github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/cmd/compile/internal/big/float.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements multi-precision floating-point numbers. 6 // Like in the GNU MPFR library (http://www.mpfr.org/), operands 7 // can be of mixed precision. Unlike MPFR, the rounding mode is 8 // not specified with each operation, but with each operand. The 9 // rounding mode of the result operand determines the rounding 10 // mode of an operation. This is a from-scratch implementation. 11 12 package big 13 14 import ( 15 "fmt" 16 "math" 17 ) 18 19 const debugFloat = false // enable for debugging 20 21 // A nonzero finite Float represents a multi-precision floating point number 22 // 23 // sign × mantissa × 2**exponent 24 // 25 // with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp. 26 // A Float may also be zero (+0, -0) or infinite (+Inf, -Inf). 27 // All Floats are ordered, and the ordering of two Floats x and y 28 // is defined by x.Cmp(y). 29 // 30 // Each Float value also has a precision, rounding mode, and accuracy. 31 // The precision is the maximum number of mantissa bits available to 32 // represent the value. The rounding mode specifies how a result should 33 // be rounded to fit into the mantissa bits, and accuracy describes the 34 // rounding error with respect to the exact result. 35 // 36 // Unless specified otherwise, all operations (including setters) that 37 // specify a *Float variable for the result (usually via the receiver 38 // with the exception of MantExp), round the numeric result according 39 // to the precision and rounding mode of the result variable. 40 // 41 // If the provided result precision is 0 (see below), it is set to the 42 // precision of the argument with the largest precision value before any 43 // rounding takes place, and the rounding mode remains unchanged. Thus, 44 // uninitialized Floats provided as result arguments will have their 45 // precision set to a reasonable value determined by the operands and 46 // their mode is the zero value for RoundingMode (ToNearestEven). 47 // 48 // By setting the desired precision to 24 or 53 and using matching rounding 49 // mode (typically ToNearestEven), Float operations produce the same results 50 // as the corresponding float32 or float64 IEEE-754 arithmetic for operands 51 // that correspond to normal (i.e., not denormal) float32 or float64 numbers. 52 // Exponent underflow and overflow lead to a 0 or an Infinity for different 53 // values than IEEE-754 because Float exponents have a much larger range. 54 // 55 // The zero (uninitialized) value for a Float is ready to use and represents 56 // the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven. 57 // 58 type Float struct { 59 prec uint32 60 mode RoundingMode 61 acc Accuracy 62 form form 63 neg bool 64 mant nat 65 exp int32 66 } 67 68 // An ErrNaN panic is raised by a Float operation that would lead to 69 // a NaN under IEEE-754 rules. An ErrNaN implements the error interface. 70 type ErrNaN struct { 71 msg string 72 } 73 74 func (err ErrNaN) Error() string { 75 return err.msg 76 } 77 78 // NewFloat allocates and returns a new Float set to x, 79 // with precision 53 and rounding mode ToNearestEven. 80 // NewFloat panics with ErrNaN if x is a NaN. 81 func NewFloat(x float64) *Float { 82 if math.IsNaN(x) { 83 panic(ErrNaN{"NewFloat(NaN)"}) 84 } 85 return new(Float).SetFloat64(x) 86 } 87 88 // Exponent and precision limits. 89 const ( 90 MaxExp = math.MaxInt32 // largest supported exponent 91 MinExp = math.MinInt32 // smallest supported exponent 92 MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited 93 ) 94 95 // Internal representation: The mantissa bits x.mant of a nonzero finite 96 // Float x are stored in a nat slice long enough to hold up to x.prec bits; 97 // the slice may (but doesn't have to) be shorter if the mantissa contains 98 // trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e., 99 // the msb is shifted all the way "to the left"). Thus, if the mantissa has 100 // trailing 0 bits or x.prec is not a multiple of the the Word size _W, 101 // x.mant[0] has trailing zero bits. The msb of the mantissa corresponds 102 // to the value 0.5; the exponent x.exp shifts the binary point as needed. 103 // 104 // A zero or non-finite Float x ignores x.mant and x.exp. 105 // 106 // x form neg mant exp 107 // ---------------------------------------------------------- 108 // ±0 zero sign - - 109 // 0 < |x| < +Inf finite sign mantissa exponent 110 // ±Inf inf sign - - 111 112 // A form value describes the internal representation. 113 type form byte 114 115 // The form value order is relevant - do not change! 116 const ( 117 zero form = iota 118 finite 119 inf 120 ) 121 122 // RoundingMode determines how a Float value is rounded to the 123 // desired precision. Rounding may change the Float value; the 124 // rounding error is described by the Float's Accuracy. 125 type RoundingMode byte 126 127 // The following rounding modes are supported. 128 const ( 129 ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven 130 ToNearestAway // == IEEE 754-2008 roundTiesToAway 131 ToZero // == IEEE 754-2008 roundTowardZero 132 AwayFromZero // no IEEE 754-2008 equivalent 133 ToNegativeInf // == IEEE 754-2008 roundTowardNegative 134 ToPositiveInf // == IEEE 754-2008 roundTowardPositive 135 ) 136 137 //go:generate stringer -type=RoundingMode 138 139 // Accuracy describes the rounding error produced by the most recent 140 // operation that generated a Float value, relative to the exact value. 141 type Accuracy int8 142 143 // Constants describing the Accuracy of a Float. 144 const ( 145 Below Accuracy = -1 146 Exact Accuracy = 0 147 Above Accuracy = +1 148 ) 149 150 //go:generate stringer -type=Accuracy 151 152 // SetPrec sets z's precision to prec and returns the (possibly) rounded 153 // value of z. Rounding occurs according to z's rounding mode if the mantissa 154 // cannot be represented in prec bits without loss of precision. 155 // SetPrec(0) maps all finite values to ±0; infinite values remain unchanged. 156 // If prec > MaxPrec, it is set to MaxPrec. 157 func (z *Float) SetPrec(prec uint) *Float { 158 z.acc = Exact // optimistically assume no rounding is needed 159 160 // special case 161 if prec == 0 { 162 z.prec = 0 163 if z.form == finite { 164 // truncate z to 0 165 z.acc = makeAcc(z.neg) 166 z.form = zero 167 } 168 return z 169 } 170 171 // general case 172 if prec > MaxPrec { 173 prec = MaxPrec 174 } 175 old := z.prec 176 z.prec = uint32(prec) 177 if z.prec < old { 178 z.round(0) 179 } 180 return z 181 } 182 183 func makeAcc(above bool) Accuracy { 184 if above { 185 return Above 186 } 187 return Below 188 } 189 190 // SetMode sets z's rounding mode to mode and returns an exact z. 191 // z remains unchanged otherwise. 192 // z.SetMode(z.Mode()) is a cheap way to set z's accuracy to Exact. 193 func (z *Float) SetMode(mode RoundingMode) *Float { 194 z.mode = mode 195 z.acc = Exact 196 return z 197 } 198 199 // Prec returns the mantissa precision of x in bits. 200 // The result may be 0 for |x| == 0 and |x| == Inf. 201 func (x *Float) Prec() uint { 202 return uint(x.prec) 203 } 204 205 // MinPrec returns the minimum precision required to represent x exactly 206 // (i.e., the smallest prec before x.SetPrec(prec) would start rounding x). 207 // The result is 0 for |x| == 0 and |x| == Inf. 208 func (x *Float) MinPrec() uint { 209 if x.form != finite { 210 return 0 211 } 212 return uint(len(x.mant))*_W - x.mant.trailingZeroBits() 213 } 214 215 // Mode returns the rounding mode of x. 216 func (x *Float) Mode() RoundingMode { 217 return x.mode 218 } 219 220 // Acc returns the accuracy of x produced by the most recent operation. 221 func (x *Float) Acc() Accuracy { 222 return x.acc 223 } 224 225 // Sign returns: 226 // 227 // -1 if x < 0 228 // 0 if x is ±0 229 // +1 if x > 0 230 // 231 func (x *Float) Sign() int { 232 if debugFloat { 233 x.validate() 234 } 235 if x.form == zero { 236 return 0 237 } 238 if x.neg { 239 return -1 240 } 241 return 1 242 } 243 244 // MantExp breaks x into its mantissa and exponent components 245 // and returns the exponent. If a non-nil mant argument is 246 // provided its value is set to the mantissa of x, with the 247 // same precision and rounding mode as x. The components 248 // satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0. 249 // Calling MantExp with a nil argument is an efficient way to 250 // get the exponent of the receiver. 251 // 252 // Special cases are: 253 // 254 // ( ±0).MantExp(mant) = 0, with mant set to ±0 255 // (±Inf).MantExp(mant) = 0, with mant set to ±Inf 256 // 257 // x and mant may be the same in which case x is set to its 258 // mantissa value. 259 func (x *Float) MantExp(mant *Float) (exp int) { 260 if debugFloat { 261 x.validate() 262 } 263 if x.form == finite { 264 exp = int(x.exp) 265 } 266 if mant != nil { 267 mant.Copy(x) 268 if mant.form == finite { 269 mant.exp = 0 270 } 271 } 272 return 273 } 274 275 func (z *Float) setExpAndRound(exp int64, sbit uint) { 276 if exp < MinExp { 277 // underflow 278 z.acc = makeAcc(z.neg) 279 z.form = zero 280 return 281 } 282 283 if exp > MaxExp { 284 // overflow 285 z.acc = makeAcc(!z.neg) 286 z.form = inf 287 return 288 } 289 290 z.form = finite 291 z.exp = int32(exp) 292 z.round(sbit) 293 } 294 295 // SetMantExp sets z to mant × 2**exp and and returns z. 296 // The result z has the same precision and rounding mode 297 // as mant. SetMantExp is an inverse of MantExp but does 298 // not require 0.5 <= |mant| < 1.0. Specifically: 299 // 300 // mant := new(Float) 301 // new(Float).SetMantExp(mant, x.SetMantExp(mant)).Cmp(x).Eql() is true 302 // 303 // Special cases are: 304 // 305 // z.SetMantExp( ±0, exp) = ±0 306 // z.SetMantExp(±Inf, exp) = ±Inf 307 // 308 // z and mant may be the same in which case z's exponent 309 // is set to exp. 310 func (z *Float) SetMantExp(mant *Float, exp int) *Float { 311 if debugFloat { 312 z.validate() 313 mant.validate() 314 } 315 z.Copy(mant) 316 if z.form != finite { 317 return z 318 } 319 z.setExpAndRound(int64(z.exp)+int64(exp), 0) 320 return z 321 } 322 323 // Signbit returns true if x is negative or negative zero. 324 func (x *Float) Signbit() bool { 325 return x.neg 326 } 327 328 // IsInf reports whether x is +Inf or -Inf. 329 func (x *Float) IsInf() bool { 330 return x.form == inf 331 } 332 333 // IsInt reports whether x is an integer. 334 // ±Inf values are not integers. 335 func (x *Float) IsInt() bool { 336 if debugFloat { 337 x.validate() 338 } 339 // special cases 340 if x.form != finite { 341 return x.form == zero 342 } 343 // x.form == finite 344 if x.exp <= 0 { 345 return false 346 } 347 // x.exp > 0 348 return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa 349 } 350 351 // debugging support 352 func (x *Float) validate() { 353 if !debugFloat { 354 // avoid performance bugs 355 panic("validate called but debugFloat is not set") 356 } 357 if x.form != finite { 358 return 359 } 360 m := len(x.mant) 361 if m == 0 { 362 panic("nonzero finite number with empty mantissa") 363 } 364 const msb = 1 << (_W - 1) 365 if x.mant[m-1]&msb == 0 { 366 panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Text('p', 0))) 367 } 368 if x.prec == 0 { 369 panic("zero precision finite number") 370 } 371 } 372 373 // round rounds z according to z.mode to z.prec bits and sets z.acc accordingly. 374 // sbit must be 0 or 1 and summarizes any "sticky bit" information one might 375 // have before calling round. z's mantissa must be normalized (with the msb set) 376 // or empty. 377 // 378 // CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the 379 // sign of z. For correct rounding, the sign of z must be set correctly before 380 // calling round. 381 func (z *Float) round(sbit uint) { 382 if debugFloat { 383 z.validate() 384 } 385 386 z.acc = Exact 387 if z.form != finite { 388 // ±0 or ±Inf => nothing left to do 389 return 390 } 391 // z.form == finite && len(z.mant) > 0 392 // m > 0 implies z.prec > 0 (checked by validate) 393 394 m := uint32(len(z.mant)) // present mantissa length in words 395 bits := m * _W // present mantissa bits 396 if bits <= z.prec { 397 // mantissa fits => nothing to do 398 return 399 } 400 // bits > z.prec 401 402 n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision 403 404 // Rounding is based on two bits: the rounding bit (rbit) and the 405 // sticky bit (sbit). The rbit is the bit immediately before the 406 // z.prec leading mantissa bits (the "0.5"). The sbit is set if any 407 // of the bits before the rbit are set (the "0.25", "0.125", etc.): 408 // 409 // rbit sbit => "fractional part" 410 // 411 // 0 0 == 0 412 // 0 1 > 0 , < 0.5 413 // 1 0 == 0.5 414 // 1 1 > 0.5, < 1.0 415 416 // bits > z.prec: mantissa too large => round 417 r := uint(bits - z.prec - 1) // rounding bit position; r >= 0 418 rbit := z.mant.bit(r) // rounding bit 419 if sbit == 0 { 420 sbit = z.mant.sticky(r) 421 } 422 if debugFloat && sbit&^1 != 0 { 423 panic(fmt.Sprintf("invalid sbit %#x", sbit)) 424 } 425 426 // convert ToXInf rounding modes 427 mode := z.mode 428 switch mode { 429 case ToNegativeInf: 430 mode = ToZero 431 if z.neg { 432 mode = AwayFromZero 433 } 434 case ToPositiveInf: 435 mode = AwayFromZero 436 if z.neg { 437 mode = ToZero 438 } 439 } 440 441 // cut off extra words 442 if m > n { 443 copy(z.mant, z.mant[m-n:]) // move n last words to front 444 z.mant = z.mant[:n] 445 } 446 447 // determine number of trailing zero bits t 448 t := n*_W - z.prec // 0 <= t < _W 449 lsb := Word(1) << t 450 451 // make rounding decision 452 // TODO(gri) This can be simplified (see Bits.round in bits_test.go). 453 switch mode { 454 case ToZero: 455 // nothing to do 456 case ToNearestEven, ToNearestAway: 457 if rbit == 0 { 458 // rounding bits == 0b0x 459 mode = ToZero 460 } else if sbit == 1 { 461 // rounding bits == 0b11 462 mode = AwayFromZero 463 } 464 case AwayFromZero: 465 if rbit|sbit == 0 { 466 mode = ToZero 467 } 468 default: 469 // ToXInf modes have been converted to ToZero or AwayFromZero 470 panic("unreachable") 471 } 472 473 // round and determine accuracy 474 switch mode { 475 case ToZero: 476 if rbit|sbit != 0 { 477 z.acc = Below 478 } 479 480 case ToNearestEven, ToNearestAway: 481 if debugFloat && rbit != 1 { 482 panic("internal error in rounding") 483 } 484 if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 { 485 z.acc = Below 486 break 487 } 488 // mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0 489 fallthrough 490 491 case AwayFromZero: 492 // add 1 to mantissa 493 if addVW(z.mant, z.mant, lsb) != 0 { 494 // overflow => shift mantissa right by 1 and add msb 495 shrVU(z.mant, z.mant, 1) 496 z.mant[n-1] |= 1 << (_W - 1) 497 // adjust exponent 498 if z.exp < MaxExp { 499 z.exp++ 500 } else { 501 // exponent overflow 502 z.acc = makeAcc(!z.neg) 503 z.form = inf 504 return 505 } 506 } 507 z.acc = Above 508 } 509 510 // zero out trailing bits in least-significant word 511 z.mant[0] &^= lsb - 1 512 513 // update accuracy 514 if z.acc != Exact && z.neg { 515 z.acc = -z.acc 516 } 517 518 if debugFloat { 519 z.validate() 520 } 521 522 return 523 } 524 525 func (z *Float) setBits64(neg bool, x uint64) *Float { 526 if z.prec == 0 { 527 z.prec = 64 528 } 529 z.acc = Exact 530 z.neg = neg 531 if x == 0 { 532 z.form = zero 533 return z 534 } 535 // x != 0 536 z.form = finite 537 s := nlz64(x) 538 z.mant = z.mant.setUint64(x << s) 539 z.exp = int32(64 - s) // always fits 540 if z.prec < 64 { 541 z.round(0) 542 } 543 return z 544 } 545 546 // SetUint64 sets z to the (possibly rounded) value of x and returns z. 547 // If z's precision is 0, it is changed to 64 (and rounding will have 548 // no effect). 549 func (z *Float) SetUint64(x uint64) *Float { 550 return z.setBits64(false, x) 551 } 552 553 // SetInt64 sets z to the (possibly rounded) value of x and returns z. 554 // If z's precision is 0, it is changed to 64 (and rounding will have 555 // no effect). 556 func (z *Float) SetInt64(x int64) *Float { 557 u := x 558 if u < 0 { 559 u = -u 560 } 561 // We cannot simply call z.SetUint64(uint64(u)) and change 562 // the sign afterwards because the sign affects rounding. 563 return z.setBits64(x < 0, uint64(u)) 564 } 565 566 // SetFloat64 sets z to the (possibly rounded) value of x and returns z. 567 // If z's precision is 0, it is changed to 53 (and rounding will have 568 // no effect). SetFloat64 panics with ErrNaN if x is a NaN. 569 func (z *Float) SetFloat64(x float64) *Float { 570 if z.prec == 0 { 571 z.prec = 53 572 } 573 if math.IsNaN(x) { 574 panic(ErrNaN{"Float.SetFloat64(NaN)"}) 575 } 576 z.acc = Exact 577 z.neg = math.Signbit(x) // handle -0, -Inf correctly 578 if x == 0 { 579 z.form = zero 580 return z 581 } 582 if math.IsInf(x, 0) { 583 z.form = inf 584 return z 585 } 586 // normalized x != 0 587 z.form = finite 588 fmant, exp := math.Frexp(x) // get normalized mantissa 589 z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11) 590 z.exp = int32(exp) // always fits 591 if z.prec < 53 { 592 z.round(0) 593 } 594 return z 595 } 596 597 // fnorm normalizes mantissa m by shifting it to the left 598 // such that the msb of the most-significant word (msw) is 1. 599 // It returns the shift amount. It assumes that len(m) != 0. 600 func fnorm(m nat) int64 { 601 if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) { 602 panic("msw of mantissa is 0") 603 } 604 s := nlz(m[len(m)-1]) 605 if s > 0 { 606 c := shlVU(m, m, s) 607 if debugFloat && c != 0 { 608 panic("nlz or shlVU incorrect") 609 } 610 } 611 return int64(s) 612 } 613 614 // SetInt sets z to the (possibly rounded) value of x and returns z. 615 // If z's precision is 0, it is changed to the larger of x.BitLen() 616 // or 64 (and rounding will have no effect). 617 func (z *Float) SetInt(x *Int) *Float { 618 // TODO(gri) can be more efficient if z.prec > 0 619 // but small compared to the size of x, or if there 620 // are many trailing 0's. 621 bits := uint32(x.BitLen()) 622 if z.prec == 0 { 623 z.prec = umax32(bits, 64) 624 } 625 z.acc = Exact 626 z.neg = x.neg 627 if len(x.abs) == 0 { 628 z.form = zero 629 return z 630 } 631 // x != 0 632 z.mant = z.mant.set(x.abs) 633 fnorm(z.mant) 634 z.setExpAndRound(int64(bits), 0) 635 return z 636 } 637 638 // SetRat sets z to the (possibly rounded) value of x and returns z. 639 // If z's precision is 0, it is changed to the largest of a.BitLen(), 640 // b.BitLen(), or 64; with x = a/b. 641 func (z *Float) SetRat(x *Rat) *Float { 642 if x.IsInt() { 643 return z.SetInt(x.Num()) 644 } 645 var a, b Float 646 a.SetInt(x.Num()) 647 b.SetInt(x.Denom()) 648 if z.prec == 0 { 649 z.prec = umax32(a.prec, b.prec) 650 } 651 return z.Quo(&a, &b) 652 } 653 654 // SetInf sets z to the infinite Float -Inf if signbit is 655 // set, or +Inf if signbit is not set, and returns z. The 656 // precision of z is unchanged and the result is always 657 // Exact. 658 func (z *Float) SetInf(signbit bool) *Float { 659 z.acc = Exact 660 z.form = inf 661 z.neg = signbit 662 return z 663 } 664 665 // Set sets z to the (possibly rounded) value of x and returns z. 666 // If z's precision is 0, it is changed to the precision of x 667 // before setting z (and rounding will have no effect). 668 // Rounding is performed according to z's precision and rounding 669 // mode; and z's accuracy reports the result error relative to the 670 // exact (not rounded) result. 671 func (z *Float) Set(x *Float) *Float { 672 if debugFloat { 673 x.validate() 674 } 675 z.acc = Exact 676 if z != x { 677 z.form = x.form 678 z.neg = x.neg 679 if x.form == finite { 680 z.exp = x.exp 681 z.mant = z.mant.set(x.mant) 682 } 683 if z.prec == 0 { 684 z.prec = x.prec 685 } else if z.prec < x.prec { 686 z.round(0) 687 } 688 } 689 return z 690 } 691 692 // Copy sets z to x, with the same precision, rounding mode, and 693 // accuracy as x, and returns z. x is not changed even if z and 694 // x are the same. 695 func (z *Float) Copy(x *Float) *Float { 696 if debugFloat { 697 x.validate() 698 } 699 if z != x { 700 z.prec = x.prec 701 z.mode = x.mode 702 z.acc = x.acc 703 z.form = x.form 704 z.neg = x.neg 705 if z.form == finite { 706 z.mant = z.mant.set(x.mant) 707 z.exp = x.exp 708 } 709 } 710 return z 711 } 712 713 // msb32 returns the 32 most significant bits of x. 714 func msb32(x nat) uint32 { 715 i := len(x) - 1 716 if i < 0 { 717 return 0 718 } 719 if debugFloat && x[i]&(1<<(_W-1)) == 0 { 720 panic("x not normalized") 721 } 722 switch _W { 723 case 32: 724 return uint32(x[i]) 725 case 64: 726 return uint32(x[i] >> 32) 727 } 728 panic("unreachable") 729 } 730 731 // msb64 returns the 64 most significant bits of x. 732 func msb64(x nat) uint64 { 733 i := len(x) - 1 734 if i < 0 { 735 return 0 736 } 737 if debugFloat && x[i]&(1<<(_W-1)) == 0 { 738 panic("x not normalized") 739 } 740 switch _W { 741 case 32: 742 v := uint64(x[i]) << 32 743 if i > 0 { 744 v |= uint64(x[i-1]) 745 } 746 return v 747 case 64: 748 return uint64(x[i]) 749 } 750 panic("unreachable") 751 } 752 753 // Uint64 returns the unsigned integer resulting from truncating x 754 // towards zero. If 0 <= x <= math.MaxUint64, the result is Exact 755 // if x is an integer and Below otherwise. 756 // The result is (0, Above) for x < 0, and (math.MaxUint64, Below) 757 // for x > math.MaxUint64. 758 func (x *Float) Uint64() (uint64, Accuracy) { 759 if debugFloat { 760 x.validate() 761 } 762 763 switch x.form { 764 case finite: 765 if x.neg { 766 return 0, Above 767 } 768 // 0 < x < +Inf 769 if x.exp <= 0 { 770 // 0 < x < 1 771 return 0, Below 772 } 773 // 1 <= x < Inf 774 if x.exp <= 64 { 775 // u = trunc(x) fits into a uint64 776 u := msb64(x.mant) >> (64 - uint32(x.exp)) 777 if x.MinPrec() <= 64 { 778 return u, Exact 779 } 780 return u, Below // x truncated 781 } 782 // x too large 783 return math.MaxUint64, Below 784 785 case zero: 786 return 0, Exact 787 788 case inf: 789 if x.neg { 790 return 0, Above 791 } 792 return math.MaxUint64, Below 793 } 794 795 panic("unreachable") 796 } 797 798 // Int64 returns the integer resulting from truncating x towards zero. 799 // If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is 800 // an integer, and Above (x < 0) or Below (x > 0) otherwise. 801 // The result is (math.MinInt64, Above) for x < math.MinInt64, 802 // and (math.MaxInt64, Below) for x > math.MaxInt64. 803 func (x *Float) Int64() (int64, Accuracy) { 804 if debugFloat { 805 x.validate() 806 } 807 808 switch x.form { 809 case finite: 810 // 0 < |x| < +Inf 811 acc := makeAcc(x.neg) 812 if x.exp <= 0 { 813 // 0 < |x| < 1 814 return 0, acc 815 } 816 // x.exp > 0 817 818 // 1 <= |x| < +Inf 819 if x.exp <= 63 { 820 // i = trunc(x) fits into an int64 (excluding math.MinInt64) 821 i := int64(msb64(x.mant) >> (64 - uint32(x.exp))) 822 if x.neg { 823 i = -i 824 } 825 if x.MinPrec() <= uint(x.exp) { 826 return i, Exact 827 } 828 return i, acc // x truncated 829 } 830 if x.neg { 831 // check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64)) 832 if x.exp == 64 && x.MinPrec() == 1 { 833 acc = Exact 834 } 835 return math.MinInt64, acc 836 } 837 // x too large 838 return math.MaxInt64, Below 839 840 case zero: 841 return 0, Exact 842 843 case inf: 844 if x.neg { 845 return math.MinInt64, Above 846 } 847 return math.MaxInt64, Below 848 } 849 850 panic("unreachable") 851 } 852 853 // Float32 returns the float32 value nearest to x. If x is too small to be 854 // represented by a float32 (|x| < math.SmallestNonzeroFloat32), the result 855 // is (0, Below) or (-0, Above), respectively, depending on the sign of x. 856 // If x is too large to be represented by a float32 (|x| > math.MaxFloat32), 857 // the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x. 858 func (x *Float) Float32() (float32, Accuracy) { 859 if debugFloat { 860 x.validate() 861 } 862 863 switch x.form { 864 case finite: 865 // 0 < |x| < +Inf 866 867 const ( 868 fbits = 32 // float size 869 mbits = 23 // mantissa size (excluding implicit msb) 870 ebits = fbits - mbits - 1 // 8 exponent size 871 bias = 1<<(ebits-1) - 1 // 127 exponent bias 872 dmin = 1 - bias - mbits // -149 smallest unbiased exponent (denormal) 873 emin = 1 - bias // -126 smallest unbiased exponent (normal) 874 emax = bias // 127 largest unbiased exponent (normal) 875 ) 876 877 // Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa. 878 e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0 879 p := mbits + 1 // precision of normal float 880 881 // If the exponent is too small, we may have a denormal number 882 // in which case we have fewer mantissa bits available: reduce 883 // precision accordingly. 884 if e < emin { 885 p -= emin - int(e) 886 // Make sure we have at least 1 bit so that we don't 887 // lose numbers rounded up to the smallest denormal. 888 if p < 1 { 889 p = 1 890 } 891 } 892 893 // round 894 var r Float 895 r.prec = uint32(p) 896 r.Set(x) 897 e = r.exp - 1 898 899 // Rounding may have caused r to overflow to ±Inf 900 // (rounding never causes underflows to 0). 901 if r.form == inf { 902 e = emax + 1 // cause overflow below 903 } 904 905 // If the exponent is too large, overflow to ±Inf. 906 if e > emax { 907 // overflow 908 if x.neg { 909 return float32(math.Inf(-1)), Below 910 } 911 return float32(math.Inf(+1)), Above 912 } 913 // e <= emax 914 915 // Determine sign, biased exponent, and mantissa. 916 var sign, bexp, mant uint32 917 if x.neg { 918 sign = 1 << (fbits - 1) 919 } 920 921 // Rounding may have caused a denormal number to 922 // become normal. Check again. 923 if e < emin { 924 // denormal number 925 if e < dmin { 926 // underflow to ±0 927 if x.neg { 928 var z float32 929 return -z, Above 930 } 931 return 0.0, Below 932 } 933 // bexp = 0 934 mant = msb32(r.mant) >> (fbits - r.prec) 935 } else { 936 // normal number: emin <= e <= emax 937 bexp = uint32(e+bias) << mbits 938 mant = msb32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit) 939 } 940 941 return math.Float32frombits(sign | bexp | mant), r.acc 942 943 case zero: 944 if x.neg { 945 var z float32 946 return -z, Exact 947 } 948 return 0.0, Exact 949 950 case inf: 951 if x.neg { 952 return float32(math.Inf(-1)), Exact 953 } 954 return float32(math.Inf(+1)), Exact 955 } 956 957 panic("unreachable") 958 } 959 960 // Float64 returns the float64 value nearest to x. If x is too small to be 961 // represented by a float64 (|x| < math.SmallestNonzeroFloat64), the result 962 // is (0, Below) or (-0, Above), respectively, depending on the sign of x. 963 // If x is too large to be represented by a float64 (|x| > math.MaxFloat64), 964 // the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x. 965 func (x *Float) Float64() (float64, Accuracy) { 966 if debugFloat { 967 x.validate() 968 } 969 970 switch x.form { 971 case finite: 972 // 0 < |x| < +Inf 973 974 const ( 975 fbits = 64 // float size 976 mbits = 52 // mantissa size (excluding implicit msb) 977 ebits = fbits - mbits - 1 // 11 exponent size 978 bias = 1<<(ebits-1) - 1 // 1023 exponent bias 979 dmin = 1 - bias - mbits // -1074 smallest unbiased exponent (denormal) 980 emin = 1 - bias // -1022 smallest unbiased exponent (normal) 981 emax = bias // 1023 largest unbiased exponent (normal) 982 ) 983 984 // Float mantissa m is 0.5 <= m < 1.0; compute exponent for floatxx mantissa. 985 e := x.exp - 1 // exponent for mantissa m with 1.0 <= m < 2.0 986 p := mbits + 1 // precision of normal float 987 988 // If the exponent is too small, we may have a denormal number 989 // in which case we have fewer mantissa bits available: reduce 990 // precision accordingly. 991 if e < emin { 992 p -= emin - int(e) 993 // Make sure we have at least 1 bit so that we don't 994 // lose numbers rounded up to the smallest denormal. 995 if p < 1 { 996 p = 1 997 } 998 } 999 1000 // round 1001 var r Float 1002 r.prec = uint32(p) 1003 r.Set(x) 1004 e = r.exp - 1 1005 1006 // Rounding may have caused r to overflow to ±Inf 1007 // (rounding never causes underflows to 0). 1008 if r.form == inf { 1009 e = emax + 1 // cause overflow below 1010 } 1011 1012 // If the exponent is too large, overflow to ±Inf. 1013 if e > emax { 1014 // overflow 1015 if x.neg { 1016 return math.Inf(-1), Below 1017 } 1018 return math.Inf(+1), Above 1019 } 1020 // e <= emax 1021 1022 // Determine sign, biased exponent, and mantissa. 1023 var sign, bexp, mant uint64 1024 if x.neg { 1025 sign = 1 << (fbits - 1) 1026 } 1027 1028 // Rounding may have caused a denormal number to 1029 // become normal. Check again. 1030 if e < emin { 1031 // denormal number 1032 if e < dmin { 1033 // underflow to ±0 1034 if x.neg { 1035 var z float64 1036 return -z, Above 1037 } 1038 return 0.0, Below 1039 } 1040 // bexp = 0 1041 mant = msb64(r.mant) >> (fbits - r.prec) 1042 } else { 1043 // normal number: emin <= e <= emax 1044 bexp = uint64(e+bias) << mbits 1045 mant = msb64(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit) 1046 } 1047 1048 return math.Float64frombits(sign | bexp | mant), r.acc 1049 1050 case zero: 1051 if x.neg { 1052 var z float64 1053 return -z, Exact 1054 } 1055 return 0.0, Exact 1056 1057 case inf: 1058 if x.neg { 1059 return math.Inf(-1), Exact 1060 } 1061 return math.Inf(+1), Exact 1062 } 1063 1064 panic("unreachable") 1065 } 1066 1067 // Int returns the result of truncating x towards zero; 1068 // or nil if x is an infinity. 1069 // The result is Exact if x.IsInt(); otherwise it is Below 1070 // for x > 0, and Above for x < 0. 1071 // If a non-nil *Int argument z is provided, Int stores 1072 // the result in z instead of allocating a new Int. 1073 func (x *Float) Int(z *Int) (*Int, Accuracy) { 1074 if debugFloat { 1075 x.validate() 1076 } 1077 1078 if z == nil && x.form <= finite { 1079 z = new(Int) 1080 } 1081 1082 switch x.form { 1083 case finite: 1084 // 0 < |x| < +Inf 1085 acc := makeAcc(x.neg) 1086 if x.exp <= 0 { 1087 // 0 < |x| < 1 1088 return z.SetInt64(0), acc 1089 } 1090 // x.exp > 0 1091 1092 // 1 <= |x| < +Inf 1093 // determine minimum required precision for x 1094 allBits := uint(len(x.mant)) * _W 1095 exp := uint(x.exp) 1096 if x.MinPrec() <= exp { 1097 acc = Exact 1098 } 1099 // shift mantissa as needed 1100 if z == nil { 1101 z = new(Int) 1102 } 1103 z.neg = x.neg 1104 switch { 1105 case exp > allBits: 1106 z.abs = z.abs.shl(x.mant, exp-allBits) 1107 default: 1108 z.abs = z.abs.set(x.mant) 1109 case exp < allBits: 1110 z.abs = z.abs.shr(x.mant, allBits-exp) 1111 } 1112 return z, acc 1113 1114 case zero: 1115 return z.SetInt64(0), Exact 1116 1117 case inf: 1118 return nil, makeAcc(x.neg) 1119 } 1120 1121 panic("unreachable") 1122 } 1123 1124 // Rat returns the rational number corresponding to x; 1125 // or nil if x is an infinity. 1126 // The result is Exact is x is not an Inf. 1127 // If a non-nil *Rat argument z is provided, Rat stores 1128 // the result in z instead of allocating a new Rat. 1129 func (x *Float) Rat(z *Rat) (*Rat, Accuracy) { 1130 if debugFloat { 1131 x.validate() 1132 } 1133 1134 if z == nil && x.form <= finite { 1135 z = new(Rat) 1136 } 1137 1138 switch x.form { 1139 case finite: 1140 // 0 < |x| < +Inf 1141 allBits := int32(len(x.mant)) * _W 1142 // build up numerator and denominator 1143 z.a.neg = x.neg 1144 switch { 1145 case x.exp > allBits: 1146 z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits)) 1147 z.b.abs = z.b.abs[:0] // == 1 (see Rat) 1148 // z already in normal form 1149 default: 1150 z.a.abs = z.a.abs.set(x.mant) 1151 z.b.abs = z.b.abs[:0] // == 1 (see Rat) 1152 // z already in normal form 1153 case x.exp < allBits: 1154 z.a.abs = z.a.abs.set(x.mant) 1155 t := z.b.abs.setUint64(1) 1156 z.b.abs = t.shl(t, uint(allBits-x.exp)) 1157 z.norm() 1158 } 1159 return z, Exact 1160 1161 case zero: 1162 return z.SetInt64(0), Exact 1163 1164 case inf: 1165 return nil, makeAcc(x.neg) 1166 } 1167 1168 panic("unreachable") 1169 } 1170 1171 // Abs sets z to the (possibly rounded) value |x| (the absolute value of x) 1172 // and returns z. 1173 func (z *Float) Abs(x *Float) *Float { 1174 z.Set(x) 1175 z.neg = false 1176 return z 1177 } 1178 1179 // Neg sets z to the (possibly rounded) value of x with its sign negated, 1180 // and returns z. 1181 func (z *Float) Neg(x *Float) *Float { 1182 z.Set(x) 1183 z.neg = !z.neg 1184 return z 1185 } 1186 1187 func validateBinaryOperands(x, y *Float) { 1188 if !debugFloat { 1189 // avoid performance bugs 1190 panic("validateBinaryOperands called but debugFloat is not set") 1191 } 1192 if len(x.mant) == 0 { 1193 panic("empty mantissa for x") 1194 } 1195 if len(y.mant) == 0 { 1196 panic("empty mantissa for y") 1197 } 1198 } 1199 1200 // z = x + y, ignoring signs of x and y for the addition 1201 // but using the sign of z for rounding the result. 1202 // x and y must have a non-empty mantissa and valid exponent. 1203 func (z *Float) uadd(x, y *Float) { 1204 // Note: This implementation requires 2 shifts most of the 1205 // time. It is also inefficient if exponents or precisions 1206 // differ by wide margins. The following article describes 1207 // an efficient (but much more complicated) implementation 1208 // compatible with the internal representation used here: 1209 // 1210 // Vincent Lefèvre: "The Generic Multiple-Precision Floating- 1211 // Point Addition With Exact Rounding (as in the MPFR Library)" 1212 // http://www.vinc17.net/research/papers/rnc6.pdf 1213 1214 if debugFloat { 1215 validateBinaryOperands(x, y) 1216 } 1217 1218 // compute exponents ex, ey for mantissa with "binary point" 1219 // on the right (mantissa.0) - use int64 to avoid overflow 1220 ex := int64(x.exp) - int64(len(x.mant))*_W 1221 ey := int64(y.exp) - int64(len(y.mant))*_W 1222 1223 // TODO(gri) having a combined add-and-shift primitive 1224 // could make this code significantly faster 1225 switch { 1226 case ex < ey: 1227 // cannot re-use z.mant w/o testing for aliasing 1228 t := nat(nil).shl(y.mant, uint(ey-ex)) 1229 z.mant = z.mant.add(x.mant, t) 1230 default: 1231 // ex == ey, no shift needed 1232 z.mant = z.mant.add(x.mant, y.mant) 1233 case ex > ey: 1234 // cannot re-use z.mant w/o testing for aliasing 1235 t := nat(nil).shl(x.mant, uint(ex-ey)) 1236 z.mant = z.mant.add(t, y.mant) 1237 ex = ey 1238 } 1239 // len(z.mant) > 0 1240 1241 z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0) 1242 } 1243 1244 // z = x - y for |x| > |y|, ignoring signs of x and y for the subtraction 1245 // but using the sign of z for rounding the result. 1246 // x and y must have a non-empty mantissa and valid exponent. 1247 func (z *Float) usub(x, y *Float) { 1248 // This code is symmetric to uadd. 1249 // We have not factored the common code out because 1250 // eventually uadd (and usub) should be optimized 1251 // by special-casing, and the code will diverge. 1252 1253 if debugFloat { 1254 validateBinaryOperands(x, y) 1255 } 1256 1257 ex := int64(x.exp) - int64(len(x.mant))*_W 1258 ey := int64(y.exp) - int64(len(y.mant))*_W 1259 1260 switch { 1261 case ex < ey: 1262 // cannot re-use z.mant w/o testing for aliasing 1263 t := nat(nil).shl(y.mant, uint(ey-ex)) 1264 z.mant = t.sub(x.mant, t) 1265 default: 1266 // ex == ey, no shift needed 1267 z.mant = z.mant.sub(x.mant, y.mant) 1268 case ex > ey: 1269 // cannot re-use z.mant w/o testing for aliasing 1270 t := nat(nil).shl(x.mant, uint(ex-ey)) 1271 z.mant = t.sub(t, y.mant) 1272 ex = ey 1273 } 1274 1275 // operands may have canceled each other out 1276 if len(z.mant) == 0 { 1277 z.acc = Exact 1278 z.form = zero 1279 z.neg = false 1280 return 1281 } 1282 // len(z.mant) > 0 1283 1284 z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0) 1285 } 1286 1287 // z = x * y, ignoring signs of x and y for the multiplication 1288 // but using the sign of z for rounding the result. 1289 // x and y must have a non-empty mantissa and valid exponent. 1290 func (z *Float) umul(x, y *Float) { 1291 if debugFloat { 1292 validateBinaryOperands(x, y) 1293 } 1294 1295 // Note: This is doing too much work if the precision 1296 // of z is less than the sum of the precisions of x 1297 // and y which is often the case (e.g., if all floats 1298 // have the same precision). 1299 // TODO(gri) Optimize this for the common case. 1300 1301 e := int64(x.exp) + int64(y.exp) 1302 z.mant = z.mant.mul(x.mant, y.mant) 1303 1304 z.setExpAndRound(e-fnorm(z.mant), 0) 1305 } 1306 1307 // z = x / y, ignoring signs of x and y for the division 1308 // but using the sign of z for rounding the result. 1309 // x and y must have a non-empty mantissa and valid exponent. 1310 func (z *Float) uquo(x, y *Float) { 1311 if debugFloat { 1312 validateBinaryOperands(x, y) 1313 } 1314 1315 // mantissa length in words for desired result precision + 1 1316 // (at least one extra bit so we get the rounding bit after 1317 // the division) 1318 n := int(z.prec/_W) + 1 1319 1320 // compute adjusted x.mant such that we get enough result precision 1321 xadj := x.mant 1322 if d := n - len(x.mant) + len(y.mant); d > 0 { 1323 // d extra words needed => add d "0 digits" to x 1324 xadj = make(nat, len(x.mant)+d) 1325 copy(xadj[d:], x.mant) 1326 } 1327 // TODO(gri): If we have too many digits (d < 0), we should be able 1328 // to shorten x for faster division. But we must be extra careful 1329 // with rounding in that case. 1330 1331 // Compute d before division since there may be aliasing of x.mant 1332 // (via xadj) or y.mant with z.mant. 1333 d := len(xadj) - len(y.mant) 1334 1335 // divide 1336 var r nat 1337 z.mant, r = z.mant.div(nil, xadj, y.mant) 1338 e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W 1339 1340 // The result is long enough to include (at least) the rounding bit. 1341 // If there's a non-zero remainder, the corresponding fractional part 1342 // (if it were computed), would have a non-zero sticky bit (if it were 1343 // zero, it couldn't have a non-zero remainder). 1344 var sbit uint 1345 if len(r) > 0 { 1346 sbit = 1 1347 } 1348 1349 z.setExpAndRound(e-fnorm(z.mant), sbit) 1350 } 1351 1352 // ucmp returns -1, 0, or +1, depending on whether 1353 // |x| < |y|, |x| == |y|, or |x| > |y|. 1354 // x and y must have a non-empty mantissa and valid exponent. 1355 func (x *Float) ucmp(y *Float) int { 1356 if debugFloat { 1357 validateBinaryOperands(x, y) 1358 } 1359 1360 switch { 1361 case x.exp < y.exp: 1362 return -1 1363 case x.exp > y.exp: 1364 return +1 1365 } 1366 // x.exp == y.exp 1367 1368 // compare mantissas 1369 i := len(x.mant) 1370 j := len(y.mant) 1371 for i > 0 || j > 0 { 1372 var xm, ym Word 1373 if i > 0 { 1374 i-- 1375 xm = x.mant[i] 1376 } 1377 if j > 0 { 1378 j-- 1379 ym = y.mant[j] 1380 } 1381 switch { 1382 case xm < ym: 1383 return -1 1384 case xm > ym: 1385 return +1 1386 } 1387 } 1388 1389 return 0 1390 } 1391 1392 // Handling of sign bit as defined by IEEE 754-2008, section 6.3: 1393 // 1394 // When neither the inputs nor result are NaN, the sign of a product or 1395 // quotient is the exclusive OR of the operands’ signs; the sign of a sum, 1396 // or of a difference x−y regarded as a sum x+(−y), differs from at most 1397 // one of the addends’ signs; and the sign of the result of conversions, 1398 // the quantize operation, the roundToIntegral operations, and the 1399 // roundToIntegralExact (see 5.3.1) is the sign of the first or only operand. 1400 // These rules shall apply even when operands or results are zero or infinite. 1401 // 1402 // When the sum of two operands with opposite signs (or the difference of 1403 // two operands with like signs) is exactly zero, the sign of that sum (or 1404 // difference) shall be +0 in all rounding-direction attributes except 1405 // roundTowardNegative; under that attribute, the sign of an exact zero 1406 // sum (or difference) shall be −0. However, x+x = x−(−x) retains the same 1407 // sign as x even when x is zero. 1408 // 1409 // See also: https://play.golang.org/p/RtH3UCt5IH 1410 1411 // Add sets z to the rounded sum x+y and returns z. If z's precision is 0, 1412 // it is changed to the larger of x's or y's precision before the operation. 1413 // Rounding is performed according to z's precision and rounding mode; and 1414 // z's accuracy reports the result error relative to the exact (not rounded) 1415 // result. Add panics with ErrNaN if x and y are infinities with opposite 1416 // signs. The value of z is undefined in that case. 1417 // 1418 // BUG(gri) When rounding ToNegativeInf, the sign of Float values rounded to 0 is incorrect. 1419 func (z *Float) Add(x, y *Float) *Float { 1420 if debugFloat { 1421 x.validate() 1422 y.validate() 1423 } 1424 1425 if z.prec == 0 { 1426 z.prec = umax32(x.prec, y.prec) 1427 } 1428 1429 if x.form == finite && y.form == finite { 1430 // x + y (commom case) 1431 z.neg = x.neg 1432 if x.neg == y.neg { 1433 // x + y == x + y 1434 // (-x) + (-y) == -(x + y) 1435 z.uadd(x, y) 1436 } else { 1437 // x + (-y) == x - y == -(y - x) 1438 // (-x) + y == y - x == -(x - y) 1439 if x.ucmp(y) > 0 { 1440 z.usub(x, y) 1441 } else { 1442 z.neg = !z.neg 1443 z.usub(y, x) 1444 } 1445 } 1446 return z 1447 } 1448 1449 if x.form == inf && y.form == inf && x.neg != y.neg { 1450 // +Inf + -Inf 1451 // -Inf + +Inf 1452 // value of z is undefined but make sure it's valid 1453 z.acc = Exact 1454 z.form = zero 1455 z.neg = false 1456 panic(ErrNaN{"addition of infinities with opposite signs"}) 1457 } 1458 1459 if x.form == zero && y.form == zero { 1460 // ±0 + ±0 1461 z.acc = Exact 1462 z.form = zero 1463 z.neg = x.neg && y.neg // -0 + -0 == -0 1464 return z 1465 } 1466 1467 if x.form == inf || y.form == zero { 1468 // ±Inf + y 1469 // x + ±0 1470 return z.Set(x) 1471 } 1472 1473 // ±0 + y 1474 // x + ±Inf 1475 return z.Set(y) 1476 } 1477 1478 // Sub sets z to the rounded difference x-y and returns z. 1479 // Precision, rounding, and accuracy reporting are as for Add. 1480 // Sub panics with ErrNaN if x and y are infinities with equal 1481 // signs. The value of z is undefined in that case. 1482 func (z *Float) Sub(x, y *Float) *Float { 1483 if debugFloat { 1484 x.validate() 1485 y.validate() 1486 } 1487 1488 if z.prec == 0 { 1489 z.prec = umax32(x.prec, y.prec) 1490 } 1491 1492 if x.form == finite && y.form == finite { 1493 // x - y (common case) 1494 z.neg = x.neg 1495 if x.neg != y.neg { 1496 // x - (-y) == x + y 1497 // (-x) - y == -(x + y) 1498 z.uadd(x, y) 1499 } else { 1500 // x - y == x - y == -(y - x) 1501 // (-x) - (-y) == y - x == -(x - y) 1502 if x.ucmp(y) > 0 { 1503 z.usub(x, y) 1504 } else { 1505 z.neg = !z.neg 1506 z.usub(y, x) 1507 } 1508 } 1509 return z 1510 } 1511 1512 if x.form == inf && y.form == inf && x.neg == y.neg { 1513 // +Inf - +Inf 1514 // -Inf - -Inf 1515 // value of z is undefined but make sure it's valid 1516 z.acc = Exact 1517 z.form = zero 1518 z.neg = false 1519 panic(ErrNaN{"subtraction of infinities with equal signs"}) 1520 } 1521 1522 if x.form == zero && y.form == zero { 1523 // ±0 - ±0 1524 z.acc = Exact 1525 z.form = zero 1526 z.neg = x.neg && !y.neg // -0 - +0 == -0 1527 return z 1528 } 1529 1530 if x.form == inf || y.form == zero { 1531 // ±Inf - y 1532 // x - ±0 1533 return z.Set(x) 1534 } 1535 1536 // ±0 - y 1537 // x - ±Inf 1538 return z.Neg(y) 1539 } 1540 1541 // Mul sets z to the rounded product x*y and returns z. 1542 // Precision, rounding, and accuracy reporting are as for Add. 1543 // Mul panics with ErrNaN if one operand is zero and the other 1544 // operand an infinity. The value of z is undefined in that case. 1545 func (z *Float) Mul(x, y *Float) *Float { 1546 if debugFloat { 1547 x.validate() 1548 y.validate() 1549 } 1550 1551 if z.prec == 0 { 1552 z.prec = umax32(x.prec, y.prec) 1553 } 1554 1555 z.neg = x.neg != y.neg 1556 1557 if x.form == finite && y.form == finite { 1558 // x * y (common case) 1559 z.umul(x, y) 1560 return z 1561 } 1562 1563 z.acc = Exact 1564 if x.form == zero && y.form == inf || x.form == inf && y.form == zero { 1565 // ±0 * ±Inf 1566 // ±Inf * ±0 1567 // value of z is undefined but make sure it's valid 1568 z.form = zero 1569 z.neg = false 1570 panic(ErrNaN{"multiplication of zero with infinity"}) 1571 } 1572 1573 if x.form == inf || y.form == inf { 1574 // ±Inf * y 1575 // x * ±Inf 1576 z.form = inf 1577 return z 1578 } 1579 1580 // ±0 * y 1581 // x * ±0 1582 z.form = zero 1583 return z 1584 } 1585 1586 // Quo sets z to the rounded quotient x/y and returns z. 1587 // Precision, rounding, and accuracy reporting are as for Add. 1588 // Quo panics with ErrNaN if both operands are zero or infinities. 1589 // The value of z is undefined in that case. 1590 func (z *Float) Quo(x, y *Float) *Float { 1591 if debugFloat { 1592 x.validate() 1593 y.validate() 1594 } 1595 1596 if z.prec == 0 { 1597 z.prec = umax32(x.prec, y.prec) 1598 } 1599 1600 z.neg = x.neg != y.neg 1601 1602 if x.form == finite && y.form == finite { 1603 // x / y (common case) 1604 z.uquo(x, y) 1605 return z 1606 } 1607 1608 z.acc = Exact 1609 if x.form == zero && y.form == zero || x.form == inf && y.form == inf { 1610 // ±0 / ±0 1611 // ±Inf / ±Inf 1612 // value of z is undefined but make sure it's valid 1613 z.form = zero 1614 z.neg = false 1615 panic(ErrNaN{"division of zero by zero or infinity by infinity"}) 1616 } 1617 1618 if x.form == zero || y.form == inf { 1619 // ±0 / y 1620 // x / ±Inf 1621 z.form = zero 1622 return z 1623 } 1624 1625 // x / ±0 1626 // ±Inf / y 1627 z.form = inf 1628 return z 1629 } 1630 1631 // Cmp compares x and y and returns: 1632 // 1633 // -1 if x < y 1634 // 0 if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf) 1635 // +1 if x > y 1636 // 1637 func (x *Float) Cmp(y *Float) int { 1638 if debugFloat { 1639 x.validate() 1640 y.validate() 1641 } 1642 1643 mx := x.ord() 1644 my := y.ord() 1645 switch { 1646 case mx < my: 1647 return -1 1648 case mx > my: 1649 return +1 1650 } 1651 // mx == my 1652 1653 // only if |mx| == 1 we have to compare the mantissae 1654 switch mx { 1655 case -1: 1656 return y.ucmp(x) 1657 case +1: 1658 return x.ucmp(y) 1659 } 1660 1661 return 0 1662 } 1663 1664 // ord classifies x and returns: 1665 // 1666 // -2 if -Inf == x 1667 // -1 if -Inf < x < 0 1668 // 0 if x == 0 (signed or unsigned) 1669 // +1 if 0 < x < +Inf 1670 // +2 if x == +Inf 1671 // 1672 func (x *Float) ord() int { 1673 var m int 1674 switch x.form { 1675 case finite: 1676 m = 1 1677 case zero: 1678 return 0 1679 case inf: 1680 m = 2 1681 } 1682 if x.neg { 1683 m = -m 1684 } 1685 return m 1686 } 1687 1688 func umax32(x, y uint32) uint32 { 1689 if x > y { 1690 return x 1691 } 1692 return y 1693 }