github.com/primecitizens/pcz/std@v0.2.1/algo/sort/search.go (about)

     1  // SPDX-License-Identifier: Apache-2.0
     2  // Copyright 2023 The Prime Citizens
     3  //
     4  // Copyright 2022 The Go Authors. All rights reserved.
     5  // Use of this source code is governed by a BSD-style
     6  // license that can be found in the LICENSE file.
     7  
     8  package sort
     9  
    10  // Search uses binary search to find and return the smallest index i
    11  // in [0, n) at which f(i) is true, assuming that on the range [0, n),
    12  // f(i) == true implies f(i+1) == true. That is, Search requires that
    13  // f is false for some (possibly empty) prefix of the input range [0, n)
    14  // and then true for the (possibly empty) remainder; Search returns
    15  // the first true index. If there is no such index, Search returns n.
    16  // (Note that the "not found" return value is not -1 as in, for instance,
    17  // strings.Index.)
    18  // Search calls f(i) only for i in the range [0, n).
    19  //
    20  // A common use of Search is to find the index i for a value x in
    21  // a sorted, indexable data structure such as an array or slice.
    22  // In this case, the argument f, typically a closure, captures the value
    23  // to be searched for, and how the data structure is indexed and
    24  // ordered.
    25  //
    26  // For instance, given a slice data sorted in ascending order,
    27  // the call Search(len(data), func(i int) bool { return data[i] >= 23 })
    28  // returns the smallest index i such that data[i] >= 23. If the caller
    29  // wants to find whether 23 is in the slice, it must test data[i] == 23
    30  // separately.
    31  //
    32  // Searching data sorted in descending order would use the <=
    33  // operator instead of the >= operator.
    34  //
    35  // To complete the example above, the following code tries to find the value
    36  // x in an integer slice data sorted in ascending order:
    37  //
    38  //	x := 23
    39  //	i := sort.Search(len(data), func(i int) bool { return data[i] >= x })
    40  //	if i < len(data) && data[i] == x {
    41  //		// x is present at data[i]
    42  //	} else {
    43  //		// x is not present in data,
    44  //		// but i is the index where it would be inserted.
    45  //	}
    46  //
    47  // As a more whimsical example, this program guesses your number:
    48  //
    49  //	func GuessingGame() {
    50  //		var s string
    51  //		fmt.Printf("Pick an integer from 0 to 100.\n")
    52  //		answer := sort.Search(100, func(i int) bool {
    53  //			fmt.Printf("Is your number <= %d? ", i)
    54  //			fmt.Scanf("%s", &s)
    55  //			return s != "" && s[0] == 'y'
    56  //		})
    57  //		fmt.Printf("Your number is %d.\n", answer)
    58  //	}
    59  func Search(n int, cmp func(int) bool) int {
    60  	// Define f(-1) == false and f(n) == true.
    61  	// Invariant: f(i-1) == false, f(j) == true.
    62  	i, j := 0, n
    63  	for i < j {
    64  		h := int(uint(i+j) >> 1) // avoid overflow when computing h
    65  		// i ≤ h < j
    66  		if !cmp(h) {
    67  			i = h + 1 // preserves f(i-1) == false
    68  		} else {
    69  			j = h // preserves f(j) == true
    70  		}
    71  	}
    72  	// i == j, f(i-1) == false, and f(j) (= f(i)) == true  =>  answer is i.
    73  	return i
    74  }
    75  
    76  // SearchEx is Search but accepts an extra arg.
    77  func SearchEx[T any](n int, arg T, cmp func(int, T) bool) int {
    78  	// Define f(-1) == false and f(n) == true.
    79  	// Invariant: f(i-1) == false, f(j) == true.
    80  	i, j := 0, n
    81  	for i < j {
    82  		h := int(uint(i+j) >> 1) // avoid overflow when computing h
    83  		// i ≤ h < j
    84  		if !cmp(h, arg) {
    85  			i = h + 1 // preserves f(i-1) == false
    86  		} else {
    87  			j = h // preserves f(j) == true
    88  		}
    89  	}
    90  	// i == j, f(i-1) == false, and f(j) (= f(i)) == true  =>  answer is i.
    91  	return i
    92  }
    93  
    94  // Find uses binary search to find and return the smallest index i in [0, n)
    95  // at which cmp(i) <= 0. If there is no such index i, Find returns i = n.
    96  // The found result is true if i < n and cmp(i) == 0.
    97  // Find calls cmp(i) only for i in the range [0, n).
    98  //
    99  // To permit binary search, Find requires that cmp(i) > 0 for a leading
   100  // prefix of the range, cmp(i) == 0 in the middle, and cmp(i) < 0 for
   101  // the final suffix of the range. (Each subrange could be empty.)
   102  // The usual way to establish this condition is to interpret cmp(i)
   103  // as a comparison of a desired target value t against entry i in an
   104  // underlying indexed data structure x, returning <0, 0, and >0
   105  // when t < x[i], t == x[i], and t > x[i], respectively.
   106  //
   107  // For example, to look for a particular string in a sorted, random-access
   108  // list of strings:
   109  //
   110  //	i, found := sort.Find(x.Len(), func(i int) int {
   111  //	    return strings.Compare(target, x.At(i))
   112  //	})
   113  //	if found {
   114  //	    fmt.Printf("found %s at entry %d\n", target, i)
   115  //	} else {
   116  //	    fmt.Printf("%s not found, would insert at %d", target, i)
   117  //	}
   118  func Find(n int, cmp func(int) int) (i int, found bool) {
   119  	// The invariants here are similar to the ones in Search.
   120  	// Define cmp(-1) > 0 and cmp(n) <= 0
   121  	// Invariant: cmp(i-1) > 0, cmp(j) <= 0
   122  	i, j := 0, n
   123  	for i < j {
   124  		h := int(uint(i+j) >> 1) // avoid overflow when computing h
   125  		// i ≤ h < j
   126  		if cmp(h) > 0 {
   127  			i = h + 1 // preserves cmp(i-1) > 0
   128  		} else {
   129  			j = h // preserves cmp(j) <= 0
   130  		}
   131  	}
   132  	// i == j, cmp(i-1) > 0 and cmp(j) <= 0
   133  	return i, i < n && cmp(i) == 0
   134  }
   135  
   136  // FindEx is Find but accepts an extra arg.
   137  func FindEx[T any](n int, arg T, cmp func(int, T) int) (i int, found bool) {
   138  	// The invariants here are similar to the ones in Search.
   139  	// Define cmp(-1) > 0 and cmp(n) <= 0
   140  	// Invariant: cmp(i-1) > 0, cmp(j) <= 0
   141  	i, j := 0, n
   142  	for i < j {
   143  		h := int(uint(i+j) >> 1) // avoid overflow when computing h
   144  		// i ≤ h < j
   145  		if cmp(h, arg) > 0 {
   146  			i = h + 1 // preserves cmp(i-1) > 0
   147  		} else {
   148  			j = h // preserves cmp(j) <= 0
   149  		}
   150  	}
   151  	// i == j, cmp(i-1) > 0 and cmp(j) <= 0
   152  	return i, i < n && cmp(i, arg) == 0
   153  }