github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/cmd/compile/internal/ppc64/ggen.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ppc64
     6  
     7  import (
     8  	"cmd/compile/internal/gc"
     9  	"cmd/internal/obj"
    10  	"cmd/internal/obj/ppc64"
    11  	"fmt"
    12  )
    13  
    14  func defframe(ptxt *obj.Prog) {
    15  	var n *gc.Node
    16  
    17  	// fill in argument size, stack size
    18  	ptxt.To.Type = obj.TYPE_TEXTSIZE
    19  
    20  	ptxt.To.Val = int32(gc.Rnd(gc.Curfn.Type.Argwid, int64(gc.Widthptr)))
    21  	frame := uint32(gc.Rnd(gc.Stksize+gc.Maxarg, int64(gc.Widthreg)))
    22  	ptxt.To.Offset = int64(frame)
    23  
    24  	// insert code to zero ambiguously live variables
    25  	// so that the garbage collector only sees initialized values
    26  	// when it looks for pointers.
    27  	p := ptxt
    28  
    29  	hi := int64(0)
    30  	lo := hi
    31  
    32  	// iterate through declarations - they are sorted in decreasing xoffset order.
    33  	for l := gc.Curfn.Func.Dcl; l != nil; l = l.Next {
    34  		n = l.N
    35  		if !n.Name.Needzero {
    36  			continue
    37  		}
    38  		if n.Class != gc.PAUTO {
    39  			gc.Fatalf("needzero class %d", n.Class)
    40  		}
    41  		if n.Type.Width%int64(gc.Widthptr) != 0 || n.Xoffset%int64(gc.Widthptr) != 0 || n.Type.Width == 0 {
    42  			gc.Fatalf("var %v has size %d offset %d", gc.Nconv(n, obj.FmtLong), int(n.Type.Width), int(n.Xoffset))
    43  		}
    44  
    45  		if lo != hi && n.Xoffset+n.Type.Width >= lo-int64(2*gc.Widthreg) {
    46  			// merge with range we already have
    47  			lo = n.Xoffset
    48  
    49  			continue
    50  		}
    51  
    52  		// zero old range
    53  		p = zerorange(p, int64(frame), lo, hi)
    54  
    55  		// set new range
    56  		hi = n.Xoffset + n.Type.Width
    57  
    58  		lo = n.Xoffset
    59  	}
    60  
    61  	// zero final range
    62  	zerorange(p, int64(frame), lo, hi)
    63  }
    64  
    65  func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
    66  	cnt := hi - lo
    67  	if cnt == 0 {
    68  		return p
    69  	}
    70  	if cnt < int64(4*gc.Widthptr) {
    71  		for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
    72  			p = appendpp(p, ppc64.AMOVD, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGSP, gc.Ctxt.FixedFrameSize()+frame+lo+i)
    73  		}
    74  	} else if cnt <= int64(128*gc.Widthptr) {
    75  		p = appendpp(p, ppc64.AADD, obj.TYPE_CONST, 0, gc.Ctxt.FixedFrameSize()+frame+lo-8, obj.TYPE_REG, ppc64.REGRT1, 0)
    76  		p.Reg = ppc64.REGSP
    77  		p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
    78  		f := gc.Sysfunc("duffzero")
    79  		gc.Naddr(&p.To, f)
    80  		gc.Afunclit(&p.To, f)
    81  		p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
    82  	} else {
    83  		p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, gc.Ctxt.FixedFrameSize()+frame+lo-8, obj.TYPE_REG, ppc64.REGTMP, 0)
    84  		p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT1, 0)
    85  		p.Reg = ppc64.REGSP
    86  		p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, ppc64.REGTMP, 0)
    87  		p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT2, 0)
    88  		p.Reg = ppc64.REGRT1
    89  		p = appendpp(p, ppc64.AMOVDU, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGRT1, int64(gc.Widthptr))
    90  		p1 := p
    91  		p = appendpp(p, ppc64.ACMP, obj.TYPE_REG, ppc64.REGRT1, 0, obj.TYPE_REG, ppc64.REGRT2, 0)
    92  		p = appendpp(p, ppc64.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
    93  		gc.Patch(p, p1)
    94  	}
    95  
    96  	return p
    97  }
    98  
    99  func appendpp(p *obj.Prog, as int, ftype int, freg int, foffset int64, ttype int, treg int, toffset int64) *obj.Prog {
   100  	q := gc.Ctxt.NewProg()
   101  	gc.Clearp(q)
   102  	q.As = int16(as)
   103  	q.Lineno = p.Lineno
   104  	q.From.Type = int16(ftype)
   105  	q.From.Reg = int16(freg)
   106  	q.From.Offset = foffset
   107  	q.To.Type = int16(ttype)
   108  	q.To.Reg = int16(treg)
   109  	q.To.Offset = toffset
   110  	q.Link = p.Link
   111  	p.Link = q
   112  	return q
   113  }
   114  
   115  func ginsnop() {
   116  	var reg gc.Node
   117  	gc.Nodreg(&reg, gc.Types[gc.TINT], ppc64.REG_R0)
   118  	gins(ppc64.AOR, &reg, &reg)
   119  }
   120  
   121  var panicdiv *gc.Node
   122  
   123  /*
   124   * generate division.
   125   * generates one of:
   126   *	res = nl / nr
   127   *	res = nl % nr
   128   * according to op.
   129   */
   130  func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) {
   131  	// Have to be careful about handling
   132  	// most negative int divided by -1 correctly.
   133  	// The hardware will generate undefined result.
   134  	// Also need to explicitly trap on division on zero,
   135  	// the hardware will silently generate undefined result.
   136  	// DIVW will leave unpredicable result in higher 32-bit,
   137  	// so always use DIVD/DIVDU.
   138  	t := nl.Type
   139  
   140  	t0 := t
   141  	check := false
   142  	if gc.Issigned[t.Etype] {
   143  		check = true
   144  		if gc.Isconst(nl, gc.CTINT) && nl.Int() != -(1<<uint64(t.Width*8-1)) {
   145  			check = false
   146  		} else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 {
   147  			check = false
   148  		}
   149  	}
   150  
   151  	if t.Width < 8 {
   152  		if gc.Issigned[t.Etype] {
   153  			t = gc.Types[gc.TINT64]
   154  		} else {
   155  			t = gc.Types[gc.TUINT64]
   156  		}
   157  		check = false
   158  	}
   159  
   160  	a := optoas(gc.ODIV, t)
   161  
   162  	var tl gc.Node
   163  	gc.Regalloc(&tl, t0, nil)
   164  	var tr gc.Node
   165  	gc.Regalloc(&tr, t0, nil)
   166  	if nl.Ullman >= nr.Ullman {
   167  		gc.Cgen(nl, &tl)
   168  		gc.Cgen(nr, &tr)
   169  	} else {
   170  		gc.Cgen(nr, &tr)
   171  		gc.Cgen(nl, &tl)
   172  	}
   173  
   174  	if t != t0 {
   175  		// Convert
   176  		tl2 := tl
   177  
   178  		tr2 := tr
   179  		tl.Type = t
   180  		tr.Type = t
   181  		gmove(&tl2, &tl)
   182  		gmove(&tr2, &tr)
   183  	}
   184  
   185  	// Handle divide-by-zero panic.
   186  	p1 := gins(optoas(gc.OCMP, t), &tr, nil)
   187  
   188  	p1.To.Type = obj.TYPE_REG
   189  	p1.To.Reg = ppc64.REGZERO
   190  	p1 = gc.Gbranch(optoas(gc.ONE, t), nil, +1)
   191  	if panicdiv == nil {
   192  		panicdiv = gc.Sysfunc("panicdivide")
   193  	}
   194  	gc.Ginscall(panicdiv, -1)
   195  	gc.Patch(p1, gc.Pc)
   196  
   197  	var p2 *obj.Prog
   198  	if check {
   199  		var nm1 gc.Node
   200  		gc.Nodconst(&nm1, t, -1)
   201  		gins(optoas(gc.OCMP, t), &tr, &nm1)
   202  		p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1)
   203  		if op == gc.ODIV {
   204  			// a / (-1) is -a.
   205  			gins(optoas(gc.OMINUS, t), nil, &tl)
   206  
   207  			gmove(&tl, res)
   208  		} else {
   209  			// a % (-1) is 0.
   210  			var nz gc.Node
   211  			gc.Nodconst(&nz, t, 0)
   212  
   213  			gmove(&nz, res)
   214  		}
   215  
   216  		p2 = gc.Gbranch(obj.AJMP, nil, 0)
   217  		gc.Patch(p1, gc.Pc)
   218  	}
   219  
   220  	p1 = gins(a, &tr, &tl)
   221  	if op == gc.ODIV {
   222  		gc.Regfree(&tr)
   223  		gmove(&tl, res)
   224  	} else {
   225  		// A%B = A-(A/B*B)
   226  		var tm gc.Node
   227  		gc.Regalloc(&tm, t, nil)
   228  
   229  		// patch div to use the 3 register form
   230  		// TODO(minux): add gins3?
   231  		p1.Reg = p1.To.Reg
   232  
   233  		p1.To.Reg = tm.Reg
   234  		gins(optoas(gc.OMUL, t), &tr, &tm)
   235  		gc.Regfree(&tr)
   236  		gins(optoas(gc.OSUB, t), &tm, &tl)
   237  		gc.Regfree(&tm)
   238  		gmove(&tl, res)
   239  	}
   240  
   241  	gc.Regfree(&tl)
   242  	if check {
   243  		gc.Patch(p2, gc.Pc)
   244  	}
   245  }
   246  
   247  /*
   248   * generate high multiply:
   249   *   res = (nl*nr) >> width
   250   */
   251  func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
   252  	// largest ullman on left.
   253  	if nl.Ullman < nr.Ullman {
   254  		nl, nr = nr, nl
   255  	}
   256  
   257  	t := (*gc.Type)(nl.Type)
   258  	w := int(int(t.Width * 8))
   259  	var n1 gc.Node
   260  	gc.Cgenr(nl, &n1, res)
   261  	var n2 gc.Node
   262  	gc.Cgenr(nr, &n2, nil)
   263  	switch gc.Simtype[t.Etype] {
   264  	case gc.TINT8,
   265  		gc.TINT16,
   266  		gc.TINT32:
   267  		gins(optoas(gc.OMUL, t), &n2, &n1)
   268  		p := (*obj.Prog)(gins(ppc64.ASRAD, nil, &n1))
   269  		p.From.Type = obj.TYPE_CONST
   270  		p.From.Offset = int64(w)
   271  
   272  	case gc.TUINT8,
   273  		gc.TUINT16,
   274  		gc.TUINT32:
   275  		gins(optoas(gc.OMUL, t), &n2, &n1)
   276  		p := (*obj.Prog)(gins(ppc64.ASRD, nil, &n1))
   277  		p.From.Type = obj.TYPE_CONST
   278  		p.From.Offset = int64(w)
   279  
   280  	case gc.TINT64,
   281  		gc.TUINT64:
   282  		if gc.Issigned[t.Etype] {
   283  			gins(ppc64.AMULHD, &n2, &n1)
   284  		} else {
   285  			gins(ppc64.AMULHDU, &n2, &n1)
   286  		}
   287  
   288  	default:
   289  		gc.Fatalf("cgen_hmul %v", t)
   290  	}
   291  
   292  	gc.Cgen(&n1, res)
   293  	gc.Regfree(&n1)
   294  	gc.Regfree(&n2)
   295  }
   296  
   297  /*
   298   * generate shift according to op, one of:
   299   *	res = nl << nr
   300   *	res = nl >> nr
   301   */
   302  func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) {
   303  	a := int(optoas(op, nl.Type))
   304  
   305  	if nr.Op == gc.OLITERAL {
   306  		var n1 gc.Node
   307  		gc.Regalloc(&n1, nl.Type, res)
   308  		gc.Cgen(nl, &n1)
   309  		sc := uint64(nr.Int())
   310  		if sc >= uint64(nl.Type.Width*8) {
   311  			// large shift gets 2 shifts by width-1
   312  			var n3 gc.Node
   313  			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
   314  
   315  			gins(a, &n3, &n1)
   316  			gins(a, &n3, &n1)
   317  		} else {
   318  			gins(a, nr, &n1)
   319  		}
   320  		gmove(&n1, res)
   321  		gc.Regfree(&n1)
   322  		return
   323  	}
   324  
   325  	if nl.Ullman >= gc.UINF {
   326  		var n4 gc.Node
   327  		gc.Tempname(&n4, nl.Type)
   328  		gc.Cgen(nl, &n4)
   329  		nl = &n4
   330  	}
   331  
   332  	if nr.Ullman >= gc.UINF {
   333  		var n5 gc.Node
   334  		gc.Tempname(&n5, nr.Type)
   335  		gc.Cgen(nr, &n5)
   336  		nr = &n5
   337  	}
   338  
   339  	// Allow either uint32 or uint64 as shift type,
   340  	// to avoid unnecessary conversion from uint32 to uint64
   341  	// just to do the comparison.
   342  	tcount := gc.Types[gc.Simtype[nr.Type.Etype]]
   343  
   344  	if tcount.Etype < gc.TUINT32 {
   345  		tcount = gc.Types[gc.TUINT32]
   346  	}
   347  
   348  	var n1 gc.Node
   349  	gc.Regalloc(&n1, nr.Type, nil) // to hold the shift type in CX
   350  	var n3 gc.Node
   351  	gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX
   352  
   353  	var n2 gc.Node
   354  	gc.Regalloc(&n2, nl.Type, res)
   355  
   356  	if nl.Ullman >= nr.Ullman {
   357  		gc.Cgen(nl, &n2)
   358  		gc.Cgen(nr, &n1)
   359  		gmove(&n1, &n3)
   360  	} else {
   361  		gc.Cgen(nr, &n1)
   362  		gmove(&n1, &n3)
   363  		gc.Cgen(nl, &n2)
   364  	}
   365  
   366  	gc.Regfree(&n3)
   367  
   368  	// test and fix up large shifts
   369  	if !bounded {
   370  		gc.Nodconst(&n3, tcount, nl.Type.Width*8)
   371  		gins(optoas(gc.OCMP, tcount), &n1, &n3)
   372  		p1 := (*obj.Prog)(gc.Gbranch(optoas(gc.OLT, tcount), nil, +1))
   373  		if op == gc.ORSH && gc.Issigned[nl.Type.Etype] {
   374  			gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1)
   375  			gins(a, &n3, &n2)
   376  		} else {
   377  			gc.Nodconst(&n3, nl.Type, 0)
   378  			gmove(&n3, &n2)
   379  		}
   380  
   381  		gc.Patch(p1, gc.Pc)
   382  	}
   383  
   384  	gins(a, &n1, &n2)
   385  
   386  	gmove(&n2, res)
   387  
   388  	gc.Regfree(&n1)
   389  	gc.Regfree(&n2)
   390  }
   391  
   392  func clearfat(nl *gc.Node) {
   393  	/* clear a fat object */
   394  	if gc.Debug['g'] != 0 {
   395  		fmt.Printf("clearfat %v (%v, size: %d)\n", nl, nl.Type, nl.Type.Width)
   396  	}
   397  
   398  	w := uint64(uint64(nl.Type.Width))
   399  
   400  	// Avoid taking the address for simple enough types.
   401  	if gc.Componentgen(nil, nl) {
   402  		return
   403  	}
   404  
   405  	c := uint64(w % 8) // bytes
   406  	q := uint64(w / 8) // dwords
   407  
   408  	if gc.Reginuse(ppc64.REGRT1) {
   409  		gc.Fatalf("%v in use during clearfat", obj.Rconv(ppc64.REGRT1))
   410  	}
   411  
   412  	var r0 gc.Node
   413  	gc.Nodreg(&r0, gc.Types[gc.TUINT64], ppc64.REGZERO)
   414  	var dst gc.Node
   415  	gc.Nodreg(&dst, gc.Types[gc.Tptr], ppc64.REGRT1)
   416  	gc.Regrealloc(&dst)
   417  	gc.Agen(nl, &dst)
   418  
   419  	var boff uint64
   420  	if q > 128 {
   421  		p := gins(ppc64.ASUB, nil, &dst)
   422  		p.From.Type = obj.TYPE_CONST
   423  		p.From.Offset = 8
   424  
   425  		var end gc.Node
   426  		gc.Regalloc(&end, gc.Types[gc.Tptr], nil)
   427  		p = gins(ppc64.AMOVD, &dst, &end)
   428  		p.From.Type = obj.TYPE_ADDR
   429  		p.From.Offset = int64(q * 8)
   430  
   431  		p = gins(ppc64.AMOVDU, &r0, &dst)
   432  		p.To.Type = obj.TYPE_MEM
   433  		p.To.Offset = 8
   434  		pl := (*obj.Prog)(p)
   435  
   436  		p = gins(ppc64.ACMP, &dst, &end)
   437  		gc.Patch(gc.Gbranch(ppc64.ABNE, nil, 0), pl)
   438  
   439  		gc.Regfree(&end)
   440  
   441  		// The loop leaves R3 on the last zeroed dword
   442  		boff = 8
   443  	} else if q >= 4 {
   444  		p := gins(ppc64.ASUB, nil, &dst)
   445  		p.From.Type = obj.TYPE_CONST
   446  		p.From.Offset = 8
   447  		f := (*gc.Node)(gc.Sysfunc("duffzero"))
   448  		p = gins(obj.ADUFFZERO, nil, f)
   449  		gc.Afunclit(&p.To, f)
   450  
   451  		// 4 and 128 = magic constants: see ../../runtime/asm_ppc64x.s
   452  		p.To.Offset = int64(4 * (128 - q))
   453  
   454  		// duffzero leaves R3 on the last zeroed dword
   455  		boff = 8
   456  	} else {
   457  		var p *obj.Prog
   458  		for t := uint64(0); t < q; t++ {
   459  			p = gins(ppc64.AMOVD, &r0, &dst)
   460  			p.To.Type = obj.TYPE_MEM
   461  			p.To.Offset = int64(8 * t)
   462  		}
   463  
   464  		boff = 8 * q
   465  	}
   466  
   467  	var p *obj.Prog
   468  	for t := uint64(0); t < c; t++ {
   469  		p = gins(ppc64.AMOVB, &r0, &dst)
   470  		p.To.Type = obj.TYPE_MEM
   471  		p.To.Offset = int64(t + boff)
   472  	}
   473  
   474  	gc.Regfree(&dst)
   475  }
   476  
   477  // Called after regopt and peep have run.
   478  // Expand CHECKNIL pseudo-op into actual nil pointer check.
   479  func expandchecks(firstp *obj.Prog) {
   480  	var p1 *obj.Prog
   481  	var p2 *obj.Prog
   482  
   483  	for p := (*obj.Prog)(firstp); p != nil; p = p.Link {
   484  		if gc.Debug_checknil != 0 && gc.Ctxt.Debugvlog != 0 {
   485  			fmt.Printf("expandchecks: %v\n", p)
   486  		}
   487  		if p.As != obj.ACHECKNIL {
   488  			continue
   489  		}
   490  		if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers
   491  			gc.Warnl(int(p.Lineno), "generated nil check")
   492  		}
   493  		if p.From.Type != obj.TYPE_REG {
   494  			gc.Fatalf("invalid nil check %v\n", p)
   495  		}
   496  
   497  		/*
   498  			// check is
   499  			//	TD $4, R0, arg (R0 is always zero)
   500  			// eqv. to:
   501  			// 	tdeq r0, arg
   502  			// NOTE: this needs special runtime support to make SIGTRAP recoverable.
   503  			reg = p->from.reg;
   504  			p->as = ATD;
   505  			p->from = p->to = p->from3 = zprog.from;
   506  			p->from.type = TYPE_CONST;
   507  			p->from.offset = 4;
   508  			p->from.reg = 0;
   509  			p->reg = REGZERO;
   510  			p->to.type = TYPE_REG;
   511  			p->to.reg = reg;
   512  		*/
   513  		// check is
   514  		//	CMP arg, R0
   515  		//	BNE 2(PC) [likely]
   516  		//	MOVD R0, 0(R0)
   517  		p1 = gc.Ctxt.NewProg()
   518  
   519  		p2 = gc.Ctxt.NewProg()
   520  		gc.Clearp(p1)
   521  		gc.Clearp(p2)
   522  		p1.Link = p2
   523  		p2.Link = p.Link
   524  		p.Link = p1
   525  		p1.Lineno = p.Lineno
   526  		p2.Lineno = p.Lineno
   527  		p1.Pc = 9999
   528  		p2.Pc = 9999
   529  		p.As = ppc64.ACMP
   530  		p.To.Type = obj.TYPE_REG
   531  		p.To.Reg = ppc64.REGZERO
   532  		p1.As = ppc64.ABNE
   533  
   534  		//p1->from.type = TYPE_CONST;
   535  		//p1->from.offset = 1; // likely
   536  		p1.To.Type = obj.TYPE_BRANCH
   537  
   538  		p1.To.Val = p2.Link
   539  
   540  		// crash by write to memory address 0.
   541  		p2.As = ppc64.AMOVD
   542  
   543  		p2.From.Type = obj.TYPE_REG
   544  		p2.From.Reg = ppc64.REGZERO
   545  		p2.To.Type = obj.TYPE_MEM
   546  		p2.To.Reg = ppc64.REGZERO
   547  		p2.To.Offset = 0
   548  	}
   549  }
   550  
   551  // res = runtime.getg()
   552  func getg(res *gc.Node) {
   553  	var n1 gc.Node
   554  	gc.Nodreg(&n1, res.Type, ppc64.REGG)
   555  	gmove(&n1, res)
   556  }