github.com/prattmic/llgo-embedded@v0.0.0-20150820070356-41cfecea0e1e/third_party/gofrontend/libgo/go/fmt/print.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package fmt
     6  
     7  import (
     8  	"errors"
     9  	"io"
    10  	"os"
    11  	"reflect"
    12  	"sync"
    13  	"unicode/utf8"
    14  )
    15  
    16  // Some constants in the form of bytes, to avoid string overhead.
    17  // Needlessly fastidious, I suppose.
    18  var (
    19  	commaSpaceBytes  = []byte(", ")
    20  	nilAngleBytes    = []byte("<nil>")
    21  	nilParenBytes    = []byte("(nil)")
    22  	nilBytes         = []byte("nil")
    23  	mapBytes         = []byte("map[")
    24  	percentBangBytes = []byte("%!")
    25  	missingBytes     = []byte("(MISSING)")
    26  	badIndexBytes    = []byte("(BADINDEX)")
    27  	panicBytes       = []byte("(PANIC=")
    28  	extraBytes       = []byte("%!(EXTRA ")
    29  	irparenBytes     = []byte("i)")
    30  	bytesBytes       = []byte("[]byte{")
    31  	badWidthBytes    = []byte("%!(BADWIDTH)")
    32  	badPrecBytes     = []byte("%!(BADPREC)")
    33  	noVerbBytes      = []byte("%!(NOVERB)")
    34  )
    35  
    36  // State represents the printer state passed to custom formatters.
    37  // It provides access to the io.Writer interface plus information about
    38  // the flags and options for the operand's format specifier.
    39  type State interface {
    40  	// Write is the function to call to emit formatted output to be printed.
    41  	Write(b []byte) (ret int, err error)
    42  	// Width returns the value of the width option and whether it has been set.
    43  	Width() (wid int, ok bool)
    44  	// Precision returns the value of the precision option and whether it has been set.
    45  	Precision() (prec int, ok bool)
    46  
    47  	// Flag reports whether the flag c, a character, has been set.
    48  	Flag(c int) bool
    49  }
    50  
    51  // Formatter is the interface implemented by values with a custom formatter.
    52  // The implementation of Format may call Sprint(f) or Fprint(f) etc.
    53  // to generate its output.
    54  type Formatter interface {
    55  	Format(f State, c rune)
    56  }
    57  
    58  // Stringer is implemented by any value that has a String method,
    59  // which defines the ``native'' format for that value.
    60  // The String method is used to print values passed as an operand
    61  // to any format that accepts a string or to an unformatted printer
    62  // such as Print.
    63  type Stringer interface {
    64  	String() string
    65  }
    66  
    67  // GoStringer is implemented by any value that has a GoString method,
    68  // which defines the Go syntax for that value.
    69  // The GoString method is used to print values passed as an operand
    70  // to a %#v format.
    71  type GoStringer interface {
    72  	GoString() string
    73  }
    74  
    75  // Use simple []byte instead of bytes.Buffer to avoid large dependency.
    76  type buffer []byte
    77  
    78  func (b *buffer) Write(p []byte) (n int, err error) {
    79  	*b = append(*b, p...)
    80  	return len(p), nil
    81  }
    82  
    83  func (b *buffer) WriteString(s string) (n int, err error) {
    84  	*b = append(*b, s...)
    85  	return len(s), nil
    86  }
    87  
    88  func (b *buffer) WriteByte(c byte) error {
    89  	*b = append(*b, c)
    90  	return nil
    91  }
    92  
    93  func (bp *buffer) WriteRune(r rune) error {
    94  	if r < utf8.RuneSelf {
    95  		*bp = append(*bp, byte(r))
    96  		return nil
    97  	}
    98  
    99  	b := *bp
   100  	n := len(b)
   101  	for n+utf8.UTFMax > cap(b) {
   102  		b = append(b, 0)
   103  	}
   104  	w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
   105  	*bp = b[:n+w]
   106  	return nil
   107  }
   108  
   109  type pp struct {
   110  	n         int
   111  	panicking bool
   112  	erroring  bool // printing an error condition
   113  	buf       buffer
   114  	// arg holds the current item, as an interface{}.
   115  	arg interface{}
   116  	// value holds the current item, as a reflect.Value, and will be
   117  	// the zero Value if the item has not been reflected.
   118  	value reflect.Value
   119  	// reordered records whether the format string used argument reordering.
   120  	reordered bool
   121  	// goodArgNum records whether the most recent reordering directive was valid.
   122  	goodArgNum bool
   123  	runeBuf    [utf8.UTFMax]byte
   124  	fmt        fmt
   125  }
   126  
   127  var ppFree = sync.Pool{
   128  	New: func() interface{} { return new(pp) },
   129  }
   130  
   131  // newPrinter allocates a new pp struct or grabs a cached one.
   132  func newPrinter() *pp {
   133  	p := ppFree.Get().(*pp)
   134  	p.panicking = false
   135  	p.erroring = false
   136  	p.fmt.init(&p.buf)
   137  	return p
   138  }
   139  
   140  // free saves used pp structs in ppFree; avoids an allocation per invocation.
   141  func (p *pp) free() {
   142  	// Don't hold on to pp structs with large buffers.
   143  	if cap(p.buf) > 1024 {
   144  		return
   145  	}
   146  	p.buf = p.buf[:0]
   147  	p.arg = nil
   148  	p.value = reflect.Value{}
   149  	ppFree.Put(p)
   150  }
   151  
   152  func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
   153  
   154  func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
   155  
   156  func (p *pp) Flag(b int) bool {
   157  	switch b {
   158  	case '-':
   159  		return p.fmt.minus
   160  	case '+':
   161  		return p.fmt.plus
   162  	case '#':
   163  		return p.fmt.sharp
   164  	case ' ':
   165  		return p.fmt.space
   166  	case '0':
   167  		return p.fmt.zero
   168  	}
   169  	return false
   170  }
   171  
   172  func (p *pp) add(c rune) {
   173  	p.buf.WriteRune(c)
   174  }
   175  
   176  // Implement Write so we can call Fprintf on a pp (through State), for
   177  // recursive use in custom verbs.
   178  func (p *pp) Write(b []byte) (ret int, err error) {
   179  	return p.buf.Write(b)
   180  }
   181  
   182  // These routines end in 'f' and take a format string.
   183  
   184  // Fprintf formats according to a format specifier and writes to w.
   185  // It returns the number of bytes written and any write error encountered.
   186  func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
   187  	p := newPrinter()
   188  	p.doPrintf(format, a)
   189  	n, err = w.Write(p.buf)
   190  	p.free()
   191  	return
   192  }
   193  
   194  // Printf formats according to a format specifier and writes to standard output.
   195  // It returns the number of bytes written and any write error encountered.
   196  func Printf(format string, a ...interface{}) (n int, err error) {
   197  	return Fprintf(os.Stdout, format, a...)
   198  }
   199  
   200  // Sprintf formats according to a format specifier and returns the resulting string.
   201  func Sprintf(format string, a ...interface{}) string {
   202  	p := newPrinter()
   203  	p.doPrintf(format, a)
   204  	s := string(p.buf)
   205  	p.free()
   206  	return s
   207  }
   208  
   209  // Errorf formats according to a format specifier and returns the string
   210  // as a value that satisfies error.
   211  func Errorf(format string, a ...interface{}) error {
   212  	return errors.New(Sprintf(format, a...))
   213  }
   214  
   215  // These routines do not take a format string
   216  
   217  // Fprint formats using the default formats for its operands and writes to w.
   218  // Spaces are added between operands when neither is a string.
   219  // It returns the number of bytes written and any write error encountered.
   220  func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
   221  	p := newPrinter()
   222  	p.doPrint(a, false, false)
   223  	n, err = w.Write(p.buf)
   224  	p.free()
   225  	return
   226  }
   227  
   228  // Print formats using the default formats for its operands and writes to standard output.
   229  // Spaces are added between operands when neither is a string.
   230  // It returns the number of bytes written and any write error encountered.
   231  func Print(a ...interface{}) (n int, err error) {
   232  	return Fprint(os.Stdout, a...)
   233  }
   234  
   235  // Sprint formats using the default formats for its operands and returns the resulting string.
   236  // Spaces are added between operands when neither is a string.
   237  func Sprint(a ...interface{}) string {
   238  	p := newPrinter()
   239  	p.doPrint(a, false, false)
   240  	s := string(p.buf)
   241  	p.free()
   242  	return s
   243  }
   244  
   245  // These routines end in 'ln', do not take a format string,
   246  // always add spaces between operands, and add a newline
   247  // after the last operand.
   248  
   249  // Fprintln formats using the default formats for its operands and writes to w.
   250  // Spaces are always added between operands and a newline is appended.
   251  // It returns the number of bytes written and any write error encountered.
   252  func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
   253  	p := newPrinter()
   254  	p.doPrint(a, true, true)
   255  	n, err = w.Write(p.buf)
   256  	p.free()
   257  	return
   258  }
   259  
   260  // Println formats using the default formats for its operands and writes to standard output.
   261  // Spaces are always added between operands and a newline is appended.
   262  // It returns the number of bytes written and any write error encountered.
   263  func Println(a ...interface{}) (n int, err error) {
   264  	return Fprintln(os.Stdout, a...)
   265  }
   266  
   267  // Sprintln formats using the default formats for its operands and returns the resulting string.
   268  // Spaces are always added between operands and a newline is appended.
   269  func Sprintln(a ...interface{}) string {
   270  	p := newPrinter()
   271  	p.doPrint(a, true, true)
   272  	s := string(p.buf)
   273  	p.free()
   274  	return s
   275  }
   276  
   277  // getField gets the i'th field of the struct value.
   278  // If the field is itself is an interface, return a value for
   279  // the thing inside the interface, not the interface itself.
   280  func getField(v reflect.Value, i int) reflect.Value {
   281  	val := v.Field(i)
   282  	if val.Kind() == reflect.Interface && !val.IsNil() {
   283  		val = val.Elem()
   284  	}
   285  	return val
   286  }
   287  
   288  // parsenum converts ASCII to integer.  num is 0 (and isnum is false) if no number present.
   289  func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
   290  	if start >= end {
   291  		return 0, false, end
   292  	}
   293  	for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
   294  		num = num*10 + int(s[newi]-'0')
   295  		isnum = true
   296  	}
   297  	return
   298  }
   299  
   300  func (p *pp) unknownType(v reflect.Value) {
   301  	if !v.IsValid() {
   302  		p.buf.Write(nilAngleBytes)
   303  		return
   304  	}
   305  	p.buf.WriteByte('?')
   306  	p.buf.WriteString(v.Type().String())
   307  	p.buf.WriteByte('?')
   308  }
   309  
   310  func (p *pp) badVerb(verb rune) {
   311  	p.erroring = true
   312  	p.add('%')
   313  	p.add('!')
   314  	p.add(verb)
   315  	p.add('(')
   316  	switch {
   317  	case p.arg != nil:
   318  		p.buf.WriteString(reflect.TypeOf(p.arg).String())
   319  		p.add('=')
   320  		p.printArg(p.arg, 'v', 0)
   321  	case p.value.IsValid():
   322  		p.buf.WriteString(p.value.Type().String())
   323  		p.add('=')
   324  		p.printValue(p.value, 'v', 0)
   325  	default:
   326  		p.buf.Write(nilAngleBytes)
   327  	}
   328  	p.add(')')
   329  	p.erroring = false
   330  }
   331  
   332  func (p *pp) fmtBool(v bool, verb rune) {
   333  	switch verb {
   334  	case 't', 'v':
   335  		p.fmt.fmt_boolean(v)
   336  	default:
   337  		p.badVerb(verb)
   338  	}
   339  }
   340  
   341  // fmtC formats a rune for the 'c' format.
   342  func (p *pp) fmtC(c int64) {
   343  	r := rune(c) // Check for overflow.
   344  	if int64(r) != c {
   345  		r = utf8.RuneError
   346  	}
   347  	w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r)
   348  	p.fmt.pad(p.runeBuf[0:w])
   349  }
   350  
   351  func (p *pp) fmtInt64(v int64, verb rune) {
   352  	switch verb {
   353  	case 'b':
   354  		p.fmt.integer(v, 2, signed, ldigits)
   355  	case 'c':
   356  		p.fmtC(v)
   357  	case 'd', 'v':
   358  		p.fmt.integer(v, 10, signed, ldigits)
   359  	case 'o':
   360  		p.fmt.integer(v, 8, signed, ldigits)
   361  	case 'q':
   362  		if 0 <= v && v <= utf8.MaxRune {
   363  			p.fmt.fmt_qc(v)
   364  		} else {
   365  			p.badVerb(verb)
   366  		}
   367  	case 'x':
   368  		p.fmt.integer(v, 16, signed, ldigits)
   369  	case 'U':
   370  		p.fmtUnicode(v)
   371  	case 'X':
   372  		p.fmt.integer(v, 16, signed, udigits)
   373  	default:
   374  		p.badVerb(verb)
   375  	}
   376  }
   377  
   378  // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
   379  // not, as requested, by temporarily setting the sharp flag.
   380  func (p *pp) fmt0x64(v uint64, leading0x bool) {
   381  	sharp := p.fmt.sharp
   382  	p.fmt.sharp = leading0x
   383  	p.fmt.integer(int64(v), 16, unsigned, ldigits)
   384  	p.fmt.sharp = sharp
   385  }
   386  
   387  // fmtUnicode formats a uint64 in U+1234 form by
   388  // temporarily turning on the unicode flag and tweaking the precision.
   389  func (p *pp) fmtUnicode(v int64) {
   390  	precPresent := p.fmt.precPresent
   391  	sharp := p.fmt.sharp
   392  	p.fmt.sharp = false
   393  	prec := p.fmt.prec
   394  	if !precPresent {
   395  		// If prec is already set, leave it alone; otherwise 4 is minimum.
   396  		p.fmt.prec = 4
   397  		p.fmt.precPresent = true
   398  	}
   399  	p.fmt.unicode = true // turn on U+
   400  	p.fmt.uniQuote = sharp
   401  	p.fmt.integer(int64(v), 16, unsigned, udigits)
   402  	p.fmt.unicode = false
   403  	p.fmt.uniQuote = false
   404  	p.fmt.prec = prec
   405  	p.fmt.precPresent = precPresent
   406  	p.fmt.sharp = sharp
   407  }
   408  
   409  func (p *pp) fmtUint64(v uint64, verb rune) {
   410  	switch verb {
   411  	case 'b':
   412  		p.fmt.integer(int64(v), 2, unsigned, ldigits)
   413  	case 'c':
   414  		p.fmtC(int64(v))
   415  	case 'd':
   416  		p.fmt.integer(int64(v), 10, unsigned, ldigits)
   417  	case 'v':
   418  		if p.fmt.sharpV {
   419  			p.fmt0x64(v, true)
   420  		} else {
   421  			p.fmt.integer(int64(v), 10, unsigned, ldigits)
   422  		}
   423  	case 'o':
   424  		p.fmt.integer(int64(v), 8, unsigned, ldigits)
   425  	case 'q':
   426  		if 0 <= v && v <= utf8.MaxRune {
   427  			p.fmt.fmt_qc(int64(v))
   428  		} else {
   429  			p.badVerb(verb)
   430  		}
   431  	case 'x':
   432  		p.fmt.integer(int64(v), 16, unsigned, ldigits)
   433  	case 'X':
   434  		p.fmt.integer(int64(v), 16, unsigned, udigits)
   435  	case 'U':
   436  		p.fmtUnicode(int64(v))
   437  	default:
   438  		p.badVerb(verb)
   439  	}
   440  }
   441  
   442  func (p *pp) fmtFloat32(v float32, verb rune) {
   443  	switch verb {
   444  	case 'b':
   445  		p.fmt.fmt_fb32(v)
   446  	case 'e':
   447  		p.fmt.fmt_e32(v)
   448  	case 'E':
   449  		p.fmt.fmt_E32(v)
   450  	case 'f', 'F':
   451  		p.fmt.fmt_f32(v)
   452  	case 'g', 'v':
   453  		p.fmt.fmt_g32(v)
   454  	case 'G':
   455  		p.fmt.fmt_G32(v)
   456  	default:
   457  		p.badVerb(verb)
   458  	}
   459  }
   460  
   461  func (p *pp) fmtFloat64(v float64, verb rune) {
   462  	switch verb {
   463  	case 'b':
   464  		p.fmt.fmt_fb64(v)
   465  	case 'e':
   466  		p.fmt.fmt_e64(v)
   467  	case 'E':
   468  		p.fmt.fmt_E64(v)
   469  	case 'f', 'F':
   470  		p.fmt.fmt_f64(v)
   471  	case 'g', 'v':
   472  		p.fmt.fmt_g64(v)
   473  	case 'G':
   474  		p.fmt.fmt_G64(v)
   475  	default:
   476  		p.badVerb(verb)
   477  	}
   478  }
   479  
   480  func (p *pp) fmtComplex64(v complex64, verb rune) {
   481  	switch verb {
   482  	case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
   483  		p.fmt.fmt_c64(v, verb)
   484  	case 'v':
   485  		p.fmt.fmt_c64(v, 'g')
   486  	default:
   487  		p.badVerb(verb)
   488  	}
   489  }
   490  
   491  func (p *pp) fmtComplex128(v complex128, verb rune) {
   492  	switch verb {
   493  	case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
   494  		p.fmt.fmt_c128(v, verb)
   495  	case 'v':
   496  		p.fmt.fmt_c128(v, 'g')
   497  	default:
   498  		p.badVerb(verb)
   499  	}
   500  }
   501  
   502  func (p *pp) fmtString(v string, verb rune) {
   503  	switch verb {
   504  	case 'v':
   505  		if p.fmt.sharpV {
   506  			p.fmt.fmt_q(v)
   507  		} else {
   508  			p.fmt.fmt_s(v)
   509  		}
   510  	case 's':
   511  		p.fmt.fmt_s(v)
   512  	case 'x':
   513  		p.fmt.fmt_sx(v, ldigits)
   514  	case 'X':
   515  		p.fmt.fmt_sx(v, udigits)
   516  	case 'q':
   517  		p.fmt.fmt_q(v)
   518  	default:
   519  		p.badVerb(verb)
   520  	}
   521  }
   522  
   523  func (p *pp) fmtBytes(v []byte, verb rune, typ reflect.Type, depth int) {
   524  	if verb == 'v' || verb == 'd' {
   525  		if p.fmt.sharpV {
   526  			if v == nil {
   527  				if typ == nil {
   528  					p.buf.WriteString("[]byte(nil)")
   529  				} else {
   530  					p.buf.WriteString(typ.String())
   531  					p.buf.Write(nilParenBytes)
   532  				}
   533  				return
   534  			}
   535  			if typ == nil {
   536  				p.buf.Write(bytesBytes)
   537  			} else {
   538  				p.buf.WriteString(typ.String())
   539  				p.buf.WriteByte('{')
   540  			}
   541  		} else {
   542  			p.buf.WriteByte('[')
   543  		}
   544  		for i, c := range v {
   545  			if i > 0 {
   546  				if p.fmt.sharpV {
   547  					p.buf.Write(commaSpaceBytes)
   548  				} else {
   549  					p.buf.WriteByte(' ')
   550  				}
   551  			}
   552  			p.printArg(c, 'v', depth+1)
   553  		}
   554  		if p.fmt.sharpV {
   555  			p.buf.WriteByte('}')
   556  		} else {
   557  			p.buf.WriteByte(']')
   558  		}
   559  		return
   560  	}
   561  	switch verb {
   562  	case 's':
   563  		p.fmt.fmt_s(string(v))
   564  	case 'x':
   565  		p.fmt.fmt_bx(v, ldigits)
   566  	case 'X':
   567  		p.fmt.fmt_bx(v, udigits)
   568  	case 'q':
   569  		p.fmt.fmt_q(string(v))
   570  	default:
   571  		p.badVerb(verb)
   572  	}
   573  }
   574  
   575  func (p *pp) fmtPointer(value reflect.Value, verb rune) {
   576  	use0x64 := true
   577  	switch verb {
   578  	case 'p', 'v':
   579  		// ok
   580  	case 'b', 'd', 'o', 'x', 'X':
   581  		use0x64 = false
   582  		// ok
   583  	default:
   584  		p.badVerb(verb)
   585  		return
   586  	}
   587  
   588  	var u uintptr
   589  	switch value.Kind() {
   590  	case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
   591  		u = value.Pointer()
   592  	default:
   593  		p.badVerb(verb)
   594  		return
   595  	}
   596  
   597  	if p.fmt.sharpV {
   598  		p.add('(')
   599  		p.buf.WriteString(value.Type().String())
   600  		p.add(')')
   601  		p.add('(')
   602  		if u == 0 {
   603  			p.buf.Write(nilBytes)
   604  		} else {
   605  			p.fmt0x64(uint64(u), true)
   606  		}
   607  		p.add(')')
   608  	} else if verb == 'v' && u == 0 {
   609  		p.buf.Write(nilAngleBytes)
   610  	} else {
   611  		if use0x64 {
   612  			p.fmt0x64(uint64(u), !p.fmt.sharp)
   613  		} else {
   614  			p.fmtUint64(uint64(u), verb)
   615  		}
   616  	}
   617  }
   618  
   619  var (
   620  	intBits     = reflect.TypeOf(0).Bits()
   621  	uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
   622  )
   623  
   624  func (p *pp) catchPanic(arg interface{}, verb rune) {
   625  	if err := recover(); err != nil {
   626  		// If it's a nil pointer, just say "<nil>". The likeliest causes are a
   627  		// Stringer that fails to guard against nil or a nil pointer for a
   628  		// value receiver, and in either case, "<nil>" is a nice result.
   629  		if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
   630  			p.buf.Write(nilAngleBytes)
   631  			return
   632  		}
   633  		// Otherwise print a concise panic message. Most of the time the panic
   634  		// value will print itself nicely.
   635  		if p.panicking {
   636  			// Nested panics; the recursion in printArg cannot succeed.
   637  			panic(err)
   638  		}
   639  		p.fmt.clearflags() // We are done, and for this output we want default behavior.
   640  		p.buf.Write(percentBangBytes)
   641  		p.add(verb)
   642  		p.buf.Write(panicBytes)
   643  		p.panicking = true
   644  		p.printArg(err, 'v', 0)
   645  		p.panicking = false
   646  		p.buf.WriteByte(')')
   647  	}
   648  }
   649  
   650  // clearSpecialFlags pushes %#v back into the regular flags and returns their old state.
   651  func (p *pp) clearSpecialFlags() (plusV, sharpV bool) {
   652  	plusV = p.fmt.plusV
   653  	if plusV {
   654  		p.fmt.plus = true
   655  		p.fmt.plusV = false
   656  	}
   657  	sharpV = p.fmt.sharpV
   658  	if sharpV {
   659  		p.fmt.sharp = true
   660  		p.fmt.sharpV = false
   661  	}
   662  	return
   663  }
   664  
   665  // restoreSpecialFlags, whose argument should be a call to clearSpecialFlags,
   666  // restores the setting of the plusV and sharpV flags.
   667  func (p *pp) restoreSpecialFlags(plusV, sharpV bool) {
   668  	if plusV {
   669  		p.fmt.plus = false
   670  		p.fmt.plusV = true
   671  	}
   672  	if sharpV {
   673  		p.fmt.sharp = false
   674  		p.fmt.sharpV = true
   675  	}
   676  }
   677  
   678  func (p *pp) handleMethods(verb rune, depth int) (handled bool) {
   679  	if p.erroring {
   680  		return
   681  	}
   682  	// Is it a Formatter?
   683  	if formatter, ok := p.arg.(Formatter); ok {
   684  		handled = true
   685  		defer p.restoreSpecialFlags(p.clearSpecialFlags())
   686  		defer p.catchPanic(p.arg, verb)
   687  		formatter.Format(p, verb)
   688  		return
   689  	}
   690  
   691  	// If we're doing Go syntax and the argument knows how to supply it, take care of it now.
   692  	if p.fmt.sharpV {
   693  		if stringer, ok := p.arg.(GoStringer); ok {
   694  			handled = true
   695  			defer p.catchPanic(p.arg, verb)
   696  			// Print the result of GoString unadorned.
   697  			p.fmt.fmt_s(stringer.GoString())
   698  			return
   699  		}
   700  	} else {
   701  		// If a string is acceptable according to the format, see if
   702  		// the value satisfies one of the string-valued interfaces.
   703  		// Println etc. set verb to %v, which is "stringable".
   704  		switch verb {
   705  		case 'v', 's', 'x', 'X', 'q':
   706  			// Is it an error or Stringer?
   707  			// The duplication in the bodies is necessary:
   708  			// setting handled and deferring catchPanic
   709  			// must happen before calling the method.
   710  			switch v := p.arg.(type) {
   711  			case error:
   712  				handled = true
   713  				defer p.catchPanic(p.arg, verb)
   714  				p.printArg(v.Error(), verb, depth)
   715  				return
   716  
   717  			case Stringer:
   718  				handled = true
   719  				defer p.catchPanic(p.arg, verb)
   720  				p.printArg(v.String(), verb, depth)
   721  				return
   722  			}
   723  		}
   724  	}
   725  	return false
   726  }
   727  
   728  func (p *pp) printArg(arg interface{}, verb rune, depth int) (wasString bool) {
   729  	p.arg = arg
   730  	p.value = reflect.Value{}
   731  
   732  	if arg == nil {
   733  		if verb == 'T' || verb == 'v' {
   734  			p.fmt.pad(nilAngleBytes)
   735  		} else {
   736  			p.badVerb(verb)
   737  		}
   738  		return false
   739  	}
   740  
   741  	// Special processing considerations.
   742  	// %T (the value's type) and %p (its address) are special; we always do them first.
   743  	switch verb {
   744  	case 'T':
   745  		p.printArg(reflect.TypeOf(arg).String(), 's', 0)
   746  		return false
   747  	case 'p':
   748  		p.fmtPointer(reflect.ValueOf(arg), verb)
   749  		return false
   750  	}
   751  
   752  	// Some types can be done without reflection.
   753  	switch f := arg.(type) {
   754  	case bool:
   755  		p.fmtBool(f, verb)
   756  	case float32:
   757  		p.fmtFloat32(f, verb)
   758  	case float64:
   759  		p.fmtFloat64(f, verb)
   760  	case complex64:
   761  		p.fmtComplex64(f, verb)
   762  	case complex128:
   763  		p.fmtComplex128(f, verb)
   764  	case int:
   765  		p.fmtInt64(int64(f), verb)
   766  	case int8:
   767  		p.fmtInt64(int64(f), verb)
   768  	case int16:
   769  		p.fmtInt64(int64(f), verb)
   770  	case int32:
   771  		p.fmtInt64(int64(f), verb)
   772  	case int64:
   773  		p.fmtInt64(f, verb)
   774  	case uint:
   775  		p.fmtUint64(uint64(f), verb)
   776  	case uint8:
   777  		p.fmtUint64(uint64(f), verb)
   778  	case uint16:
   779  		p.fmtUint64(uint64(f), verb)
   780  	case uint32:
   781  		p.fmtUint64(uint64(f), verb)
   782  	case uint64:
   783  		p.fmtUint64(f, verb)
   784  	case uintptr:
   785  		p.fmtUint64(uint64(f), verb)
   786  	case string:
   787  		p.fmtString(f, verb)
   788  		wasString = verb == 's' || verb == 'v'
   789  	case []byte:
   790  		p.fmtBytes(f, verb, nil, depth)
   791  		wasString = verb == 's'
   792  	default:
   793  		// If the type is not simple, it might have methods.
   794  		if handled := p.handleMethods(verb, depth); handled {
   795  			return false
   796  		}
   797  		// Need to use reflection
   798  		return p.printReflectValue(reflect.ValueOf(arg), verb, depth)
   799  	}
   800  	p.arg = nil
   801  	return
   802  }
   803  
   804  // printValue is like printArg but starts with a reflect value, not an interface{} value.
   805  func (p *pp) printValue(value reflect.Value, verb rune, depth int) (wasString bool) {
   806  	if !value.IsValid() {
   807  		if verb == 'T' || verb == 'v' {
   808  			p.buf.Write(nilAngleBytes)
   809  		} else {
   810  			p.badVerb(verb)
   811  		}
   812  		return false
   813  	}
   814  
   815  	// Special processing considerations.
   816  	// %T (the value's type) and %p (its address) are special; we always do them first.
   817  	switch verb {
   818  	case 'T':
   819  		p.printArg(value.Type().String(), 's', 0)
   820  		return false
   821  	case 'p':
   822  		p.fmtPointer(value, verb)
   823  		return false
   824  	}
   825  
   826  	// Handle values with special methods.
   827  	// Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us.
   828  	p.arg = nil // Make sure it's cleared, for safety.
   829  	if value.CanInterface() {
   830  		p.arg = value.Interface()
   831  	}
   832  	if handled := p.handleMethods(verb, depth); handled {
   833  		return false
   834  	}
   835  
   836  	return p.printReflectValue(value, verb, depth)
   837  }
   838  
   839  var byteType = reflect.TypeOf(byte(0))
   840  
   841  // printReflectValue is the fallback for both printArg and printValue.
   842  // It uses reflect to print the value.
   843  func (p *pp) printReflectValue(value reflect.Value, verb rune, depth int) (wasString bool) {
   844  	oldValue := p.value
   845  	p.value = value
   846  BigSwitch:
   847  	switch f := value; f.Kind() {
   848  	case reflect.Bool:
   849  		p.fmtBool(f.Bool(), verb)
   850  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   851  		p.fmtInt64(f.Int(), verb)
   852  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   853  		p.fmtUint64(f.Uint(), verb)
   854  	case reflect.Float32, reflect.Float64:
   855  		if f.Type().Size() == 4 {
   856  			p.fmtFloat32(float32(f.Float()), verb)
   857  		} else {
   858  			p.fmtFloat64(f.Float(), verb)
   859  		}
   860  	case reflect.Complex64, reflect.Complex128:
   861  		if f.Type().Size() == 8 {
   862  			p.fmtComplex64(complex64(f.Complex()), verb)
   863  		} else {
   864  			p.fmtComplex128(f.Complex(), verb)
   865  		}
   866  	case reflect.String:
   867  		p.fmtString(f.String(), verb)
   868  	case reflect.Map:
   869  		if p.fmt.sharpV {
   870  			p.buf.WriteString(f.Type().String())
   871  			if f.IsNil() {
   872  				p.buf.WriteString("(nil)")
   873  				break
   874  			}
   875  			p.buf.WriteByte('{')
   876  		} else {
   877  			p.buf.Write(mapBytes)
   878  		}
   879  		keys := f.MapKeys()
   880  		for i, key := range keys {
   881  			if i > 0 {
   882  				if p.fmt.sharpV {
   883  					p.buf.Write(commaSpaceBytes)
   884  				} else {
   885  					p.buf.WriteByte(' ')
   886  				}
   887  			}
   888  			p.printValue(key, verb, depth+1)
   889  			p.buf.WriteByte(':')
   890  			p.printValue(f.MapIndex(key), verb, depth+1)
   891  		}
   892  		if p.fmt.sharpV {
   893  			p.buf.WriteByte('}')
   894  		} else {
   895  			p.buf.WriteByte(']')
   896  		}
   897  	case reflect.Struct:
   898  		if p.fmt.sharpV {
   899  			p.buf.WriteString(value.Type().String())
   900  		}
   901  		p.add('{')
   902  		v := f
   903  		t := v.Type()
   904  		for i := 0; i < v.NumField(); i++ {
   905  			if i > 0 {
   906  				if p.fmt.sharpV {
   907  					p.buf.Write(commaSpaceBytes)
   908  				} else {
   909  					p.buf.WriteByte(' ')
   910  				}
   911  			}
   912  			if p.fmt.plusV || p.fmt.sharpV {
   913  				if f := t.Field(i); f.Name != "" {
   914  					p.buf.WriteString(f.Name)
   915  					p.buf.WriteByte(':')
   916  				}
   917  			}
   918  			p.printValue(getField(v, i), verb, depth+1)
   919  		}
   920  		p.buf.WriteByte('}')
   921  	case reflect.Interface:
   922  		value := f.Elem()
   923  		if !value.IsValid() {
   924  			if p.fmt.sharpV {
   925  				p.buf.WriteString(f.Type().String())
   926  				p.buf.Write(nilParenBytes)
   927  			} else {
   928  				p.buf.Write(nilAngleBytes)
   929  			}
   930  		} else {
   931  			wasString = p.printValue(value, verb, depth+1)
   932  		}
   933  	case reflect.Array, reflect.Slice:
   934  		// Byte slices are special:
   935  		// - Handle []byte (== []uint8) with fmtBytes.
   936  		// - Handle []T, where T is a named byte type, with fmtBytes only
   937  		//   for the s, q, an x verbs. For other verbs, T might be a
   938  		//   Stringer, so we use printValue to print each element.
   939  		if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 && (typ.Elem() == byteType || verb == 's' || verb == 'q' || verb == 'x') {
   940  			var bytes []byte
   941  			if f.Kind() == reflect.Slice {
   942  				bytes = f.Bytes()
   943  			} else if f.CanAddr() {
   944  				bytes = f.Slice(0, f.Len()).Bytes()
   945  			} else {
   946  				// We have an array, but we cannot Slice() a non-addressable array,
   947  				// so we build a slice by hand. This is a rare case but it would be nice
   948  				// if reflection could help a little more.
   949  				bytes = make([]byte, f.Len())
   950  				for i := range bytes {
   951  					bytes[i] = byte(f.Index(i).Uint())
   952  				}
   953  			}
   954  			p.fmtBytes(bytes, verb, typ, depth)
   955  			wasString = verb == 's'
   956  			break
   957  		}
   958  		if p.fmt.sharpV {
   959  			p.buf.WriteString(value.Type().String())
   960  			if f.Kind() == reflect.Slice && f.IsNil() {
   961  				p.buf.WriteString("(nil)")
   962  				break
   963  			}
   964  			p.buf.WriteByte('{')
   965  		} else {
   966  			p.buf.WriteByte('[')
   967  		}
   968  		for i := 0; i < f.Len(); i++ {
   969  			if i > 0 {
   970  				if p.fmt.sharpV {
   971  					p.buf.Write(commaSpaceBytes)
   972  				} else {
   973  					p.buf.WriteByte(' ')
   974  				}
   975  			}
   976  			p.printValue(f.Index(i), verb, depth+1)
   977  		}
   978  		if p.fmt.sharpV {
   979  			p.buf.WriteByte('}')
   980  		} else {
   981  			p.buf.WriteByte(']')
   982  		}
   983  	case reflect.Ptr:
   984  		v := f.Pointer()
   985  		// pointer to array or slice or struct?  ok at top level
   986  		// but not embedded (avoid loops)
   987  		if v != 0 && depth == 0 {
   988  			switch a := f.Elem(); a.Kind() {
   989  			case reflect.Array, reflect.Slice:
   990  				p.buf.WriteByte('&')
   991  				p.printValue(a, verb, depth+1)
   992  				break BigSwitch
   993  			case reflect.Struct:
   994  				p.buf.WriteByte('&')
   995  				p.printValue(a, verb, depth+1)
   996  				break BigSwitch
   997  			case reflect.Map:
   998  				p.buf.WriteByte('&')
   999  				p.printValue(a, verb, depth+1)
  1000  				break BigSwitch
  1001  			}
  1002  		}
  1003  		fallthrough
  1004  	case reflect.Chan, reflect.Func, reflect.UnsafePointer:
  1005  		p.fmtPointer(value, verb)
  1006  	default:
  1007  		p.unknownType(f)
  1008  	}
  1009  	p.value = oldValue
  1010  	return wasString
  1011  }
  1012  
  1013  // intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int.
  1014  func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) {
  1015  	newArgNum = argNum
  1016  	if argNum < len(a) {
  1017  		num, isInt = a[argNum].(int)
  1018  		newArgNum = argNum + 1
  1019  	}
  1020  	return
  1021  }
  1022  
  1023  // parseArgNumber returns the value of the bracketed number, minus 1
  1024  // (explicit argument numbers are one-indexed but we want zero-indexed).
  1025  // The opening bracket is known to be present at format[0].
  1026  // The returned values are the index, the number of bytes to consume
  1027  // up to the closing paren, if present, and whether the number parsed
  1028  // ok. The bytes to consume will be 1 if no closing paren is present.
  1029  func parseArgNumber(format string) (index int, wid int, ok bool) {
  1030  	// Find closing bracket.
  1031  	for i := 1; i < len(format); i++ {
  1032  		if format[i] == ']' {
  1033  			width, ok, newi := parsenum(format, 1, i)
  1034  			if !ok || newi != i {
  1035  				return 0, i + 1, false
  1036  			}
  1037  			return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
  1038  		}
  1039  	}
  1040  	return 0, 1, false
  1041  }
  1042  
  1043  // argNumber returns the next argument to evaluate, which is either the value of the passed-in
  1044  // argNum or the value of the bracketed integer that begins format[i:]. It also returns
  1045  // the new value of i, that is, the index of the next byte of the format to process.
  1046  func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
  1047  	if len(format) <= i || format[i] != '[' {
  1048  		return argNum, i, false
  1049  	}
  1050  	p.reordered = true
  1051  	index, wid, ok := parseArgNumber(format[i:])
  1052  	if ok && 0 <= index && index < numArgs {
  1053  		return index, i + wid, true
  1054  	}
  1055  	p.goodArgNum = false
  1056  	return argNum, i + wid, true
  1057  }
  1058  
  1059  func (p *pp) doPrintf(format string, a []interface{}) {
  1060  	end := len(format)
  1061  	argNum := 0         // we process one argument per non-trivial format
  1062  	afterIndex := false // previous item in format was an index like [3].
  1063  	p.reordered = false
  1064  	for i := 0; i < end; {
  1065  		p.goodArgNum = true
  1066  		lasti := i
  1067  		for i < end && format[i] != '%' {
  1068  			i++
  1069  		}
  1070  		if i > lasti {
  1071  			p.buf.WriteString(format[lasti:i])
  1072  		}
  1073  		if i >= end {
  1074  			// done processing format string
  1075  			break
  1076  		}
  1077  
  1078  		// Process one verb
  1079  		i++
  1080  
  1081  		// Do we have flags?
  1082  		p.fmt.clearflags()
  1083  	F:
  1084  		for ; i < end; i++ {
  1085  			switch format[i] {
  1086  			case '#':
  1087  				p.fmt.sharp = true
  1088  			case '0':
  1089  				p.fmt.zero = true
  1090  			case '+':
  1091  				p.fmt.plus = true
  1092  			case '-':
  1093  				p.fmt.minus = true
  1094  			case ' ':
  1095  				p.fmt.space = true
  1096  			default:
  1097  				break F
  1098  			}
  1099  		}
  1100  
  1101  		// Do we have an explicit argument index?
  1102  		argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
  1103  
  1104  		// Do we have width?
  1105  		if i < end && format[i] == '*' {
  1106  			i++
  1107  			p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)
  1108  			if !p.fmt.widPresent {
  1109  				p.buf.Write(badWidthBytes)
  1110  			}
  1111  			afterIndex = false
  1112  		} else {
  1113  			p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
  1114  			if afterIndex && p.fmt.widPresent { // "%[3]2d"
  1115  				p.goodArgNum = false
  1116  			}
  1117  		}
  1118  
  1119  		// Do we have precision?
  1120  		if i+1 < end && format[i] == '.' {
  1121  			i++
  1122  			if afterIndex { // "%[3].2d"
  1123  				p.goodArgNum = false
  1124  			}
  1125  			argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
  1126  			if format[i] == '*' {
  1127  				i++
  1128  				p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
  1129  				if !p.fmt.precPresent {
  1130  					p.buf.Write(badPrecBytes)
  1131  				}
  1132  				afterIndex = false
  1133  			} else {
  1134  				p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
  1135  				if !p.fmt.precPresent {
  1136  					p.fmt.prec = 0
  1137  					p.fmt.precPresent = true
  1138  				}
  1139  			}
  1140  		}
  1141  
  1142  		if !afterIndex {
  1143  			argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
  1144  		}
  1145  
  1146  		if i >= end {
  1147  			p.buf.Write(noVerbBytes)
  1148  			continue
  1149  		}
  1150  		c, w := utf8.DecodeRuneInString(format[i:])
  1151  		i += w
  1152  		// percent is special - absorbs no operand
  1153  		if c == '%' {
  1154  			p.buf.WriteByte('%') // We ignore width and prec.
  1155  			continue
  1156  		}
  1157  		if !p.goodArgNum {
  1158  			p.buf.Write(percentBangBytes)
  1159  			p.add(c)
  1160  			p.buf.Write(badIndexBytes)
  1161  			continue
  1162  		} else if argNum >= len(a) { // out of operands
  1163  			p.buf.Write(percentBangBytes)
  1164  			p.add(c)
  1165  			p.buf.Write(missingBytes)
  1166  			continue
  1167  		}
  1168  		arg := a[argNum]
  1169  		argNum++
  1170  
  1171  		if c == 'v' {
  1172  			if p.fmt.sharp {
  1173  				// Go syntax. Set the flag in the fmt and clear the sharp flag.
  1174  				p.fmt.sharp = false
  1175  				p.fmt.sharpV = true
  1176  			}
  1177  			if p.fmt.plus {
  1178  				// Struct-field syntax. Set the flag in the fmt and clear the plus flag.
  1179  				p.fmt.plus = false
  1180  				p.fmt.plusV = true
  1181  			}
  1182  		}
  1183  		p.printArg(arg, c, 0)
  1184  	}
  1185  
  1186  	// Check for extra arguments unless the call accessed the arguments
  1187  	// out of order, in which case it's too expensive to detect if they've all
  1188  	// been used and arguably OK if they're not.
  1189  	if !p.reordered && argNum < len(a) {
  1190  		p.buf.Write(extraBytes)
  1191  		for ; argNum < len(a); argNum++ {
  1192  			arg := a[argNum]
  1193  			if arg != nil {
  1194  				p.buf.WriteString(reflect.TypeOf(arg).String())
  1195  				p.buf.WriteByte('=')
  1196  			}
  1197  			p.printArg(arg, 'v', 0)
  1198  			if argNum+1 < len(a) {
  1199  				p.buf.Write(commaSpaceBytes)
  1200  			}
  1201  		}
  1202  		p.buf.WriteByte(')')
  1203  	}
  1204  }
  1205  
  1206  func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
  1207  	prevString := false
  1208  	for argNum := 0; argNum < len(a); argNum++ {
  1209  		p.fmt.clearflags()
  1210  		// always add spaces if we're doing Println
  1211  		arg := a[argNum]
  1212  		if argNum > 0 {
  1213  			isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
  1214  			if addspace || !isString && !prevString {
  1215  				p.buf.WriteByte(' ')
  1216  			}
  1217  		}
  1218  		prevString = p.printArg(arg, 'v', 0)
  1219  	}
  1220  	if addnewline {
  1221  		p.buf.WriteByte('\n')
  1222  	}
  1223  }