github.com/psiphon-labs/psiphon-tunnel-core@v2.0.28+incompatible/psiphon/common/crypto/internal/poly1305/sum_s390x.s (about)

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:build gc && !purego
     6  // +build gc,!purego
     7  
     8  #include "textflag.h"
     9  
    10  // This implementation of Poly1305 uses the vector facility (vx)
    11  // to process up to 2 blocks (32 bytes) per iteration using an
    12  // algorithm based on the one described in:
    13  //
    14  // NEON crypto, Daniel J. Bernstein & Peter Schwabe
    15  // https://cryptojedi.org/papers/neoncrypto-20120320.pdf
    16  //
    17  // This algorithm uses 5 26-bit limbs to represent a 130-bit
    18  // value. These limbs are, for the most part, zero extended and
    19  // placed into 64-bit vector register elements. Each vector
    20  // register is 128-bits wide and so holds 2 of these elements.
    21  // Using 26-bit limbs allows us plenty of headroom to accommodate
    22  // accumulations before and after multiplication without
    23  // overflowing either 32-bits (before multiplication) or 64-bits
    24  // (after multiplication).
    25  //
    26  // In order to parallelise the operations required to calculate
    27  // the sum we use two separate accumulators and then sum those
    28  // in an extra final step. For compatibility with the generic
    29  // implementation we perform this summation at the end of every
    30  // updateVX call.
    31  //
    32  // To use two accumulators we must multiply the message blocks
    33  // by r² rather than r. Only the final message block should be
    34  // multiplied by r.
    35  //
    36  // Example:
    37  //
    38  // We want to calculate the sum (h) for a 64 byte message (m):
    39  //
    40  //   h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
    41  //
    42  // To do this we split the calculation into the even indices
    43  // and odd indices of the message. These form our SIMD 'lanes':
    44  //
    45  //   h = m[ 0:16]r⁴ + m[32:48]r² +   <- lane 0
    46  //       m[16:32]r³ + m[48:64]r      <- lane 1
    47  //
    48  // To calculate this iteratively we refactor so that both lanes
    49  // are written in terms of r² and r:
    50  //
    51  //   h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
    52  //       (m[16:32]r² + m[48:64])r    <- lane 1
    53  //                ^             ^
    54  //                |             coefficients for second iteration
    55  //                coefficients for first iteration
    56  //
    57  // So in this case we would have two iterations. In the first
    58  // both lanes are multiplied by r². In the second only the
    59  // first lane is multiplied by r² and the second lane is
    60  // instead multiplied by r. This gives use the odd and even
    61  // powers of r that we need from the original equation.
    62  //
    63  // Notation:
    64  //
    65  //   h - accumulator
    66  //   r - key
    67  //   m - message
    68  //
    69  //   [a, b]       - SIMD register holding two 64-bit values
    70  //   [a, b, c, d] - SIMD register holding four 32-bit values
    71  //   xᵢ[n]        - limb n of variable x with bit width i
    72  //
    73  // Limbs are expressed in little endian order, so for 26-bit
    74  // limbs x₂₆[4] will be the most significant limb and x₂₆[0]
    75  // will be the least significant limb.
    76  
    77  // masking constants
    78  #define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
    79  #define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
    80  
    81  // expansion constants (see EXPAND macro)
    82  #define EX0 V2
    83  #define EX1 V3
    84  #define EX2 V4
    85  
    86  // key (r², r or 1 depending on context)
    87  #define R_0 V5
    88  #define R_1 V6
    89  #define R_2 V7
    90  #define R_3 V8
    91  #define R_4 V9
    92  
    93  // precalculated coefficients (5r², 5r or 0 depending on context)
    94  #define R5_1 V10
    95  #define R5_2 V11
    96  #define R5_3 V12
    97  #define R5_4 V13
    98  
    99  // message block (m)
   100  #define M_0 V14
   101  #define M_1 V15
   102  #define M_2 V16
   103  #define M_3 V17
   104  #define M_4 V18
   105  
   106  // accumulator (h)
   107  #define H_0 V19
   108  #define H_1 V20
   109  #define H_2 V21
   110  #define H_3 V22
   111  #define H_4 V23
   112  
   113  // temporary registers (for short-lived values)
   114  #define T_0 V24
   115  #define T_1 V25
   116  #define T_2 V26
   117  #define T_3 V27
   118  #define T_4 V28
   119  
   120  GLOBL ·constants<>(SB), RODATA, $0x30
   121  // EX0
   122  DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
   123  DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
   124  // EX1
   125  DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
   126  DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
   127  // EX2
   128  DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
   129  DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
   130  
   131  // MULTIPLY multiplies each lane of f and g, partially reduced
   132  // modulo 2¹³⁰ - 5. The result, h, consists of partial products
   133  // in each lane that need to be reduced further to produce the
   134  // final result.
   135  //
   136  //   h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
   137  //
   138  // Note that the multiplication by 5 of the high bits is
   139  // achieved by precalculating the multiplication of four of the
   140  // g coefficients by 5. These are g51-g54.
   141  #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
   142  	VMLOF  f0, g0, h0        \
   143  	VMLOF  f0, g3, h3        \
   144  	VMLOF  f0, g1, h1        \
   145  	VMLOF  f0, g4, h4        \
   146  	VMLOF  f0, g2, h2        \
   147  	VMLOF  f1, g54, T_0      \
   148  	VMLOF  f1, g2, T_3       \
   149  	VMLOF  f1, g0, T_1       \
   150  	VMLOF  f1, g3, T_4       \
   151  	VMLOF  f1, g1, T_2       \
   152  	VMALOF f2, g53, h0, h0   \
   153  	VMALOF f2, g1, h3, h3    \
   154  	VMALOF f2, g54, h1, h1   \
   155  	VMALOF f2, g2, h4, h4    \
   156  	VMALOF f2, g0, h2, h2    \
   157  	VMALOF f3, g52, T_0, T_0 \
   158  	VMALOF f3, g0, T_3, T_3  \
   159  	VMALOF f3, g53, T_1, T_1 \
   160  	VMALOF f3, g1, T_4, T_4  \
   161  	VMALOF f3, g54, T_2, T_2 \
   162  	VMALOF f4, g51, h0, h0   \
   163  	VMALOF f4, g54, h3, h3   \
   164  	VMALOF f4, g52, h1, h1   \
   165  	VMALOF f4, g0, h4, h4    \
   166  	VMALOF f4, g53, h2, h2   \
   167  	VAG    T_0, h0, h0       \
   168  	VAG    T_3, h3, h3       \
   169  	VAG    T_1, h1, h1       \
   170  	VAG    T_4, h4, h4       \
   171  	VAG    T_2, h2, h2
   172  
   173  // REDUCE performs the following carry operations in four
   174  // stages, as specified in Bernstein & Schwabe:
   175  //
   176  //   1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
   177  //   2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
   178  //   3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
   179  //   4: h₂₆[3]->h₂₆[4]
   180  //
   181  // The result is that all of the limbs are limited to 26-bits
   182  // except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
   183  //
   184  // Note that although each limb is aligned at 26-bit intervals
   185  // they may contain values that exceed 2²⁶ - 1, hence the need
   186  // to carry the excess bits in each limb.
   187  #define REDUCE(h0, h1, h2, h3, h4) \
   188  	VESRLG $26, h0, T_0  \
   189  	VESRLG $26, h3, T_1  \
   190  	VN     MOD26, h0, h0 \
   191  	VN     MOD26, h3, h3 \
   192  	VAG    T_0, h1, h1   \
   193  	VAG    T_1, h4, h4   \
   194  	VESRLG $26, h1, T_2  \
   195  	VESRLG $26, h4, T_3  \
   196  	VN     MOD26, h1, h1 \
   197  	VN     MOD26, h4, h4 \
   198  	VESLG  $2, T_3, T_4  \
   199  	VAG    T_3, T_4, T_4 \
   200  	VAG    T_2, h2, h2   \
   201  	VAG    T_4, h0, h0   \
   202  	VESRLG $26, h2, T_0  \
   203  	VESRLG $26, h0, T_1  \
   204  	VN     MOD26, h2, h2 \
   205  	VN     MOD26, h0, h0 \
   206  	VAG    T_0, h3, h3   \
   207  	VAG    T_1, h1, h1   \
   208  	VESRLG $26, h3, T_2  \
   209  	VN     MOD26, h3, h3 \
   210  	VAG    T_2, h4, h4
   211  
   212  // EXPAND splits the 128-bit little-endian values in0 and in1
   213  // into 26-bit big-endian limbs and places the results into
   214  // the first and second lane of d₂₆[0:4] respectively.
   215  //
   216  // The EX0, EX1 and EX2 constants are arrays of byte indices
   217  // for permutation. The permutation both reverses the bytes
   218  // in the input and ensures the bytes are copied into the
   219  // destination limb ready to be shifted into their final
   220  // position.
   221  #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
   222  	VPERM  in0, in1, EX0, d0 \
   223  	VPERM  in0, in1, EX1, d2 \
   224  	VPERM  in0, in1, EX2, d4 \
   225  	VESRLG $26, d0, d1       \
   226  	VESRLG $30, d2, d3       \
   227  	VESRLG $4, d2, d2        \
   228  	VN     MOD26, d0, d0     \ // [in0₂₆[0], in1₂₆[0]]
   229  	VN     MOD26, d3, d3     \ // [in0₂₆[3], in1₂₆[3]]
   230  	VN     MOD26, d1, d1     \ // [in0₂₆[1], in1₂₆[1]]
   231  	VN     MOD24, d4, d4     \ // [in0₂₆[4], in1₂₆[4]]
   232  	VN     MOD26, d2, d2     // [in0₂₆[2], in1₂₆[2]]
   233  
   234  // func updateVX(state *macState, msg []byte)
   235  TEXT ·updateVX(SB), NOSPLIT, $0
   236  	MOVD state+0(FP), R1
   237  	LMG  msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
   238  
   239  	// load EX0, EX1 and EX2
   240  	MOVD $·constants<>(SB), R5
   241  	VLM  (R5), EX0, EX2
   242  
   243  	// generate masks
   244  	VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
   245  	VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
   246  
   247  	// load h (accumulator) and r (key) from state
   248  	VZERO T_1               // [0, 0]
   249  	VL    0(R1), T_0        // [h₆₄[0], h₆₄[1]]
   250  	VLEG  $0, 16(R1), T_1   // [h₆₄[2], 0]
   251  	VL    24(R1), T_2       // [r₆₄[0], r₆₄[1]]
   252  	VPDI  $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
   253  	VPDI  $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
   254  
   255  	// unpack h and r into 26-bit limbs
   256  	// note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
   257  	VN     MOD26, T_3, H_0            // [h₂₆[0], r₂₆[0]]
   258  	VZERO  H_1                        // [0, 0]
   259  	VZERO  H_3                        // [0, 0]
   260  	VGMG   $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
   261  	VESLG  $24, T_1, T_1              // [h₆₄[2]<<24, 0]
   262  	VERIMG $-26&63, T_3, MOD26, H_1   // [h₂₆[1], r₂₆[1]]
   263  	VESRLG $+52&63, T_3, H_2          // [h₂₆[2], r₂₆[2]] - low 12 bits only
   264  	VERIMG $-14&63, T_4, MOD26, H_3   // [h₂₆[1], r₂₆[1]]
   265  	VESRLG $40, T_4, H_4              // [h₂₆[4], r₂₆[4]] - low 24 bits only
   266  	VERIMG $+12&63, T_4, T_0, H_2     // [h₂₆[2], r₂₆[2]] - complete
   267  	VO     T_1, H_4, H_4              // [h₂₆[4], r₂₆[4]] - complete
   268  
   269  	// replicate r across all 4 vector elements
   270  	VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
   271  	VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
   272  	VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
   273  	VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
   274  	VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
   275  
   276  	// zero out lane 1 of h
   277  	VLEIG $1, $0, H_0 // [h₂₆[0], 0]
   278  	VLEIG $1, $0, H_1 // [h₂₆[1], 0]
   279  	VLEIG $1, $0, H_2 // [h₂₆[2], 0]
   280  	VLEIG $1, $0, H_3 // [h₂₆[3], 0]
   281  	VLEIG $1, $0, H_4 // [h₂₆[4], 0]
   282  
   283  	// calculate 5r (ignore least significant limb)
   284  	VREPIF $5, T_0
   285  	VMLF   T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
   286  	VMLF   T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
   287  	VMLF   T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
   288  	VMLF   T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
   289  
   290  	// skip r² calculation if we are only calculating one block
   291  	CMPBLE R3, $16, skip
   292  
   293  	// calculate r²
   294  	MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
   295  	REDUCE(M_0, M_1, M_2, M_3, M_4)
   296  	VGBM   $0x0f0f, T_0
   297  	VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
   298  	VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
   299  	VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
   300  	VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
   301  	VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
   302  
   303  	// calculate 5r² (ignore least significant limb)
   304  	VREPIF $5, T_0
   305  	VMLF   T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
   306  	VMLF   T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
   307  	VMLF   T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
   308  	VMLF   T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
   309  
   310  loop:
   311  	CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
   312  
   313  	// load next 2 blocks from message
   314  	VLM (R2), T_0, T_1
   315  
   316  	// update message slice
   317  	SUB  $32, R3
   318  	MOVD $32(R2), R2
   319  
   320  	// unpack message blocks into 26-bit big-endian limbs
   321  	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
   322  
   323  	// add 2¹²⁸ to each message block value
   324  	VLEIB $4, $1, M_4
   325  	VLEIB $12, $1, M_4
   326  
   327  multiply:
   328  	// accumulate the incoming message
   329  	VAG H_0, M_0, M_0
   330  	VAG H_3, M_3, M_3
   331  	VAG H_1, M_1, M_1
   332  	VAG H_4, M_4, M_4
   333  	VAG H_2, M_2, M_2
   334  
   335  	// multiply the accumulator by the key coefficient
   336  	MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
   337  
   338  	// carry and partially reduce the partial products
   339  	REDUCE(H_0, H_1, H_2, H_3, H_4)
   340  
   341  	CMPBNE R3, $0, loop
   342  
   343  finish:
   344  	// sum lane 0 and lane 1 and put the result in lane 1
   345  	VZERO  T_0
   346  	VSUMQG H_0, T_0, H_0
   347  	VSUMQG H_3, T_0, H_3
   348  	VSUMQG H_1, T_0, H_1
   349  	VSUMQG H_4, T_0, H_4
   350  	VSUMQG H_2, T_0, H_2
   351  
   352  	// reduce again after summation
   353  	// TODO(mundaym): there might be a more efficient way to do this
   354  	// now that we only have 1 active lane. For example, we could
   355  	// simultaneously pack the values as we reduce them.
   356  	REDUCE(H_0, H_1, H_2, H_3, H_4)
   357  
   358  	// carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
   359  	// TODO(mundaym): in testing this final carry was unnecessary.
   360  	// Needs a proof before it can be removed though.
   361  	VESRLG $26, H_1, T_1
   362  	VN     MOD26, H_1, H_1
   363  	VAQ    T_1, H_2, H_2
   364  	VESRLG $26, H_2, T_2
   365  	VN     MOD26, H_2, H_2
   366  	VAQ    T_2, H_3, H_3
   367  	VESRLG $26, H_3, T_3
   368  	VN     MOD26, H_3, H_3
   369  	VAQ    T_3, H_4, H_4
   370  
   371  	// h is now < 2(2¹³⁰ - 5)
   372  	// Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
   373  	VESLG $26, H_1, H_1
   374  	VESLG $26, H_3, H_3
   375  	VO    H_0, H_1, H_0
   376  	VO    H_2, H_3, H_2
   377  	VESLG $4, H_2, H_2
   378  	VLEIB $7, $48, H_1
   379  	VSLB  H_1, H_2, H_2
   380  	VO    H_0, H_2, H_0
   381  	VLEIB $7, $104, H_1
   382  	VSLB  H_1, H_4, H_3
   383  	VO    H_3, H_0, H_0
   384  	VLEIB $7, $24, H_1
   385  	VSRLB H_1, H_4, H_1
   386  
   387  	// update state
   388  	VSTEG $1, H_0, 0(R1)
   389  	VSTEG $0, H_0, 8(R1)
   390  	VSTEG $1, H_1, 16(R1)
   391  	RET
   392  
   393  b2:  // 2 or fewer blocks remaining
   394  	CMPBLE R3, $16, b1
   395  
   396  	// Load the 2 remaining blocks (17-32 bytes remaining).
   397  	MOVD $-17(R3), R0    // index of final byte to load modulo 16
   398  	VL   (R2), T_0       // load full 16 byte block
   399  	VLL  R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
   400  
   401  	// The Poly1305 algorithm requires that a 1 bit be appended to
   402  	// each message block. If the final block is less than 16 bytes
   403  	// long then it is easiest to insert the 1 before the message
   404  	// block is split into 26-bit limbs. If, on the other hand, the
   405  	// final message block is 16 bytes long then we append the 1 bit
   406  	// after expansion as normal.
   407  	MOVBZ  $1, R0
   408  	MOVD   $-16(R3), R3   // index of byte in last block to insert 1 at (could be 16)
   409  	CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
   410  	VLVGB  R3, R0, T_1    // insert 1 into the byte at index R3
   411  
   412  	// Split both blocks into 26-bit limbs in the appropriate lanes.
   413  	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
   414  
   415  	// Append a 1 byte to the end of the second to last block.
   416  	VLEIB $4, $1, M_4
   417  
   418  	// Append a 1 byte to the end of the last block only if it is a
   419  	// full 16 byte block.
   420  	CMPBNE R3, $16, 2(PC)
   421  	VLEIB  $12, $1, M_4
   422  
   423  	// Finally, set up the coefficients for the final multiplication.
   424  	// We have previously saved r and 5r in the 32-bit even indexes
   425  	// of the R_[0-4] and R5_[1-4] coefficient registers.
   426  	//
   427  	// We want lane 0 to be multiplied by r² so that can be kept the
   428  	// same. We want lane 1 to be multiplied by r so we need to move
   429  	// the saved r value into the 32-bit odd index in lane 1 by
   430  	// rotating the 64-bit lane by 32.
   431  	VGBM   $0x00ff, T_0         // [0, 0xffffffffffffffff] - mask lane 1 only
   432  	VERIMG $32, R_0, T_0, R_0   // [_,  r²₂₆[0], _,  r₂₆[0]]
   433  	VERIMG $32, R_1, T_0, R_1   // [_,  r²₂₆[1], _,  r₂₆[1]]
   434  	VERIMG $32, R_2, T_0, R_2   // [_,  r²₂₆[2], _,  r₂₆[2]]
   435  	VERIMG $32, R_3, T_0, R_3   // [_,  r²₂₆[3], _,  r₂₆[3]]
   436  	VERIMG $32, R_4, T_0, R_4   // [_,  r²₂₆[4], _,  r₂₆[4]]
   437  	VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
   438  	VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
   439  	VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
   440  	VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
   441  
   442  	MOVD $0, R3
   443  	BR   multiply
   444  
   445  skip:
   446  	CMPBEQ R3, $0, finish
   447  
   448  b1:  // 1 block remaining
   449  
   450  	// Load the final block (1-16 bytes). This will be placed into
   451  	// lane 0.
   452  	MOVD $-1(R3), R0
   453  	VLL  R0, (R2), T_0 // pad to 16 bytes with zeros
   454  
   455  	// The Poly1305 algorithm requires that a 1 bit be appended to
   456  	// each message block. If the final block is less than 16 bytes
   457  	// long then it is easiest to insert the 1 before the message
   458  	// block is split into 26-bit limbs. If, on the other hand, the
   459  	// final message block is 16 bytes long then we append the 1 bit
   460  	// after expansion as normal.
   461  	MOVBZ  $1, R0
   462  	CMPBEQ R3, $16, 2(PC)
   463  	VLVGB  R3, R0, T_0
   464  
   465  	// Set the message block in lane 1 to the value 0 so that it
   466  	// can be accumulated without affecting the final result.
   467  	VZERO T_1
   468  
   469  	// Split the final message block into 26-bit limbs in lane 0.
   470  	// Lane 1 will be contain 0.
   471  	EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
   472  
   473  	// Append a 1 byte to the end of the last block only if it is a
   474  	// full 16 byte block.
   475  	CMPBNE R3, $16, 2(PC)
   476  	VLEIB  $4, $1, M_4
   477  
   478  	// We have previously saved r and 5r in the 32-bit even indexes
   479  	// of the R_[0-4] and R5_[1-4] coefficient registers.
   480  	//
   481  	// We want lane 0 to be multiplied by r so we need to move the
   482  	// saved r value into the 32-bit odd index in lane 0. We want
   483  	// lane 1 to be set to the value 1. This makes multiplication
   484  	// a no-op. We do this by setting lane 1 in every register to 0
   485  	// and then just setting the 32-bit index 3 in R_0 to 1.
   486  	VZERO T_0
   487  	MOVD  $0, R0
   488  	MOVD  $0x10111213, R12
   489  	VLVGP R12, R0, T_1         // [_, 0x10111213, _, 0x00000000]
   490  	VPERM T_0, R_0, T_1, R_0   // [_,  r₂₆[0], _, 0]
   491  	VPERM T_0, R_1, T_1, R_1   // [_,  r₂₆[1], _, 0]
   492  	VPERM T_0, R_2, T_1, R_2   // [_,  r₂₆[2], _, 0]
   493  	VPERM T_0, R_3, T_1, R_3   // [_,  r₂₆[3], _, 0]
   494  	VPERM T_0, R_4, T_1, R_4   // [_,  r₂₆[4], _, 0]
   495  	VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
   496  	VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
   497  	VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
   498  	VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
   499  
   500  	// Set the value of lane 1 to be 1.
   501  	VLEIF $3, $1, R_0 // [_,  r₂₆[0], _, 1]
   502  
   503  	MOVD $0, R3
   504  	BR   multiply