github.com/prattmic/llgo-embedded@v0.0.0-20150820070356-41cfecea0e1e/third_party/gofrontend/libgo/runtime/malloc.h (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Memory allocator, based on tcmalloc. 6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html 7 8 // The main allocator works in runs of pages. 9 // Small allocation sizes (up to and including 32 kB) are 10 // rounded to one of about 100 size classes, each of which 11 // has its own free list of objects of exactly that size. 12 // Any free page of memory can be split into a set of objects 13 // of one size class, which are then managed using free list 14 // allocators. 15 // 16 // The allocator's data structures are: 17 // 18 // FixAlloc: a free-list allocator for fixed-size objects, 19 // used to manage storage used by the allocator. 20 // MHeap: the malloc heap, managed at page (4096-byte) granularity. 21 // MSpan: a run of pages managed by the MHeap. 22 // MCentral: a shared free list for a given size class. 23 // MCache: a per-thread (in Go, per-P) cache for small objects. 24 // MStats: allocation statistics. 25 // 26 // Allocating a small object proceeds up a hierarchy of caches: 27 // 28 // 1. Round the size up to one of the small size classes 29 // and look in the corresponding MCache free list. 30 // If the list is not empty, allocate an object from it. 31 // This can all be done without acquiring a lock. 32 // 33 // 2. If the MCache free list is empty, replenish it by 34 // taking a bunch of objects from the MCentral free list. 35 // Moving a bunch amortizes the cost of acquiring the MCentral lock. 36 // 37 // 3. If the MCentral free list is empty, replenish it by 38 // allocating a run of pages from the MHeap and then 39 // chopping that memory into a objects of the given size. 40 // Allocating many objects amortizes the cost of locking 41 // the heap. 42 // 43 // 4. If the MHeap is empty or has no page runs large enough, 44 // allocate a new group of pages (at least 1MB) from the 45 // operating system. Allocating a large run of pages 46 // amortizes the cost of talking to the operating system. 47 // 48 // Freeing a small object proceeds up the same hierarchy: 49 // 50 // 1. Look up the size class for the object and add it to 51 // the MCache free list. 52 // 53 // 2. If the MCache free list is too long or the MCache has 54 // too much memory, return some to the MCentral free lists. 55 // 56 // 3. If all the objects in a given span have returned to 57 // the MCentral list, return that span to the page heap. 58 // 59 // 4. If the heap has too much memory, return some to the 60 // operating system. 61 // 62 // TODO(rsc): Step 4 is not implemented. 63 // 64 // Allocating and freeing a large object uses the page heap 65 // directly, bypassing the MCache and MCentral free lists. 66 // 67 // The small objects on the MCache and MCentral free lists 68 // may or may not be zeroed. They are zeroed if and only if 69 // the second word of the object is zero. A span in the 70 // page heap is zeroed unless s->needzero is set. When a span 71 // is allocated to break into small objects, it is zeroed if needed 72 // and s->needzero is set. There are two main benefits to delaying the 73 // zeroing this way: 74 // 75 // 1. stack frames allocated from the small object lists 76 // or the page heap can avoid zeroing altogether. 77 // 2. the cost of zeroing when reusing a small object is 78 // charged to the mutator, not the garbage collector. 79 // 80 // This C code was written with an eye toward translating to Go 81 // in the future. Methods have the form Type_Method(Type *t, ...). 82 83 typedef struct MCentral MCentral; 84 typedef struct MHeap MHeap; 85 typedef struct MSpan MSpan; 86 typedef struct MStats MStats; 87 typedef struct MLink MLink; 88 typedef struct MTypes MTypes; 89 typedef struct GCStats GCStats; 90 91 enum 92 { 93 PageShift = 13, 94 PageSize = 1<<PageShift, 95 PageMask = PageSize - 1, 96 }; 97 typedef uintptr PageID; // address >> PageShift 98 99 enum 100 { 101 // Computed constant. The definition of MaxSmallSize and the 102 // algorithm in msize.c produce some number of different allocation 103 // size classes. NumSizeClasses is that number. It's needed here 104 // because there are static arrays of this length; when msize runs its 105 // size choosing algorithm it double-checks that NumSizeClasses agrees. 106 NumSizeClasses = 67, 107 108 // Tunable constants. 109 MaxSmallSize = 32<<10, 110 111 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc. 112 TinySize = 16, 113 TinySizeClass = 2, 114 115 FixAllocChunk = 16<<10, // Chunk size for FixAlloc 116 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap. 117 HeapAllocChunk = 1<<20, // Chunk size for heap growth 118 119 // Number of bits in page to span calculations (4k pages). 120 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason). 121 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits. 122 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address. 123 #if __SIZEOF_POINTER__ == 8 124 #ifdef GOOS_windows 125 // Windows counts memory used by page table into committed memory 126 // of the process, so we can't reserve too much memory. 127 // See http://golang.org/issue/5402 and http://golang.org/issue/5236. 128 MHeapMap_Bits = 35 - PageShift, 129 #else 130 MHeapMap_Bits = 37 - PageShift, 131 #endif 132 #else 133 MHeapMap_Bits = 32 - PageShift, 134 #endif 135 136 // Max number of threads to run garbage collection. 137 // 2, 3, and 4 are all plausible maximums depending 138 // on the hardware details of the machine. The garbage 139 // collector scales well to 8 cpus. 140 MaxGcproc = 8, 141 }; 142 143 // Maximum memory allocation size, a hint for callers. 144 // This must be a #define instead of an enum because it 145 // is so large. 146 #if __SIZEOF_POINTER__ == 8 147 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */ 148 #else 149 #define MaxMem ((uintptr)-1) 150 #endif 151 152 // A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).) 153 struct MLink 154 { 155 MLink *next; 156 }; 157 158 // SysAlloc obtains a large chunk of zeroed memory from the 159 // operating system, typically on the order of a hundred kilobytes 160 // or a megabyte. 161 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator 162 // may use larger alignment, so the caller must be careful to realign the 163 // memory obtained by SysAlloc. 164 // 165 // SysUnused notifies the operating system that the contents 166 // of the memory region are no longer needed and can be reused 167 // for other purposes. 168 // SysUsed notifies the operating system that the contents 169 // of the memory region are needed again. 170 // 171 // SysFree returns it unconditionally; this is only used if 172 // an out-of-memory error has been detected midway through 173 // an allocation. It is okay if SysFree is a no-op. 174 // 175 // SysReserve reserves address space without allocating memory. 176 // If the pointer passed to it is non-nil, the caller wants the 177 // reservation there, but SysReserve can still choose another 178 // location if that one is unavailable. On some systems and in some 179 // cases SysReserve will simply check that the address space is 180 // available and not actually reserve it. If SysReserve returns 181 // non-nil, it sets *reserved to true if the address space is 182 // reserved, false if it has merely been checked. 183 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator 184 // may use larger alignment, so the caller must be careful to realign the 185 // memory obtained by SysAlloc. 186 // 187 // SysMap maps previously reserved address space for use. 188 // The reserved argument is true if the address space was really 189 // reserved, not merely checked. 190 // 191 // SysFault marks a (already SysAlloc'd) region to fault 192 // if accessed. Used only for debugging the runtime. 193 194 void* runtime_SysAlloc(uintptr nbytes, uint64 *stat); 195 void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat); 196 void runtime_SysUnused(void *v, uintptr nbytes); 197 void runtime_SysUsed(void *v, uintptr nbytes); 198 void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat); 199 void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved); 200 void runtime_SysFault(void *v, uintptr nbytes); 201 202 // FixAlloc is a simple free-list allocator for fixed size objects. 203 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its 204 // MCache and MSpan objects. 205 // 206 // Memory returned by FixAlloc_Alloc is not zeroed. 207 // The caller is responsible for locking around FixAlloc calls. 208 // Callers can keep state in the object but the first word is 209 // smashed by freeing and reallocating. 210 struct FixAlloc 211 { 212 uintptr size; 213 void (*first)(void *arg, byte *p); // called first time p is returned 214 void* arg; 215 MLink* list; 216 byte* chunk; 217 uint32 nchunk; 218 uintptr inuse; // in-use bytes now 219 uint64* stat; 220 }; 221 222 void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat); 223 void* runtime_FixAlloc_Alloc(FixAlloc *f); 224 void runtime_FixAlloc_Free(FixAlloc *f, void *p); 225 226 227 // Statistics. 228 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go. 229 struct MStats 230 { 231 // General statistics. 232 uint64 alloc; // bytes allocated and still in use 233 uint64 total_alloc; // bytes allocated (even if freed) 234 uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate) 235 uint64 nlookup; // number of pointer lookups 236 uint64 nmalloc; // number of mallocs 237 uint64 nfree; // number of frees 238 239 // Statistics about malloc heap. 240 // protected by mheap.Lock 241 uint64 heap_alloc; // bytes allocated and still in use 242 uint64 heap_sys; // bytes obtained from system 243 uint64 heap_idle; // bytes in idle spans 244 uint64 heap_inuse; // bytes in non-idle spans 245 uint64 heap_released; // bytes released to the OS 246 uint64 heap_objects; // total number of allocated objects 247 248 // Statistics about allocation of low-level fixed-size structures. 249 // Protected by FixAlloc locks. 250 uint64 stacks_inuse; // bootstrap stacks 251 uint64 stacks_sys; 252 uint64 mspan_inuse; // MSpan structures 253 uint64 mspan_sys; 254 uint64 mcache_inuse; // MCache structures 255 uint64 mcache_sys; 256 uint64 buckhash_sys; // profiling bucket hash table 257 uint64 gc_sys; 258 uint64 other_sys; 259 260 // Statistics about garbage collector. 261 // Protected by mheap or stopping the world during GC. 262 uint64 next_gc; // next GC (in heap_alloc time) 263 uint64 last_gc; // last GC (in absolute time) 264 uint64 pause_total_ns; 265 uint64 pause_ns[256]; 266 uint32 numgc; 267 bool enablegc; 268 bool debuggc; 269 270 // Statistics about allocation size classes. 271 struct { 272 uint32 size; 273 uint64 nmalloc; 274 uint64 nfree; 275 } by_size[NumSizeClasses]; 276 }; 277 278 extern MStats mstats 279 __asm__ (GOSYM_PREFIX "runtime.memStats"); 280 void runtime_updatememstats(GCStats *stats); 281 282 // Size classes. Computed and initialized by InitSizes. 283 // 284 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class, 285 // 1 <= sizeclass < NumSizeClasses, for n. 286 // Size class 0 is reserved to mean "not small". 287 // 288 // class_to_size[i] = largest size in class i 289 // class_to_allocnpages[i] = number of pages to allocate when 290 // making new objects in class i 291 292 int32 runtime_SizeToClass(int32); 293 uintptr runtime_roundupsize(uintptr); 294 extern int32 runtime_class_to_size[NumSizeClasses]; 295 extern int32 runtime_class_to_allocnpages[NumSizeClasses]; 296 extern int8 runtime_size_to_class8[1024/8 + 1]; 297 extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1]; 298 extern void runtime_InitSizes(void); 299 300 301 typedef struct MCacheList MCacheList; 302 struct MCacheList 303 { 304 MLink *list; 305 uint32 nlist; 306 }; 307 308 // Per-thread (in Go, per-P) cache for small objects. 309 // No locking needed because it is per-thread (per-P). 310 struct MCache 311 { 312 // The following members are accessed on every malloc, 313 // so they are grouped here for better caching. 314 int32 next_sample; // trigger heap sample after allocating this many bytes 315 intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap 316 // Allocator cache for tiny objects w/o pointers. 317 // See "Tiny allocator" comment in malloc.goc. 318 byte* tiny; 319 uintptr tinysize; 320 // The rest is not accessed on every malloc. 321 MSpan* alloc[NumSizeClasses]; // spans to allocate from 322 MCacheList free[NumSizeClasses];// lists of explicitly freed objects 323 // Local allocator stats, flushed during GC. 324 uintptr local_nlookup; // number of pointer lookups 325 uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize) 326 uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize) 327 uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize) 328 }; 329 330 MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass); 331 void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size); 332 void runtime_MCache_ReleaseAll(MCache *c); 333 334 // MTypes describes the types of blocks allocated within a span. 335 // The compression field describes the layout of the data. 336 // 337 // MTypes_Empty: 338 // All blocks are free, or no type information is available for 339 // allocated blocks. 340 // The data field has no meaning. 341 // MTypes_Single: 342 // The span contains just one block. 343 // The data field holds the type information. 344 // The sysalloc field has no meaning. 345 // MTypes_Words: 346 // The span contains multiple blocks. 347 // The data field points to an array of type [NumBlocks]uintptr, 348 // and each element of the array holds the type of the corresponding 349 // block. 350 // MTypes_Bytes: 351 // The span contains at most seven different types of blocks. 352 // The data field points to the following structure: 353 // struct { 354 // type [8]uintptr // type[0] is always 0 355 // index [NumBlocks]byte 356 // } 357 // The type of the i-th block is: data.type[data.index[i]] 358 enum 359 { 360 MTypes_Empty = 0, 361 MTypes_Single = 1, 362 MTypes_Words = 2, 363 MTypes_Bytes = 3, 364 }; 365 struct MTypes 366 { 367 byte compression; // one of MTypes_* 368 uintptr data; 369 }; 370 371 enum 372 { 373 KindSpecialFinalizer = 1, 374 KindSpecialProfile = 2, 375 // Note: The finalizer special must be first because if we're freeing 376 // an object, a finalizer special will cause the freeing operation 377 // to abort, and we want to keep the other special records around 378 // if that happens. 379 }; 380 381 typedef struct Special Special; 382 struct Special 383 { 384 Special* next; // linked list in span 385 uint16 offset; // span offset of object 386 byte kind; // kind of Special 387 }; 388 389 // The described object has a finalizer set for it. 390 typedef struct SpecialFinalizer SpecialFinalizer; 391 struct SpecialFinalizer 392 { 393 Special special; 394 FuncVal* fn; 395 const FuncType* ft; 396 const PtrType* ot; 397 }; 398 399 // The described object is being heap profiled. 400 typedef struct Bucket Bucket; // from mprof.goc 401 typedef struct SpecialProfile SpecialProfile; 402 struct SpecialProfile 403 { 404 Special special; 405 Bucket* b; 406 }; 407 408 // An MSpan is a run of pages. 409 enum 410 { 411 MSpanInUse = 0, 412 MSpanFree, 413 MSpanListHead, 414 MSpanDead, 415 }; 416 struct MSpan 417 { 418 MSpan *next; // in a span linked list 419 MSpan *prev; // in a span linked list 420 PageID start; // starting page number 421 uintptr npages; // number of pages in span 422 MLink *freelist; // list of free objects 423 // sweep generation: 424 // if sweepgen == h->sweepgen - 2, the span needs sweeping 425 // if sweepgen == h->sweepgen - 1, the span is currently being swept 426 // if sweepgen == h->sweepgen, the span is swept and ready to use 427 // h->sweepgen is incremented by 2 after every GC 428 uint32 sweepgen; 429 uint16 ref; // capacity - number of objects in freelist 430 uint8 sizeclass; // size class 431 bool incache; // being used by an MCache 432 uint8 state; // MSpanInUse etc 433 uint8 needzero; // needs to be zeroed before allocation 434 uintptr elemsize; // computed from sizeclass or from npages 435 int64 unusedsince; // First time spotted by GC in MSpanFree state 436 uintptr npreleased; // number of pages released to the OS 437 byte *limit; // end of data in span 438 MTypes types; // types of allocated objects in this span 439 Lock specialLock; // guards specials list 440 Special *specials; // linked list of special records sorted by offset. 441 MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet 442 }; 443 444 void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages); 445 void runtime_MSpan_EnsureSwept(MSpan *span); 446 bool runtime_MSpan_Sweep(MSpan *span); 447 448 // Every MSpan is in one doubly-linked list, 449 // either one of the MHeap's free lists or one of the 450 // MCentral's span lists. We use empty MSpan structures as list heads. 451 void runtime_MSpanList_Init(MSpan *list); 452 bool runtime_MSpanList_IsEmpty(MSpan *list); 453 void runtime_MSpanList_Insert(MSpan *list, MSpan *span); 454 void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span); 455 void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in 456 457 458 // Central list of free objects of a given size. 459 struct MCentral 460 { 461 Lock lock; 462 int32 sizeclass; 463 MSpan nonempty; // list of spans with a free object 464 MSpan empty; // list of spans with no free objects (or cached in an MCache) 465 int32 nfree; // # of objects available in nonempty spans 466 }; 467 468 void runtime_MCentral_Init(MCentral *c, int32 sizeclass); 469 MSpan* runtime_MCentral_CacheSpan(MCentral *c); 470 void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s); 471 bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end); 472 void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this? 473 474 // Main malloc heap. 475 // The heap itself is the "free[]" and "large" arrays, 476 // but all the other global data is here too. 477 struct MHeap 478 { 479 Lock lock; 480 MSpan free[MaxMHeapList]; // free lists of given length 481 MSpan freelarge; // free lists length >= MaxMHeapList 482 MSpan busy[MaxMHeapList]; // busy lists of large objects of given length 483 MSpan busylarge; // busy lists of large objects length >= MaxMHeapList 484 MSpan **allspans; // all spans out there 485 MSpan **sweepspans; // copy of allspans referenced by sweeper 486 uint32 nspan; 487 uint32 nspancap; 488 uint32 sweepgen; // sweep generation, see comment in MSpan 489 uint32 sweepdone; // all spans are swept 490 491 // span lookup 492 MSpan** spans; 493 uintptr spans_mapped; 494 495 // range of addresses we might see in the heap 496 byte *bitmap; 497 uintptr bitmap_mapped; 498 byte *arena_start; 499 byte *arena_used; 500 byte *arena_end; 501 bool arena_reserved; 502 503 // central free lists for small size classes. 504 // the padding makes sure that the MCentrals are 505 // spaced CacheLineSize bytes apart, so that each MCentral.Lock 506 // gets its own cache line. 507 struct { 508 MCentral mcentral; 509 byte pad[64]; 510 } central[NumSizeClasses]; 511 512 FixAlloc spanalloc; // allocator for Span* 513 FixAlloc cachealloc; // allocator for MCache* 514 FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer* 515 FixAlloc specialprofilealloc; // allocator for SpecialProfile* 516 Lock speciallock; // lock for sepcial record allocators. 517 518 // Malloc stats. 519 uint64 largefree; // bytes freed for large objects (>MaxSmallSize) 520 uint64 nlargefree; // number of frees for large objects (>MaxSmallSize) 521 uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize) 522 }; 523 extern MHeap runtime_mheap; 524 525 void runtime_MHeap_Init(MHeap *h); 526 MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero); 527 void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct); 528 MSpan* runtime_MHeap_Lookup(MHeap *h, void *v); 529 MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v); 530 void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj); 531 void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n); 532 void runtime_MHeap_MapBits(MHeap *h); 533 void runtime_MHeap_MapSpans(MHeap *h); 534 void runtime_MHeap_Scavenger(void*); 535 void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s); 536 537 void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag); 538 void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat); 539 int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s); 540 void runtime_gc(int32 force); 541 uintptr runtime_sweepone(void); 542 void runtime_markscan(void *v); 543 void runtime_marknogc(void *v); 544 void runtime_checkallocated(void *v, uintptr n); 545 void runtime_markfreed(void *v); 546 void runtime_checkfreed(void *v, uintptr n); 547 extern int32 runtime_checking; 548 void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover); 549 void runtime_unmarkspan(void *v, uintptr size); 550 void runtime_purgecachedstats(MCache*); 551 void* runtime_cnew(const Type*); 552 void* runtime_cnewarray(const Type*, intgo); 553 void runtime_tracealloc(void*, uintptr, uintptr); 554 void runtime_tracefree(void*, uintptr); 555 void runtime_tracegc(void); 556 557 uintptr runtime_gettype(void*); 558 559 enum 560 { 561 // flags to malloc 562 FlagNoScan = 1<<0, // GC doesn't have to scan object 563 FlagNoProfiling = 1<<1, // must not profile 564 FlagNoGC = 1<<2, // must not free or scan for pointers 565 FlagNoZero = 1<<3, // don't zero memory 566 FlagNoInvokeGC = 1<<4, // don't invoke GC 567 }; 568 569 typedef struct Obj Obj; 570 struct Obj 571 { 572 byte *p; // data pointer 573 uintptr n; // size of data in bytes 574 uintptr ti; // type info 575 }; 576 577 void runtime_MProf_Malloc(void*, uintptr); 578 void runtime_MProf_Free(Bucket*, uintptr, bool); 579 void runtime_MProf_GC(void); 580 void runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr)); 581 int32 runtime_gcprocs(void); 582 void runtime_helpgc(int32 nproc); 583 void runtime_gchelper(void); 584 void runtime_createfing(void); 585 G* runtime_wakefing(void); 586 extern bool runtime_fingwait; 587 extern bool runtime_fingwake; 588 589 void runtime_setprofilebucket(void *p, Bucket *b); 590 591 struct __go_func_type; 592 struct __go_ptr_type; 593 bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*); 594 void runtime_removefinalizer(void*); 595 void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot); 596 597 void runtime_freeallspecials(MSpan *span, void *p, uintptr size); 598 bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed); 599 600 enum 601 { 602 TypeInfo_SingleObject = 0, 603 TypeInfo_Array = 1, 604 TypeInfo_Chan = 2, 605 606 // Enables type information at the end of blocks allocated from heap 607 DebugTypeAtBlockEnd = 0, 608 }; 609 610 // Information from the compiler about the layout of stack frames. 611 typedef struct BitVector BitVector; 612 struct BitVector 613 { 614 int32 n; // # of bits 615 uint32 *data; 616 }; 617 typedef struct StackMap StackMap; 618 struct StackMap 619 { 620 int32 n; // number of bitmaps 621 int32 nbit; // number of bits in each bitmap 622 uint32 data[]; 623 }; 624 enum { 625 // Pointer map 626 BitsPerPointer = 2, 627 BitsDead = 0, 628 BitsScalar = 1, 629 BitsPointer = 2, 630 BitsMultiWord = 3, 631 // BitsMultiWord will be set for the first word of a multi-word item. 632 // When it is set, one of the following will be set for the second word. 633 BitsString = 0, 634 BitsSlice = 1, 635 BitsIface = 2, 636 BitsEface = 3, 637 }; 638 // Returns pointer map data for the given stackmap index 639 // (the index is encoded in PCDATA_StackMapIndex). 640 BitVector runtime_stackmapdata(StackMap *stackmap, int32 n); 641 642 // defined in mgc0.go 643 void runtime_gc_m_ptr(Eface*); 644 void runtime_gc_g_ptr(Eface*); 645 void runtime_gc_itab_ptr(Eface*); 646 647 void runtime_memorydump(void); 648 int32 runtime_setgcpercent(int32); 649 650 // Value we use to mark dead pointers when GODEBUG=gcdead=1. 651 #define PoisonGC ((uintptr)0xf969696969696969ULL) 652 #define PoisonStack ((uintptr)0x6868686868686868ULL) 653 654 struct Workbuf; 655 void runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj)); 656 void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj)); 657 void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj)); 658 void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));