github.com/prattmic/llgo-embedded@v0.0.0-20150820070356-41cfecea0e1e/third_party/gofrontend/libgo/go/math/exp.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package math 6 7 // Exp returns e**x, the base-e exponential of x. 8 // 9 // Special cases are: 10 // Exp(+Inf) = +Inf 11 // Exp(NaN) = NaN 12 // Very large values overflow to 0 or +Inf. 13 // Very small values underflow to 1. 14 15 //extern exp 16 func libc_exp(float64) float64 17 18 func Exp(x float64) float64 { 19 return libc_exp(x) 20 } 21 22 // The original C code, the long comment, and the constants 23 // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c 24 // and came with this notice. The go code is a simplified 25 // version of the original C. 26 // 27 // ==================================================== 28 // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 29 // 30 // Permission to use, copy, modify, and distribute this 31 // software is freely granted, provided that this notice 32 // is preserved. 33 // ==================================================== 34 // 35 // 36 // exp(x) 37 // Returns the exponential of x. 38 // 39 // Method 40 // 1. Argument reduction: 41 // Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. 42 // Given x, find r and integer k such that 43 // 44 // x = k*ln2 + r, |r| <= 0.5*ln2. 45 // 46 // Here r will be represented as r = hi-lo for better 47 // accuracy. 48 // 49 // 2. Approximation of exp(r) by a special rational function on 50 // the interval [0,0.34658]: 51 // Write 52 // R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... 53 // We use a special Remes algorithm on [0,0.34658] to generate 54 // a polynomial of degree 5 to approximate R. The maximum error 55 // of this polynomial approximation is bounded by 2**-59. In 56 // other words, 57 // R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 58 // (where z=r*r, and the values of P1 to P5 are listed below) 59 // and 60 // | 5 | -59 61 // | 2.0+P1*z+...+P5*z - R(z) | <= 2 62 // | | 63 // The computation of exp(r) thus becomes 64 // 2*r 65 // exp(r) = 1 + ------- 66 // R - r 67 // r*R1(r) 68 // = 1 + r + ----------- (for better accuracy) 69 // 2 - R1(r) 70 // where 71 // 2 4 10 72 // R1(r) = r - (P1*r + P2*r + ... + P5*r ). 73 // 74 // 3. Scale back to obtain exp(x): 75 // From step 1, we have 76 // exp(x) = 2**k * exp(r) 77 // 78 // Special cases: 79 // exp(INF) is INF, exp(NaN) is NaN; 80 // exp(-INF) is 0, and 81 // for finite argument, only exp(0)=1 is exact. 82 // 83 // Accuracy: 84 // according to an error analysis, the error is always less than 85 // 1 ulp (unit in the last place). 86 // 87 // Misc. info. 88 // For IEEE double 89 // if x > 7.09782712893383973096e+02 then exp(x) overflow 90 // if x < -7.45133219101941108420e+02 then exp(x) underflow 91 // 92 // Constants: 93 // The hexadecimal values are the intended ones for the following 94 // constants. The decimal values may be used, provided that the 95 // compiler will convert from decimal to binary accurately enough 96 // to produce the hexadecimal values shown. 97 98 func exp(x float64) float64 { 99 const ( 100 Ln2Hi = 6.93147180369123816490e-01 101 Ln2Lo = 1.90821492927058770002e-10 102 Log2e = 1.44269504088896338700e+00 103 104 Overflow = 7.09782712893383973096e+02 105 Underflow = -7.45133219101941108420e+02 106 NearZero = 1.0 / (1 << 28) // 2**-28 107 ) 108 109 // special cases 110 switch { 111 case IsNaN(x) || IsInf(x, 1): 112 return x 113 case IsInf(x, -1): 114 return 0 115 case x > Overflow: 116 return Inf(1) 117 case x < Underflow: 118 return 0 119 case -NearZero < x && x < NearZero: 120 return 1 + x 121 } 122 123 // reduce; computed as r = hi - lo for extra precision. 124 var k int 125 switch { 126 case x < 0: 127 k = int(Log2e*x - 0.5) 128 case x > 0: 129 k = int(Log2e*x + 0.5) 130 } 131 hi := x - float64(k)*Ln2Hi 132 lo := float64(k) * Ln2Lo 133 134 // compute 135 return expmulti(hi, lo, k) 136 } 137 138 // Exp2 returns 2**x, the base-2 exponential of x. 139 // 140 // Special cases are the same as Exp. 141 func Exp2(x float64) float64 { 142 return exp2(x) 143 } 144 145 func exp2(x float64) float64 { 146 const ( 147 Ln2Hi = 6.93147180369123816490e-01 148 Ln2Lo = 1.90821492927058770002e-10 149 150 Overflow = 1.0239999999999999e+03 151 Underflow = -1.0740e+03 152 ) 153 154 // special cases 155 switch { 156 case IsNaN(x) || IsInf(x, 1): 157 return x 158 case IsInf(x, -1): 159 return 0 160 case x > Overflow: 161 return Inf(1) 162 case x < Underflow: 163 return 0 164 } 165 166 // argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2. 167 // computed as r = hi - lo for extra precision. 168 var k int 169 switch { 170 case x > 0: 171 k = int(x + 0.5) 172 case x < 0: 173 k = int(x - 0.5) 174 } 175 t := x - float64(k) 176 hi := t * Ln2Hi 177 lo := -t * Ln2Lo 178 179 // compute 180 return expmulti(hi, lo, k) 181 } 182 183 // exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2. 184 func expmulti(hi, lo float64, k int) float64 { 185 const ( 186 P1 = 1.66666666666666019037e-01 /* 0x3FC55555; 0x5555553E */ 187 P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */ 188 P3 = 6.61375632143793436117e-05 /* 0x3F11566A; 0xAF25DE2C */ 189 P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */ 190 P5 = 4.13813679705723846039e-08 /* 0x3E663769; 0x72BEA4D0 */ 191 ) 192 193 r := hi - lo 194 t := r * r 195 c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))) 196 y := 1 - ((lo - (r*c)/(2-c)) - hi) 197 // TODO(rsc): make sure Ldexp can handle boundary k 198 return Ldexp(y, k) 199 }