github.com/primecitizens/pcz/std@v0.2.1/math/erfinv.go (about) 1 // Copyright 2017 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package math 6 7 /* 8 Inverse of the floating-point error function. 9 */ 10 11 // This implementation is based on the rational approximation 12 // of percentage points of normal distribution available from 13 // https://www.jstor.org/stable/2347330. 14 15 const ( 16 // Coefficients for approximation to erf in |x| <= 0.85 17 a0 = 1.1975323115670912564578e0 18 a1 = 4.7072688112383978012285e1 19 a2 = 6.9706266534389598238465e2 20 a3 = 4.8548868893843886794648e3 21 a4 = 1.6235862515167575384252e4 22 a5 = 2.3782041382114385731252e4 23 a6 = 1.1819493347062294404278e4 24 a7 = 8.8709406962545514830200e2 25 b0 = 1.0000000000000000000e0 26 b1 = 4.2313330701600911252e1 27 b2 = 6.8718700749205790830e2 28 b3 = 5.3941960214247511077e3 29 b4 = 2.1213794301586595867e4 30 b5 = 3.9307895800092710610e4 31 b6 = 2.8729085735721942674e4 32 b7 = 5.2264952788528545610e3 33 // Coefficients for approximation to erf in 0.85 < |x| <= 1-2*exp(-25) 34 c0 = 1.42343711074968357734e0 35 c1 = 4.63033784615654529590e0 36 c2 = 5.76949722146069140550e0 37 c3 = 3.64784832476320460504e0 38 c4 = 1.27045825245236838258e0 39 c5 = 2.41780725177450611770e-1 40 c6 = 2.27238449892691845833e-2 41 c7 = 7.74545014278341407640e-4 42 d0 = 1.4142135623730950488016887e0 43 d1 = 2.9036514445419946173133295e0 44 d2 = 2.3707661626024532365971225e0 45 d3 = 9.7547832001787427186894837e-1 46 d4 = 2.0945065210512749128288442e-1 47 d5 = 2.1494160384252876777097297e-2 48 d6 = 7.7441459065157709165577218e-4 49 d7 = 1.4859850019840355905497876e-9 50 // Coefficients for approximation to erf in 1-2*exp(-25) < |x| < 1 51 e0 = 6.65790464350110377720e0 52 e1 = 5.46378491116411436990e0 53 e2 = 1.78482653991729133580e0 54 e3 = 2.96560571828504891230e-1 55 e4 = 2.65321895265761230930e-2 56 e5 = 1.24266094738807843860e-3 57 e6 = 2.71155556874348757815e-5 58 e7 = 2.01033439929228813265e-7 59 f0 = 1.414213562373095048801689e0 60 f1 = 8.482908416595164588112026e-1 61 f2 = 1.936480946950659106176712e-1 62 f3 = 2.103693768272068968719679e-2 63 f4 = 1.112800997078859844711555e-3 64 f5 = 2.611088405080593625138020e-5 65 f6 = 2.010321207683943062279931e-7 66 f7 = 2.891024605872965461538222e-15 67 ) 68 69 // Erfinv returns the inverse error function of x. 70 // 71 // Special cases are: 72 // 73 // Erfinv(1) = +Inf 74 // Erfinv(-1) = -Inf 75 // Erfinv(x) = NaN if x < -1 or x > 1 76 // Erfinv(NaN) = NaN 77 func Erfinv(x float64) float64 { 78 // special cases 79 if IsNaN(x) || x <= -1 || x >= 1 { 80 if x == -1 || x == 1 { 81 return Inf(int(x)) 82 } 83 return NaN() 84 } 85 86 sign := false 87 if x < 0 { 88 x = -x 89 sign = true 90 } 91 92 var ans float64 93 if x <= 0.85 { // |x| <= 0.85 94 r := 0.180625 - 0.25*x*x 95 z1 := ((((((a7*r+a6)*r+a5)*r+a4)*r+a3)*r+a2)*r+a1)*r + a0 96 z2 := ((((((b7*r+b6)*r+b5)*r+b4)*r+b3)*r+b2)*r+b1)*r + b0 97 ans = (x * z1) / z2 98 } else { 99 var z1, z2 float64 100 r := Sqrt(Ln2 - Log(1.0-x)) 101 if r <= 5.0 { 102 r -= 1.6 103 z1 = ((((((c7*r+c6)*r+c5)*r+c4)*r+c3)*r+c2)*r+c1)*r + c0 104 z2 = ((((((d7*r+d6)*r+d5)*r+d4)*r+d3)*r+d2)*r+d1)*r + d0 105 } else { 106 r -= 5.0 107 z1 = ((((((e7*r+e6)*r+e5)*r+e4)*r+e3)*r+e2)*r+e1)*r + e0 108 z2 = ((((((f7*r+f6)*r+f5)*r+f4)*r+f3)*r+f2)*r+f1)*r + f0 109 } 110 ans = z1 / z2 111 } 112 113 if sign { 114 return -ans 115 } 116 return ans 117 } 118 119 // Erfcinv returns the inverse of Erfc(x). 120 // 121 // Special cases are: 122 // 123 // Erfcinv(0) = +Inf 124 // Erfcinv(2) = -Inf 125 // Erfcinv(x) = NaN if x < 0 or x > 2 126 // Erfcinv(NaN) = NaN 127 func Erfcinv(x float64) float64 { 128 return Erfinv(1 - x) 129 }