github.com/prattmic/llgo-embedded@v0.0.0-20150820070356-41cfecea0e1e/third_party/gofrontend/libgo/go/math/exp.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package math
     6  
     7  // Exp returns e**x, the base-e exponential of x.
     8  //
     9  // Special cases are:
    10  //	Exp(+Inf) = +Inf
    11  //	Exp(NaN) = NaN
    12  // Very large values overflow to 0 or +Inf.
    13  // Very small values underflow to 1.
    14  
    15  //extern exp
    16  func libc_exp(float64) float64
    17  
    18  func Exp(x float64) float64 {
    19  	return libc_exp(x)
    20  }
    21  
    22  // The original C code, the long comment, and the constants
    23  // below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
    24  // and came with this notice.  The go code is a simplified
    25  // version of the original C.
    26  //
    27  // ====================================================
    28  // Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
    29  //
    30  // Permission to use, copy, modify, and distribute this
    31  // software is freely granted, provided that this notice
    32  // is preserved.
    33  // ====================================================
    34  //
    35  //
    36  // exp(x)
    37  // Returns the exponential of x.
    38  //
    39  // Method
    40  //   1. Argument reduction:
    41  //      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
    42  //      Given x, find r and integer k such that
    43  //
    44  //               x = k*ln2 + r,  |r| <= 0.5*ln2.
    45  //
    46  //      Here r will be represented as r = hi-lo for better
    47  //      accuracy.
    48  //
    49  //   2. Approximation of exp(r) by a special rational function on
    50  //      the interval [0,0.34658]:
    51  //      Write
    52  //          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
    53  //      We use a special Remes algorithm on [0,0.34658] to generate
    54  //      a polynomial of degree 5 to approximate R. The maximum error
    55  //      of this polynomial approximation is bounded by 2**-59. In
    56  //      other words,
    57  //          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
    58  //      (where z=r*r, and the values of P1 to P5 are listed below)
    59  //      and
    60  //          |                  5          |     -59
    61  //          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
    62  //          |                             |
    63  //      The computation of exp(r) thus becomes
    64  //                             2*r
    65  //              exp(r) = 1 + -------
    66  //                            R - r
    67  //                                 r*R1(r)
    68  //                     = 1 + r + ----------- (for better accuracy)
    69  //                                2 - R1(r)
    70  //      where
    71  //                               2       4             10
    72  //              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
    73  //
    74  //   3. Scale back to obtain exp(x):
    75  //      From step 1, we have
    76  //         exp(x) = 2**k * exp(r)
    77  //
    78  // Special cases:
    79  //      exp(INF) is INF, exp(NaN) is NaN;
    80  //      exp(-INF) is 0, and
    81  //      for finite argument, only exp(0)=1 is exact.
    82  //
    83  // Accuracy:
    84  //      according to an error analysis, the error is always less than
    85  //      1 ulp (unit in the last place).
    86  //
    87  // Misc. info.
    88  //      For IEEE double
    89  //          if x >  7.09782712893383973096e+02 then exp(x) overflow
    90  //          if x < -7.45133219101941108420e+02 then exp(x) underflow
    91  //
    92  // Constants:
    93  // The hexadecimal values are the intended ones for the following
    94  // constants. The decimal values may be used, provided that the
    95  // compiler will convert from decimal to binary accurately enough
    96  // to produce the hexadecimal values shown.
    97  
    98  func exp(x float64) float64 {
    99  	const (
   100  		Ln2Hi = 6.93147180369123816490e-01
   101  		Ln2Lo = 1.90821492927058770002e-10
   102  		Log2e = 1.44269504088896338700e+00
   103  
   104  		Overflow  = 7.09782712893383973096e+02
   105  		Underflow = -7.45133219101941108420e+02
   106  		NearZero  = 1.0 / (1 << 28) // 2**-28
   107  	)
   108  
   109  	// special cases
   110  	switch {
   111  	case IsNaN(x) || IsInf(x, 1):
   112  		return x
   113  	case IsInf(x, -1):
   114  		return 0
   115  	case x > Overflow:
   116  		return Inf(1)
   117  	case x < Underflow:
   118  		return 0
   119  	case -NearZero < x && x < NearZero:
   120  		return 1 + x
   121  	}
   122  
   123  	// reduce; computed as r = hi - lo for extra precision.
   124  	var k int
   125  	switch {
   126  	case x < 0:
   127  		k = int(Log2e*x - 0.5)
   128  	case x > 0:
   129  		k = int(Log2e*x + 0.5)
   130  	}
   131  	hi := x - float64(k)*Ln2Hi
   132  	lo := float64(k) * Ln2Lo
   133  
   134  	// compute
   135  	return expmulti(hi, lo, k)
   136  }
   137  
   138  // Exp2 returns 2**x, the base-2 exponential of x.
   139  //
   140  // Special cases are the same as Exp.
   141  func Exp2(x float64) float64 {
   142  	return exp2(x)
   143  }
   144  
   145  func exp2(x float64) float64 {
   146  	const (
   147  		Ln2Hi = 6.93147180369123816490e-01
   148  		Ln2Lo = 1.90821492927058770002e-10
   149  
   150  		Overflow  = 1.0239999999999999e+03
   151  		Underflow = -1.0740e+03
   152  	)
   153  
   154  	// special cases
   155  	switch {
   156  	case IsNaN(x) || IsInf(x, 1):
   157  		return x
   158  	case IsInf(x, -1):
   159  		return 0
   160  	case x > Overflow:
   161  		return Inf(1)
   162  	case x < Underflow:
   163  		return 0
   164  	}
   165  
   166  	// argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
   167  	// computed as r = hi - lo for extra precision.
   168  	var k int
   169  	switch {
   170  	case x > 0:
   171  		k = int(x + 0.5)
   172  	case x < 0:
   173  		k = int(x - 0.5)
   174  	}
   175  	t := x - float64(k)
   176  	hi := t * Ln2Hi
   177  	lo := -t * Ln2Lo
   178  
   179  	// compute
   180  	return expmulti(hi, lo, k)
   181  }
   182  
   183  // exp1 returns e**r × 2**k where r = hi - lo and |r| ≤ ln(2)/2.
   184  func expmulti(hi, lo float64, k int) float64 {
   185  	const (
   186  		P1 = 1.66666666666666019037e-01  /* 0x3FC55555; 0x5555553E */
   187  		P2 = -2.77777777770155933842e-03 /* 0xBF66C16C; 0x16BEBD93 */
   188  		P3 = 6.61375632143793436117e-05  /* 0x3F11566A; 0xAF25DE2C */
   189  		P4 = -1.65339022054652515390e-06 /* 0xBEBBBD41; 0xC5D26BF1 */
   190  		P5 = 4.13813679705723846039e-08  /* 0x3E663769; 0x72BEA4D0 */
   191  	)
   192  
   193  	r := hi - lo
   194  	t := r * r
   195  	c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))))
   196  	y := 1 - ((lo - (r*c)/(2-c)) - hi)
   197  	// TODO(rsc): make sure Ldexp can handle boundary k
   198  	return Ldexp(y, k)
   199  }