github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/cmd/compile/internal/big/rat.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements multi-precision rational numbers.
     6  
     7  package big
     8  
     9  import (
    10  	"encoding/binary"
    11  	"errors"
    12  	"fmt"
    13  	"math"
    14  )
    15  
    16  // A Rat represents a quotient a/b of arbitrary precision.
    17  // The zero value for a Rat represents the value 0.
    18  type Rat struct {
    19  	// To make zero values for Rat work w/o initialization,
    20  	// a zero value of b (len(b) == 0) acts like b == 1.
    21  	// a.neg determines the sign of the Rat, b.neg is ignored.
    22  	a, b Int
    23  }
    24  
    25  // NewRat creates a new Rat with numerator a and denominator b.
    26  func NewRat(a, b int64) *Rat {
    27  	return new(Rat).SetFrac64(a, b)
    28  }
    29  
    30  // SetFloat64 sets z to exactly f and returns z.
    31  // If f is not finite, SetFloat returns nil.
    32  func (z *Rat) SetFloat64(f float64) *Rat {
    33  	const expMask = 1<<11 - 1
    34  	bits := math.Float64bits(f)
    35  	mantissa := bits & (1<<52 - 1)
    36  	exp := int((bits >> 52) & expMask)
    37  	switch exp {
    38  	case expMask: // non-finite
    39  		return nil
    40  	case 0: // denormal
    41  		exp -= 1022
    42  	default: // normal
    43  		mantissa |= 1 << 52
    44  		exp -= 1023
    45  	}
    46  
    47  	shift := 52 - exp
    48  
    49  	// Optimization (?): partially pre-normalise.
    50  	for mantissa&1 == 0 && shift > 0 {
    51  		mantissa >>= 1
    52  		shift--
    53  	}
    54  
    55  	z.a.SetUint64(mantissa)
    56  	z.a.neg = f < 0
    57  	z.b.Set(intOne)
    58  	if shift > 0 {
    59  		z.b.Lsh(&z.b, uint(shift))
    60  	} else {
    61  		z.a.Lsh(&z.a, uint(-shift))
    62  	}
    63  	return z.norm()
    64  }
    65  
    66  // quotToFloat32 returns the non-negative float32 value
    67  // nearest to the quotient a/b, using round-to-even in
    68  // halfway cases.  It does not mutate its arguments.
    69  // Preconditions: b is non-zero; a and b have no common factors.
    70  func quotToFloat32(a, b nat) (f float32, exact bool) {
    71  	const (
    72  		// float size in bits
    73  		Fsize = 32
    74  
    75  		// mantissa
    76  		Msize  = 23
    77  		Msize1 = Msize + 1 // incl. implicit 1
    78  		Msize2 = Msize1 + 1
    79  
    80  		// exponent
    81  		Esize = Fsize - Msize1
    82  		Ebias = 1<<(Esize-1) - 1
    83  		Emin  = 1 - Ebias
    84  		Emax  = Ebias
    85  	)
    86  
    87  	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
    88  	alen := a.bitLen()
    89  	if alen == 0 {
    90  		return 0, true
    91  	}
    92  	blen := b.bitLen()
    93  	if blen == 0 {
    94  		panic("division by zero")
    95  	}
    96  
    97  	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
    98  	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
    99  	// This is 2 or 3 more than the float32 mantissa field width of Msize:
   100  	// - the optional extra bit is shifted away in step 3 below.
   101  	// - the high-order 1 is omitted in "normal" representation;
   102  	// - the low-order 1 will be used during rounding then discarded.
   103  	exp := alen - blen
   104  	var a2, b2 nat
   105  	a2 = a2.set(a)
   106  	b2 = b2.set(b)
   107  	if shift := Msize2 - exp; shift > 0 {
   108  		a2 = a2.shl(a2, uint(shift))
   109  	} else if shift < 0 {
   110  		b2 = b2.shl(b2, uint(-shift))
   111  	}
   112  
   113  	// 2. Compute quotient and remainder (q, r).  NB: due to the
   114  	// extra shift, the low-order bit of q is logically the
   115  	// high-order bit of r.
   116  	var q nat
   117  	q, r := q.div(a2, a2, b2) // (recycle a2)
   118  	mantissa := low32(q)
   119  	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
   120  
   121  	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
   122  	// (in effect---we accomplish this incrementally).
   123  	if mantissa>>Msize2 == 1 {
   124  		if mantissa&1 == 1 {
   125  			haveRem = true
   126  		}
   127  		mantissa >>= 1
   128  		exp++
   129  	}
   130  	if mantissa>>Msize1 != 1 {
   131  		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
   132  	}
   133  
   134  	// 4. Rounding.
   135  	if Emin-Msize <= exp && exp <= Emin {
   136  		// Denormal case; lose 'shift' bits of precision.
   137  		shift := uint(Emin - (exp - 1)) // [1..Esize1)
   138  		lostbits := mantissa & (1<<shift - 1)
   139  		haveRem = haveRem || lostbits != 0
   140  		mantissa >>= shift
   141  		exp = 2 - Ebias // == exp + shift
   142  	}
   143  	// Round q using round-half-to-even.
   144  	exact = !haveRem
   145  	if mantissa&1 != 0 {
   146  		exact = false
   147  		if haveRem || mantissa&2 != 0 {
   148  			if mantissa++; mantissa >= 1<<Msize2 {
   149  				// Complete rollover 11...1 => 100...0, so shift is safe
   150  				mantissa >>= 1
   151  				exp++
   152  			}
   153  		}
   154  	}
   155  	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.
   156  
   157  	f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
   158  	if math.IsInf(float64(f), 0) {
   159  		exact = false
   160  	}
   161  	return
   162  }
   163  
   164  // quotToFloat64 returns the non-negative float64 value
   165  // nearest to the quotient a/b, using round-to-even in
   166  // halfway cases.  It does not mutate its arguments.
   167  // Preconditions: b is non-zero; a and b have no common factors.
   168  func quotToFloat64(a, b nat) (f float64, exact bool) {
   169  	const (
   170  		// float size in bits
   171  		Fsize = 64
   172  
   173  		// mantissa
   174  		Msize  = 52
   175  		Msize1 = Msize + 1 // incl. implicit 1
   176  		Msize2 = Msize1 + 1
   177  
   178  		// exponent
   179  		Esize = Fsize - Msize1
   180  		Ebias = 1<<(Esize-1) - 1
   181  		Emin  = 1 - Ebias
   182  		Emax  = Ebias
   183  	)
   184  
   185  	// TODO(adonovan): specialize common degenerate cases: 1.0, integers.
   186  	alen := a.bitLen()
   187  	if alen == 0 {
   188  		return 0, true
   189  	}
   190  	blen := b.bitLen()
   191  	if blen == 0 {
   192  		panic("division by zero")
   193  	}
   194  
   195  	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
   196  	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
   197  	// This is 2 or 3 more than the float64 mantissa field width of Msize:
   198  	// - the optional extra bit is shifted away in step 3 below.
   199  	// - the high-order 1 is omitted in "normal" representation;
   200  	// - the low-order 1 will be used during rounding then discarded.
   201  	exp := alen - blen
   202  	var a2, b2 nat
   203  	a2 = a2.set(a)
   204  	b2 = b2.set(b)
   205  	if shift := Msize2 - exp; shift > 0 {
   206  		a2 = a2.shl(a2, uint(shift))
   207  	} else if shift < 0 {
   208  		b2 = b2.shl(b2, uint(-shift))
   209  	}
   210  
   211  	// 2. Compute quotient and remainder (q, r).  NB: due to the
   212  	// extra shift, the low-order bit of q is logically the
   213  	// high-order bit of r.
   214  	var q nat
   215  	q, r := q.div(a2, a2, b2) // (recycle a2)
   216  	mantissa := low64(q)
   217  	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
   218  
   219  	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
   220  	// (in effect---we accomplish this incrementally).
   221  	if mantissa>>Msize2 == 1 {
   222  		if mantissa&1 == 1 {
   223  			haveRem = true
   224  		}
   225  		mantissa >>= 1
   226  		exp++
   227  	}
   228  	if mantissa>>Msize1 != 1 {
   229  		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
   230  	}
   231  
   232  	// 4. Rounding.
   233  	if Emin-Msize <= exp && exp <= Emin {
   234  		// Denormal case; lose 'shift' bits of precision.
   235  		shift := uint(Emin - (exp - 1)) // [1..Esize1)
   236  		lostbits := mantissa & (1<<shift - 1)
   237  		haveRem = haveRem || lostbits != 0
   238  		mantissa >>= shift
   239  		exp = 2 - Ebias // == exp + shift
   240  	}
   241  	// Round q using round-half-to-even.
   242  	exact = !haveRem
   243  	if mantissa&1 != 0 {
   244  		exact = false
   245  		if haveRem || mantissa&2 != 0 {
   246  			if mantissa++; mantissa >= 1<<Msize2 {
   247  				// Complete rollover 11...1 => 100...0, so shift is safe
   248  				mantissa >>= 1
   249  				exp++
   250  			}
   251  		}
   252  	}
   253  	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1.
   254  
   255  	f = math.Ldexp(float64(mantissa), exp-Msize1)
   256  	if math.IsInf(f, 0) {
   257  		exact = false
   258  	}
   259  	return
   260  }
   261  
   262  // Float32 returns the nearest float32 value for x and a bool indicating
   263  // whether f represents x exactly. If the magnitude of x is too large to
   264  // be represented by a float32, f is an infinity and exact is false.
   265  // The sign of f always matches the sign of x, even if f == 0.
   266  func (x *Rat) Float32() (f float32, exact bool) {
   267  	b := x.b.abs
   268  	if len(b) == 0 {
   269  		b = b.set(natOne) // materialize denominator
   270  	}
   271  	f, exact = quotToFloat32(x.a.abs, b)
   272  	if x.a.neg {
   273  		f = -f
   274  	}
   275  	return
   276  }
   277  
   278  // Float64 returns the nearest float64 value for x and a bool indicating
   279  // whether f represents x exactly. If the magnitude of x is too large to
   280  // be represented by a float64, f is an infinity and exact is false.
   281  // The sign of f always matches the sign of x, even if f == 0.
   282  func (x *Rat) Float64() (f float64, exact bool) {
   283  	b := x.b.abs
   284  	if len(b) == 0 {
   285  		b = b.set(natOne) // materialize denominator
   286  	}
   287  	f, exact = quotToFloat64(x.a.abs, b)
   288  	if x.a.neg {
   289  		f = -f
   290  	}
   291  	return
   292  }
   293  
   294  // SetFrac sets z to a/b and returns z.
   295  func (z *Rat) SetFrac(a, b *Int) *Rat {
   296  	z.a.neg = a.neg != b.neg
   297  	babs := b.abs
   298  	if len(babs) == 0 {
   299  		panic("division by zero")
   300  	}
   301  	if &z.a == b || alias(z.a.abs, babs) {
   302  		babs = nat(nil).set(babs) // make a copy
   303  	}
   304  	z.a.abs = z.a.abs.set(a.abs)
   305  	z.b.abs = z.b.abs.set(babs)
   306  	return z.norm()
   307  }
   308  
   309  // SetFrac64 sets z to a/b and returns z.
   310  func (z *Rat) SetFrac64(a, b int64) *Rat {
   311  	z.a.SetInt64(a)
   312  	if b == 0 {
   313  		panic("division by zero")
   314  	}
   315  	if b < 0 {
   316  		b = -b
   317  		z.a.neg = !z.a.neg
   318  	}
   319  	z.b.abs = z.b.abs.setUint64(uint64(b))
   320  	return z.norm()
   321  }
   322  
   323  // SetInt sets z to x (by making a copy of x) and returns z.
   324  func (z *Rat) SetInt(x *Int) *Rat {
   325  	z.a.Set(x)
   326  	z.b.abs = z.b.abs[:0]
   327  	return z
   328  }
   329  
   330  // SetInt64 sets z to x and returns z.
   331  func (z *Rat) SetInt64(x int64) *Rat {
   332  	z.a.SetInt64(x)
   333  	z.b.abs = z.b.abs[:0]
   334  	return z
   335  }
   336  
   337  // Set sets z to x (by making a copy of x) and returns z.
   338  func (z *Rat) Set(x *Rat) *Rat {
   339  	if z != x {
   340  		z.a.Set(&x.a)
   341  		z.b.Set(&x.b)
   342  	}
   343  	return z
   344  }
   345  
   346  // Abs sets z to |x| (the absolute value of x) and returns z.
   347  func (z *Rat) Abs(x *Rat) *Rat {
   348  	z.Set(x)
   349  	z.a.neg = false
   350  	return z
   351  }
   352  
   353  // Neg sets z to -x and returns z.
   354  func (z *Rat) Neg(x *Rat) *Rat {
   355  	z.Set(x)
   356  	z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
   357  	return z
   358  }
   359  
   360  // Inv sets z to 1/x and returns z.
   361  func (z *Rat) Inv(x *Rat) *Rat {
   362  	if len(x.a.abs) == 0 {
   363  		panic("division by zero")
   364  	}
   365  	z.Set(x)
   366  	a := z.b.abs
   367  	if len(a) == 0 {
   368  		a = a.set(natOne) // materialize numerator
   369  	}
   370  	b := z.a.abs
   371  	if b.cmp(natOne) == 0 {
   372  		b = b[:0] // normalize denominator
   373  	}
   374  	z.a.abs, z.b.abs = a, b // sign doesn't change
   375  	return z
   376  }
   377  
   378  // Sign returns:
   379  //
   380  //	-1 if x <  0
   381  //	 0 if x == 0
   382  //	+1 if x >  0
   383  //
   384  func (x *Rat) Sign() int {
   385  	return x.a.Sign()
   386  }
   387  
   388  // IsInt reports whether the denominator of x is 1.
   389  func (x *Rat) IsInt() bool {
   390  	return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
   391  }
   392  
   393  // Num returns the numerator of x; it may be <= 0.
   394  // The result is a reference to x's numerator; it
   395  // may change if a new value is assigned to x, and vice versa.
   396  // The sign of the numerator corresponds to the sign of x.
   397  func (x *Rat) Num() *Int {
   398  	return &x.a
   399  }
   400  
   401  // Denom returns the denominator of x; it is always > 0.
   402  // The result is a reference to x's denominator; it
   403  // may change if a new value is assigned to x, and vice versa.
   404  func (x *Rat) Denom() *Int {
   405  	x.b.neg = false // the result is always >= 0
   406  	if len(x.b.abs) == 0 {
   407  		x.b.abs = x.b.abs.set(natOne) // materialize denominator
   408  	}
   409  	return &x.b
   410  }
   411  
   412  func (z *Rat) norm() *Rat {
   413  	switch {
   414  	case len(z.a.abs) == 0:
   415  		// z == 0 - normalize sign and denominator
   416  		z.a.neg = false
   417  		z.b.abs = z.b.abs[:0]
   418  	case len(z.b.abs) == 0:
   419  		// z is normalized int - nothing to do
   420  	case z.b.abs.cmp(natOne) == 0:
   421  		// z is int - normalize denominator
   422  		z.b.abs = z.b.abs[:0]
   423  	default:
   424  		neg := z.a.neg
   425  		z.a.neg = false
   426  		z.b.neg = false
   427  		if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 {
   428  			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
   429  			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
   430  			if z.b.abs.cmp(natOne) == 0 {
   431  				// z is int - normalize denominator
   432  				z.b.abs = z.b.abs[:0]
   433  			}
   434  		}
   435  		z.a.neg = neg
   436  	}
   437  	return z
   438  }
   439  
   440  // mulDenom sets z to the denominator product x*y (by taking into
   441  // account that 0 values for x or y must be interpreted as 1) and
   442  // returns z.
   443  func mulDenom(z, x, y nat) nat {
   444  	switch {
   445  	case len(x) == 0:
   446  		return z.set(y)
   447  	case len(y) == 0:
   448  		return z.set(x)
   449  	}
   450  	return z.mul(x, y)
   451  }
   452  
   453  // scaleDenom computes x*f.
   454  // If f == 0 (zero value of denominator), the result is (a copy of) x.
   455  func scaleDenom(x *Int, f nat) *Int {
   456  	var z Int
   457  	if len(f) == 0 {
   458  		return z.Set(x)
   459  	}
   460  	z.abs = z.abs.mul(x.abs, f)
   461  	z.neg = x.neg
   462  	return &z
   463  }
   464  
   465  // Cmp compares x and y and returns:
   466  //
   467  //   -1 if x <  y
   468  //    0 if x == y
   469  //   +1 if x >  y
   470  //
   471  func (x *Rat) Cmp(y *Rat) int {
   472  	return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
   473  }
   474  
   475  // Add sets z to the sum x+y and returns z.
   476  func (z *Rat) Add(x, y *Rat) *Rat {
   477  	a1 := scaleDenom(&x.a, y.b.abs)
   478  	a2 := scaleDenom(&y.a, x.b.abs)
   479  	z.a.Add(a1, a2)
   480  	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
   481  	return z.norm()
   482  }
   483  
   484  // Sub sets z to the difference x-y and returns z.
   485  func (z *Rat) Sub(x, y *Rat) *Rat {
   486  	a1 := scaleDenom(&x.a, y.b.abs)
   487  	a2 := scaleDenom(&y.a, x.b.abs)
   488  	z.a.Sub(a1, a2)
   489  	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
   490  	return z.norm()
   491  }
   492  
   493  // Mul sets z to the product x*y and returns z.
   494  func (z *Rat) Mul(x, y *Rat) *Rat {
   495  	z.a.Mul(&x.a, &y.a)
   496  	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
   497  	return z.norm()
   498  }
   499  
   500  // Quo sets z to the quotient x/y and returns z.
   501  // If y == 0, a division-by-zero run-time panic occurs.
   502  func (z *Rat) Quo(x, y *Rat) *Rat {
   503  	if len(y.a.abs) == 0 {
   504  		panic("division by zero")
   505  	}
   506  	a := scaleDenom(&x.a, y.b.abs)
   507  	b := scaleDenom(&y.a, x.b.abs)
   508  	z.a.abs = a.abs
   509  	z.b.abs = b.abs
   510  	z.a.neg = a.neg != b.neg
   511  	return z.norm()
   512  }
   513  
   514  // Gob codec version. Permits backward-compatible changes to the encoding.
   515  const ratGobVersion byte = 1
   516  
   517  // GobEncode implements the gob.GobEncoder interface.
   518  func (x *Rat) GobEncode() ([]byte, error) {
   519  	if x == nil {
   520  		return nil, nil
   521  	}
   522  	buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
   523  	i := x.b.abs.bytes(buf)
   524  	j := x.a.abs.bytes(buf[:i])
   525  	n := i - j
   526  	if int(uint32(n)) != n {
   527  		// this should never happen
   528  		return nil, errors.New("Rat.GobEncode: numerator too large")
   529  	}
   530  	binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
   531  	j -= 1 + 4
   532  	b := ratGobVersion << 1 // make space for sign bit
   533  	if x.a.neg {
   534  		b |= 1
   535  	}
   536  	buf[j] = b
   537  	return buf[j:], nil
   538  }
   539  
   540  // GobDecode implements the gob.GobDecoder interface.
   541  func (z *Rat) GobDecode(buf []byte) error {
   542  	if len(buf) == 0 {
   543  		// Other side sent a nil or default value.
   544  		*z = Rat{}
   545  		return nil
   546  	}
   547  	b := buf[0]
   548  	if b>>1 != ratGobVersion {
   549  		return fmt.Errorf("Rat.GobDecode: encoding version %d not supported", b>>1)
   550  	}
   551  	const j = 1 + 4
   552  	i := j + binary.BigEndian.Uint32(buf[j-4:j])
   553  	z.a.neg = b&1 != 0
   554  	z.a.abs = z.a.abs.setBytes(buf[j:i])
   555  	z.b.abs = z.b.abs.setBytes(buf[i:])
   556  	return nil
   557  }
   558  
   559  // MarshalText implements the encoding.TextMarshaler interface.
   560  func (r *Rat) MarshalText() (text []byte, err error) {
   561  	return []byte(r.RatString()), nil
   562  }
   563  
   564  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   565  func (r *Rat) UnmarshalText(text []byte) error {
   566  	if _, ok := r.SetString(string(text)); !ok {
   567  		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text)
   568  	}
   569  	return nil
   570  }