cache meta root") 523 return 524 } 525 db.lock.Lock() 526 defer db.lock.Unlock() 527 528 nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now() 529 db.dereference(root, common.Hash{}) 530 531 db.gcnodes += uint64(nodes - len(db.dirties)) 532 db.gcsize += storage - db.dirtiesSize 533 db.gctime += time.Since(start) 534 535 memcacheGCTimeTimer.Update(time.Since(start)) 536 memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize)) 537 memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties))) 538 539 log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start), 540 "gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) 541 } 542 543 // dereference is the private locked version of Dereference. 544 func (db *Database) dereference(child common.Hash, parent common.Hash) { 545 // Dereference the parent-child 546 node := db.dirties[parent] 547 548 if node.children != nil && node.children[child] > 0 { 549 node.children[child]-- 550 if node.children[child] == 0 { 551 delete(node.children, child) 552 db.childrenSize -= (common.HashLength + 2) // uint16 counter 553 } 554 } 555 // If the child does not exist, it's a previously committed node. 556 node, ok := db.dirties[child] 557 if !ok { 558 return 559 } 560 // If there are no more references to the child, delete it and cascade 561 if node.parents > 0 { 562 // This is a special cornercase where a node loaded from disk (i.e. not in the 563 // memcache any more) gets reinjected as a new node (short node split into full, 564 // then reverted into short), causing a cached node to have no parents. That is 565 // no problem in itself, but don't make maxint parents out of it. 566 node.parents-- 567 } 568 if node.parents == 0 { 569 // Remove the node from the flush-list 570 switch child { 571 case db.oldest: 572 db.oldest = node.flushNext 573 db.dirties[node.flushNext].flushPrev = common.Hash{} 574 case db.newest: 575 db.newest = node.flushPrev 576 db.dirties[node.flushPrev].flushNext = common.Hash{} 577 default: 578 db.dirties[node.flushPrev].flushNext = node.flushNext 579 db.dirties[node.flushNext].flushPrev = node.flushPrev 580 } 581 // Dereference all children and delete the node 582 for _, hash := range node.childs() { 583 db.dereference(hash, child) 584 } 585 delete(db.dirties, child) 586 db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) 587 if node.children != nil { 588 db.childrenSize -= cachedNodeChildrenSize 589 } 590 } 591 } 592 593 // Cap iteratively flushes old but still referenced trie nodes until the total 594 // memory usage goes below the given threshold. 595 // 596 // Note, this method is a non-synchronized mutator. It is unsafe to call this 597 // concurrently with other mutators. 598 func (db *Database) Cap(limit common.StorageSize) error { 599 // Create a database batch to flush persistent data out. It is important that 600 // outside code doesn't see an inconsistent state (referenced data removed from 601 // memory cache during commit but not yet in persistent storage). This is ensured 602 // by only uncaching existing data when the database write finalizes. 603 nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now() 604 batch := db.diskdb.NewBatch() 605 606 // db.dirtiesSize only contains the useful data in the cache, but when reporting 607 // the total memory consumption, the maintenance metadata is also needed to be 608 // counted. 609 size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize) 610 size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2)) 611 612 // If the preimage cache got large enough, push to disk. If it's still small 613 // leave for later to deduplicate writes. 614 flushPreimages := db.preimagesSize > 4*1024*1024 615 if flushPreimages { 616 for hash, preimage := range db.preimages { 617 if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil { 618 log.Error("Failed to commit preimage from trie database", "err", err) 619 return err 620 } 621 if batch.ValueSize() > ethdb.IdealBatchSize { 622 if err := batch.Write(); err != nil { 623 return err 624 } 625 batch.Reset() 626 } 627 } 628 } 629 // Keep committing nodes from the flush-list until we're below allowance 630 oldest := db.oldest 631 for size > limit && oldest != (common.Hash{}) { 632 // Fetch the oldest referenced node and push into the batch 633 node := db.dirties[oldest] 634 if err := batch.Put(oldest[:], node.rlp()); err != nil { 635 return err 636 } 637 // If we exceeded the ideal batch size, commit and reset 638 if batch.ValueSize() >= ethdb.IdealBatchSize { 639 if err := batch.Write(); err != nil { 640 log.Error("Failed to write flush list to disk", "err", err) 641 return err 642 } 643 batch.Reset() 644 } 645 // Iterate to the next flush item, or abort if the size cap was achieved. Size 646 // is the total size, including the useful cached data (hash -> blob), the 647 // cache item metadata, as well as external children mappings. 648 size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize) 649 if node.children != nil { 650 size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) 651 } 652 oldest = node.flushNext 653 } 654 // Flush out any remainder data from the last batch 655 if err := batch.Write(); err != nil { 656 log.Error("Failed to write flush list to disk", "err", err) 657 return err 658 } 659 // Write successful, clear out the flushed data 660 db.lock.Lock() 661 defer db.lock.Unlock() 662 663 if flushPreimages { 664 db.preimages = make(map[common.Hash][]byte) 665 db.preimagesSize = 0 666 } 667 for db.oldest != oldest { 668 node := db.dirties[db.oldest] 669 delete(db.dirties, db.oldest) 670 db.oldest = node.flushNext 671 672 db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) 673 if node.children != nil { 674 db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) 675 } 676 } 677 if db.oldest != (common.Hash{}) { 678 db.dirties[db.oldest].flushPrev = common.Hash{} 679 } 680 db.flushnodes += uint64(nodes - len(db.dirties)) 681 db.flushsize += storage - db.dirtiesSize 682 db.flushtime += time.Since(start) 683 684 memcacheFlushTimeTimer.Update(time.Since(start)) 685 memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize)) 686 memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties))) 687 688 log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start), 689 "flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) 690 691 return nil 692 } 693 694 // Commit iterates over all the children of a particular node, writes them out 695 // to disk, forcefully tearing down all references in both directions. As a side 696 // effect, all pre-images accumulated up to this point are also written. 697 // 698 // Note, this method is a non-synchronized mutator. It is unsafe to call this 699 // concurrently with other mutators. 700 func (db *Database) Commit(node common.Hash, report bool) error { 701 // Create a database batch to flush persistent data out. It is important that 702 // outside code doesn't see an inconsistent state (referenced data removed from 703 // memory cache during commit but not yet in persistent storage). This is ensured 704 // by only uncaching existing data when the database write finalizes. 705 start := time.Now() 706 batch := db.diskdb.NewBatch() 707 708 // Move all of the accumulated preimages into a write batch 709 for hash, preimage := range db.preimages { 710 if err := batch.Put(db.secureKey(hash[:]), preimage); err != nil { 711 log.Error("Failed to commit preimage from trie database", "err", err) 712 return err 713 } 714 // If the batch is too large, flush to disk 715 if batch.ValueSize() > ethdb.IdealBatchSize { 716 if err := batch.Write(); err != nil { 717 return err 718 } 719 batch.Reset() 720 } 721 } 722 // Since we're going to replay trie node writes into the clean cache, flush out 723 // any batched pre-images before continuing. 724 if err := batch.Write(); err != nil { 725 return err 726 } 727 batch.Reset() 728 729 // Move the trie itself into the batch, flushing if enough data is accumulated 730 nodes, storage := len(db.dirties), db.dirtiesSize 731 732 uncacher := &cleaner{db} 733 if err := db.commit(node, batch, uncacher); err != nil { 734 log.Error("Failed to commit trie from trie database", "err", err) 735 return err 736 } 737 // Trie mostly committed to disk, flush any batch leftovers 738 if err := batch.Write(); err != nil { 739 log.Error("Failed to write trie to disk", "err", err) 740 return err 741 } 742 // Uncache any leftovers in the last batch 743 db.lock.Lock() 744 defer db.lock.Unlock() 745 746 batch.Replay(uncacher) 747 batch.Reset() 748 749 // Reset the storage counters and bumpd metrics 750 db.preimages = make(map[common.Hash][]byte) 751 db.preimagesSize = 0 752 753 memcacheCommitTimeTimer.Update(time.Since(start)) 754 memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize)) 755 memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties))) 756 757 logger := log.Info 758 if !report { 759 logger = log.Debug 760 } 761 logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime, 762 "gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize) 763 764 // Reset the garbage collection statistics 765 db.gcnodes, db.gcsize, db.gctime = 0, 0, 0 766 db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0 767 768 return nil 769 } 770 771 // commit is the private locked version of Commit. 772 func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner) error { 773 // If the node does not exist, it's a previously committed node 774 node, ok := db.dirties[hash] 775 if !ok { 776 return nil 777 } 778 for _, child := range node.childs() { 779 if err := db.commit(child, batch, uncacher); err != nil { 780 return err 781 } 782 } 783 if err := batch.Put(hash[:], node.rlp()); err != nil { 784 return err 785 } 786 // If we've reached an optimal batch size, commit and start over 787 if batch.ValueSize() >= ethdb.IdealBatchSize { 788 if err := batch.Write(); err != nil { 789 return err 790 } 791 db.lock.Lock() 792 batch.Replay(uncacher) 793 batch.Reset() 794 db.lock.Unlock() 795 } 796 return nil 797 } 798 799 // cleaner is a database batch replayer that takes a batch of write operations 800 // and cleans up the trie database from anything written to disk. 801 type cleaner struct { 802 db *Database 803 } 804 805 // Put reacts to database writes and implements dirty data uncaching. This is the 806 // post-processing step of a commit operation where the already persisted trie is 807 // removed from the dirty cache and moved into the clean cache. The reason behind 808 // the two-phase commit is to ensure ensure data availability while moving from 809 // memory to disk. 810 func (c *cleaner) Put(key []byte, rlp []byte) error { 811 hash := common.BytesToHash(key) 812 813 // If the node does not exist, we're done on this path 814 node, ok := c.db.dirties[hash] 815 if !ok { 816 return nil 817 } 818 // Node still exists, remove it from the flush-list 819 switch hash { 820 case c.db.oldest: 821 c.db.oldest = node.flushNext 822 c.db.dirties[node.flushNext].flushPrev = common.Hash{} 823 case c.db.newest: 824 c.db.newest = node.flushPrev 825 c.db.dirties[node.flushPrev].flushNext = common.Hash{} 826 default: 827 c.db.dirties[node.flushPrev].flushNext = node.flushNext 828 c.db.dirties[node.flushNext].flushPrev = node.flushPrev 829 } 830 // Remove the node from the dirty cache 831 delete(c.db.dirties, hash) 832 c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size)) 833 if node.children != nil { 834 c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2)) 835 } 836 // Move the flushed node into the clean cache to prevent insta-reloads 837 if c.db.cleans != nil { 838 c.db.cleans.Set(string(hash[:]), rlp) 839 } 840 return nil 841 } 842 843 func (c *cleaner) Delete(key []byte) error { 844 panic("Not implemented") 845 } 846 847 // Size returns the current storage size of the memory cache in front of the 848 // persistent database layer. 849 func (db *Database) Size() (common.StorageSize, common.StorageSize) { 850 db.lock.RLock() 851 defer db.lock.RUnlock() 852 853 // db.dirtiesSize only contains the useful data in the cache, but when reporting 854 // the total memory consumption, the maintenance metadata is also needed to be 855 // counted. 856 var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize) 857 var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2)) 858 return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize 859 } 860 861 // verifyIntegrity is a debug method to iterate over the entire trie stored in 862 // memory and check whether every node is reachable from the meta root. The goal 863 // is to find any errors that might cause memory leaks and or trie nodes to go 864 // missing. 865 // 866 // This method is extremely CPU and memory intensive, only use when must. 867 func (db *Database) verifyIntegrity() { 868 // Iterate over all the cached nodes and accumulate them into a set 869 reachable := map[common.Hash]struct{}{{}: {}} 870 871 for child := range db.dirties[common.Hash{}].children { 872 db.accumulate(child, reachable) 873 } 874 // Find any unreachable but cached nodes 875 var unreachable []string 876 for hash, node := range db.dirties { 877 if _, ok := reachable[hash]; !ok { 878 unreachable = append(unreachable, fmt.Sprintf("%x: {Node: %v, Parents: %d, Prev: %x, Next: %x}", 879 hash, node.node, node.parents, node.flushPrev, node.flushNext)) 880 } 881 } 882 if len(unreachable) != 0 { 883 panic(fmt.Sprintf("trie cache memory leak: %v", unreachable)) 884 } 885 } 886 887 // accumulate iterates over the trie defined by hash and accumulates all the 888 // cached children found in memory. 889 func (db *Database) accumulate(hash common.Hash, reachable map[common.Hash]struct{}) { 890 // Mark the node reachable if present in the memory cache 891 node, ok := db.dirties[hash] 892 if !ok { 893 return 894 } 895 reachable[hash] = struct{}{} 896 897 // Iterate over all the children and accumulate them too 898 for _, child := range node.childs() { 899 db.accumulate(child, reachable) 900 } 901 }