github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/cmd/compile/internal/x86/ggen.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package x86 6 7 import ( 8 "cmd/compile/internal/gc" 9 "cmd/internal/obj" 10 "cmd/internal/obj/x86" 11 ) 12 13 func defframe(ptxt *obj.Prog) { 14 var n *gc.Node 15 16 // fill in argument size, stack size 17 ptxt.To.Type = obj.TYPE_TEXTSIZE 18 19 ptxt.To.Val = int32(gc.Rnd(gc.Curfn.Type.Argwid, int64(gc.Widthptr))) 20 frame := uint32(gc.Rnd(gc.Stksize+gc.Maxarg, int64(gc.Widthreg))) 21 ptxt.To.Offset = int64(frame) 22 23 // insert code to zero ambiguously live variables 24 // so that the garbage collector only sees initialized values 25 // when it looks for pointers. 26 p := ptxt 27 28 hi := int64(0) 29 lo := hi 30 ax := uint32(0) 31 for l := gc.Curfn.Func.Dcl; l != nil; l = l.Next { 32 n = l.N 33 if !n.Name.Needzero { 34 continue 35 } 36 if n.Class != gc.PAUTO { 37 gc.Fatalf("needzero class %d", n.Class) 38 } 39 if n.Type.Width%int64(gc.Widthptr) != 0 || n.Xoffset%int64(gc.Widthptr) != 0 || n.Type.Width == 0 { 40 gc.Fatalf("var %v has size %d offset %d", gc.Nconv(n, obj.FmtLong), int(n.Type.Width), int(n.Xoffset)) 41 } 42 if lo != hi && n.Xoffset+n.Type.Width == lo-int64(2*gc.Widthptr) { 43 // merge with range we already have 44 lo = n.Xoffset 45 46 continue 47 } 48 49 // zero old range 50 p = zerorange(p, int64(frame), lo, hi, &ax) 51 52 // set new range 53 hi = n.Xoffset + n.Type.Width 54 55 lo = n.Xoffset 56 } 57 58 // zero final range 59 zerorange(p, int64(frame), lo, hi, &ax) 60 } 61 62 func zerorange(p *obj.Prog, frame int64, lo int64, hi int64, ax *uint32) *obj.Prog { 63 cnt := hi - lo 64 if cnt == 0 { 65 return p 66 } 67 if *ax == 0 { 68 p = appendpp(p, x86.AMOVL, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) 69 *ax = 1 70 } 71 72 if cnt <= int64(4*gc.Widthreg) { 73 for i := int64(0); i < cnt; i += int64(gc.Widthreg) { 74 p = appendpp(p, x86.AMOVL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, frame+lo+i) 75 } 76 } else if !gc.Nacl && cnt <= int64(128*gc.Widthreg) { 77 p = appendpp(p, x86.ALEAL, obj.TYPE_MEM, x86.REG_SP, frame+lo, obj.TYPE_REG, x86.REG_DI, 0) 78 p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, 1*(128-cnt/int64(gc.Widthreg))) 79 p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) 80 } else { 81 p = appendpp(p, x86.AMOVL, obj.TYPE_CONST, 0, cnt/int64(gc.Widthreg), obj.TYPE_REG, x86.REG_CX, 0) 82 p = appendpp(p, x86.ALEAL, obj.TYPE_MEM, x86.REG_SP, frame+lo, obj.TYPE_REG, x86.REG_DI, 0) 83 p = appendpp(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) 84 p = appendpp(p, x86.ASTOSL, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) 85 } 86 87 return p 88 } 89 90 func appendpp(p *obj.Prog, as int, ftype int, freg int, foffset int64, ttype int, treg int, toffset int64) *obj.Prog { 91 q := gc.Ctxt.NewProg() 92 gc.Clearp(q) 93 q.As = int16(as) 94 q.Lineno = p.Lineno 95 q.From.Type = int16(ftype) 96 q.From.Reg = int16(freg) 97 q.From.Offset = foffset 98 q.To.Type = int16(ttype) 99 q.To.Reg = int16(treg) 100 q.To.Offset = toffset 101 q.Link = p.Link 102 p.Link = q 103 return q 104 } 105 106 func clearfat(nl *gc.Node) { 107 /* clear a fat object */ 108 if gc.Debug['g'] != 0 { 109 gc.Dump("\nclearfat", nl) 110 } 111 112 w := uint32(nl.Type.Width) 113 114 // Avoid taking the address for simple enough types. 115 if gc.Componentgen(nil, nl) { 116 return 117 } 118 119 c := w % 4 // bytes 120 q := w / 4 // quads 121 122 if q < 4 { 123 // Write sequence of MOV 0, off(base) instead of using STOSL. 124 // The hope is that although the code will be slightly longer, 125 // the MOVs will have no dependencies and pipeline better 126 // than the unrolled STOSL loop. 127 // NOTE: Must use agen, not igen, so that optimizer sees address 128 // being taken. We are not writing on field boundaries. 129 var n1 gc.Node 130 gc.Regalloc(&n1, gc.Types[gc.Tptr], nil) 131 132 gc.Agen(nl, &n1) 133 n1.Op = gc.OINDREG 134 var z gc.Node 135 gc.Nodconst(&z, gc.Types[gc.TUINT64], 0) 136 for ; q > 0; q-- { 137 n1.Type = z.Type 138 gins(x86.AMOVL, &z, &n1) 139 n1.Xoffset += 4 140 } 141 142 gc.Nodconst(&z, gc.Types[gc.TUINT8], 0) 143 for ; c > 0; c-- { 144 n1.Type = z.Type 145 gins(x86.AMOVB, &z, &n1) 146 n1.Xoffset++ 147 } 148 149 gc.Regfree(&n1) 150 return 151 } 152 153 var n1 gc.Node 154 gc.Nodreg(&n1, gc.Types[gc.Tptr], x86.REG_DI) 155 gc.Agen(nl, &n1) 156 gconreg(x86.AMOVL, 0, x86.REG_AX) 157 158 if q > 128 || (q >= 4 && gc.Nacl) { 159 gconreg(x86.AMOVL, int64(q), x86.REG_CX) 160 gins(x86.AREP, nil, nil) // repeat 161 gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+ 162 } else if q >= 4 { 163 p := gins(obj.ADUFFZERO, nil, nil) 164 p.To.Type = obj.TYPE_ADDR 165 p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg)) 166 167 // 1 and 128 = magic constants: see ../../runtime/asm_386.s 168 p.To.Offset = 1 * (128 - int64(q)) 169 } else { 170 for q > 0 { 171 gins(x86.ASTOSL, nil, nil) // STOL AL,*(DI)+ 172 q-- 173 } 174 } 175 176 for c > 0 { 177 gins(x86.ASTOSB, nil, nil) // STOB AL,*(DI)+ 178 c-- 179 } 180 } 181 182 var panicdiv *gc.Node 183 184 /* 185 * generate division. 186 * caller must set: 187 * ax = allocated AX register 188 * dx = allocated DX register 189 * generates one of: 190 * res = nl / nr 191 * res = nl % nr 192 * according to op. 193 */ 194 func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) { 195 // Have to be careful about handling 196 // most negative int divided by -1 correctly. 197 // The hardware will trap. 198 // Also the byte divide instruction needs AH, 199 // which we otherwise don't have to deal with. 200 // Easiest way to avoid for int8, int16: use int32. 201 // For int32 and int64, use explicit test. 202 // Could use int64 hw for int32. 203 t := nl.Type 204 205 t0 := t 206 check := false 207 if gc.Issigned[t.Etype] { 208 check = true 209 if gc.Isconst(nl, gc.CTINT) && nl.Int() != -1<<uint64(t.Width*8-1) { 210 check = false 211 } else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 { 212 check = false 213 } 214 } 215 216 if t.Width < 4 { 217 if gc.Issigned[t.Etype] { 218 t = gc.Types[gc.TINT32] 219 } else { 220 t = gc.Types[gc.TUINT32] 221 } 222 check = false 223 } 224 225 var t1 gc.Node 226 gc.Tempname(&t1, t) 227 var t2 gc.Node 228 gc.Tempname(&t2, t) 229 if t0 != t { 230 var t3 gc.Node 231 gc.Tempname(&t3, t0) 232 var t4 gc.Node 233 gc.Tempname(&t4, t0) 234 gc.Cgen(nl, &t3) 235 gc.Cgen(nr, &t4) 236 237 // Convert. 238 gmove(&t3, &t1) 239 240 gmove(&t4, &t2) 241 } else { 242 gc.Cgen(nl, &t1) 243 gc.Cgen(nr, &t2) 244 } 245 246 var n1 gc.Node 247 if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) { 248 gc.Regalloc(&n1, t, res) 249 } else { 250 gc.Regalloc(&n1, t, nil) 251 } 252 gmove(&t2, &n1) 253 gmove(&t1, ax) 254 var p2 *obj.Prog 255 var n4 gc.Node 256 if gc.Nacl { 257 // Native Client does not relay the divide-by-zero trap 258 // to the executing program, so we must insert a check 259 // for ourselves. 260 gc.Nodconst(&n4, t, 0) 261 262 gins(optoas(gc.OCMP, t), &n1, &n4) 263 p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) 264 if panicdiv == nil { 265 panicdiv = gc.Sysfunc("panicdivide") 266 } 267 gc.Ginscall(panicdiv, -1) 268 gc.Patch(p1, gc.Pc) 269 } 270 271 if check { 272 gc.Nodconst(&n4, t, -1) 273 gins(optoas(gc.OCMP, t), &n1, &n4) 274 p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) 275 if op == gc.ODIV { 276 // a / (-1) is -a. 277 gins(optoas(gc.OMINUS, t), nil, ax) 278 279 gmove(ax, res) 280 } else { 281 // a % (-1) is 0. 282 gc.Nodconst(&n4, t, 0) 283 284 gmove(&n4, res) 285 } 286 287 p2 = gc.Gbranch(obj.AJMP, nil, 0) 288 gc.Patch(p1, gc.Pc) 289 } 290 291 if !gc.Issigned[t.Etype] { 292 var nz gc.Node 293 gc.Nodconst(&nz, t, 0) 294 gmove(&nz, dx) 295 } else { 296 gins(optoas(gc.OEXTEND, t), nil, nil) 297 } 298 gins(optoas(op, t), &n1, nil) 299 gc.Regfree(&n1) 300 301 if op == gc.ODIV { 302 gmove(ax, res) 303 } else { 304 gmove(dx, res) 305 } 306 if check { 307 gc.Patch(p2, gc.Pc) 308 } 309 } 310 311 func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { 312 r := gc.GetReg(dr) 313 gc.Nodreg(x, gc.Types[gc.TINT32], dr) 314 315 // save current ax and dx if they are live 316 // and not the destination 317 *oldx = gc.Node{} 318 319 if r > 0 && !gc.Samereg(x, res) { 320 gc.Tempname(oldx, gc.Types[gc.TINT32]) 321 gmove(x, oldx) 322 } 323 324 gc.Regalloc(x, t, x) 325 } 326 327 func restx(x *gc.Node, oldx *gc.Node) { 328 gc.Regfree(x) 329 330 if oldx.Op != 0 { 331 x.Type = gc.Types[gc.TINT32] 332 gmove(oldx, x) 333 } 334 } 335 336 /* 337 * generate division according to op, one of: 338 * res = nl / nr 339 * res = nl % nr 340 */ 341 func cgen_div(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) { 342 if gc.Is64(nl.Type) { 343 gc.Fatalf("cgen_div %v", nl.Type) 344 } 345 346 var t *gc.Type 347 if gc.Issigned[nl.Type.Etype] { 348 t = gc.Types[gc.TINT32] 349 } else { 350 t = gc.Types[gc.TUINT32] 351 } 352 var ax gc.Node 353 var oldax gc.Node 354 savex(x86.REG_AX, &ax, &oldax, res, t) 355 var olddx gc.Node 356 var dx gc.Node 357 savex(x86.REG_DX, &dx, &olddx, res, t) 358 dodiv(op, nl, nr, res, &ax, &dx) 359 restx(&dx, &olddx) 360 restx(&ax, &oldax) 361 } 362 363 /* 364 * generate shift according to op, one of: 365 * res = nl << nr 366 * res = nl >> nr 367 */ 368 func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { 369 if nl.Type.Width > 4 { 370 gc.Fatalf("cgen_shift %v", nl.Type) 371 } 372 373 w := int(nl.Type.Width * 8) 374 375 a := optoas(op, nl.Type) 376 377 if nr.Op == gc.OLITERAL { 378 var n2 gc.Node 379 gc.Tempname(&n2, nl.Type) 380 gc.Cgen(nl, &n2) 381 var n1 gc.Node 382 gc.Regalloc(&n1, nl.Type, res) 383 gmove(&n2, &n1) 384 sc := uint64(nr.Int()) 385 if sc >= uint64(nl.Type.Width*8) { 386 // large shift gets 2 shifts by width-1 387 gins(a, ncon(uint32(w)-1), &n1) 388 389 gins(a, ncon(uint32(w)-1), &n1) 390 } else { 391 gins(a, nr, &n1) 392 } 393 gmove(&n1, res) 394 gc.Regfree(&n1) 395 return 396 } 397 398 var oldcx gc.Node 399 var cx gc.Node 400 gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX) 401 if gc.GetReg(x86.REG_CX) > 1 && !gc.Samereg(&cx, res) { 402 gc.Tempname(&oldcx, gc.Types[gc.TUINT32]) 403 gmove(&cx, &oldcx) 404 } 405 406 var n1 gc.Node 407 var nt gc.Node 408 if nr.Type.Width > 4 { 409 gc.Tempname(&nt, nr.Type) 410 n1 = nt 411 } else { 412 gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) 413 gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX 414 } 415 416 var n2 gc.Node 417 if gc.Samereg(&cx, res) { 418 gc.Regalloc(&n2, nl.Type, nil) 419 } else { 420 gc.Regalloc(&n2, nl.Type, res) 421 } 422 if nl.Ullman >= nr.Ullman { 423 gc.Cgen(nl, &n2) 424 gc.Cgen(nr, &n1) 425 } else { 426 gc.Cgen(nr, &n1) 427 gc.Cgen(nl, &n2) 428 } 429 430 // test and fix up large shifts 431 if bounded { 432 if nr.Type.Width > 4 { 433 // delayed reg alloc 434 gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) 435 436 gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX 437 var lo gc.Node 438 var hi gc.Node 439 split64(&nt, &lo, &hi) 440 gmove(&lo, &n1) 441 splitclean() 442 } 443 } else { 444 var p1 *obj.Prog 445 if nr.Type.Width > 4 { 446 // delayed reg alloc 447 gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) 448 449 gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX 450 var lo gc.Node 451 var hi gc.Node 452 split64(&nt, &lo, &hi) 453 gmove(&lo, &n1) 454 gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &hi, ncon(0)) 455 p2 := gc.Gbranch(optoas(gc.ONE, gc.Types[gc.TUINT32]), nil, +1) 456 gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n1, ncon(uint32(w))) 457 p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) 458 splitclean() 459 gc.Patch(p2, gc.Pc) 460 } else { 461 gins(optoas(gc.OCMP, nr.Type), &n1, ncon(uint32(w))) 462 p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) 463 } 464 465 if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { 466 gins(a, ncon(uint32(w)-1), &n2) 467 } else { 468 gmove(ncon(0), &n2) 469 } 470 471 gc.Patch(p1, gc.Pc) 472 } 473 474 gins(a, &n1, &n2) 475 476 if oldcx.Op != 0 { 477 gmove(&oldcx, &cx) 478 } 479 480 gmove(&n2, res) 481 482 gc.Regfree(&n1) 483 gc.Regfree(&n2) 484 } 485 486 /* 487 * generate byte multiply: 488 * res = nl * nr 489 * there is no 2-operand byte multiply instruction so 490 * we do a full-width multiplication and truncate afterwards. 491 */ 492 func cgen_bmul(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) bool { 493 if optoas(op, nl.Type) != x86.AIMULB { 494 return false 495 } 496 497 // copy from byte to full registers 498 t := gc.Types[gc.TUINT32] 499 500 if gc.Issigned[nl.Type.Etype] { 501 t = gc.Types[gc.TINT32] 502 } 503 504 // largest ullman on left. 505 if nl.Ullman < nr.Ullman { 506 nl, nr = nr, nl 507 } 508 509 var nt gc.Node 510 gc.Tempname(&nt, nl.Type) 511 gc.Cgen(nl, &nt) 512 var n1 gc.Node 513 gc.Regalloc(&n1, t, res) 514 gc.Cgen(nr, &n1) 515 var n2 gc.Node 516 gc.Regalloc(&n2, t, nil) 517 gmove(&nt, &n2) 518 a := optoas(op, t) 519 gins(a, &n2, &n1) 520 gc.Regfree(&n2) 521 gmove(&n1, res) 522 gc.Regfree(&n1) 523 524 return true 525 } 526 527 /* 528 * generate high multiply: 529 * res = (nl*nr) >> width 530 */ 531 func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { 532 var n1 gc.Node 533 var n2 gc.Node 534 var ax gc.Node 535 var dx gc.Node 536 537 t := nl.Type 538 a := optoas(gc.OHMUL, t) 539 540 // gen nl in n1. 541 gc.Tempname(&n1, t) 542 543 gc.Cgen(nl, &n1) 544 545 // gen nr in n2. 546 gc.Regalloc(&n2, t, res) 547 548 gc.Cgen(nr, &n2) 549 550 // multiply. 551 gc.Nodreg(&ax, t, x86.REG_AX) 552 553 gmove(&n2, &ax) 554 gins(a, &n1, nil) 555 gc.Regfree(&n2) 556 557 if t.Width == 1 { 558 // byte multiply behaves differently. 559 gc.Nodreg(&ax, t, x86.REG_AH) 560 561 gc.Nodreg(&dx, t, x86.REG_DX) 562 gmove(&ax, &dx) 563 } 564 565 gc.Nodreg(&dx, t, x86.REG_DX) 566 gmove(&dx, res) 567 } 568 569 /* 570 * generate floating-point operation. 571 */ 572 func cgen_float(n *gc.Node, res *gc.Node) { 573 nl := n.Left 574 switch n.Op { 575 case gc.OEQ, 576 gc.ONE, 577 gc.OLT, 578 gc.OLE, 579 gc.OGE: 580 p1 := gc.Gbranch(obj.AJMP, nil, 0) 581 p2 := gc.Pc 582 gmove(gc.Nodbool(true), res) 583 p3 := gc.Gbranch(obj.AJMP, nil, 0) 584 gc.Patch(p1, gc.Pc) 585 gc.Bgen(n, true, 0, p2) 586 gmove(gc.Nodbool(false), res) 587 gc.Patch(p3, gc.Pc) 588 return 589 590 case gc.OPLUS: 591 gc.Cgen(nl, res) 592 return 593 594 case gc.OCONV: 595 if gc.Eqtype(n.Type, nl.Type) || gc.Noconv(n.Type, nl.Type) { 596 gc.Cgen(nl, res) 597 return 598 } 599 600 var n2 gc.Node 601 gc.Tempname(&n2, n.Type) 602 var n1 gc.Node 603 gc.Mgen(nl, &n1, res) 604 gmove(&n1, &n2) 605 gmove(&n2, res) 606 gc.Mfree(&n1) 607 return 608 } 609 610 if gc.Thearch.Use387 { 611 cgen_float387(n, res) 612 } else { 613 cgen_floatsse(n, res) 614 } 615 } 616 617 // floating-point. 387 (not SSE2) 618 func cgen_float387(n *gc.Node, res *gc.Node) { 619 var f0 gc.Node 620 var f1 gc.Node 621 622 nl := n.Left 623 nr := n.Right 624 gc.Nodreg(&f0, nl.Type, x86.REG_F0) 625 gc.Nodreg(&f1, n.Type, x86.REG_F0+1) 626 if nr != nil { 627 // binary 628 if nl.Ullman >= nr.Ullman { 629 gc.Cgen(nl, &f0) 630 if nr.Addable { 631 gins(foptoas(n.Op, n.Type, 0), nr, &f0) 632 } else { 633 gc.Cgen(nr, &f0) 634 gins(foptoas(n.Op, n.Type, Fpop), &f0, &f1) 635 } 636 } else { 637 gc.Cgen(nr, &f0) 638 if nl.Addable { 639 gins(foptoas(n.Op, n.Type, Frev), nl, &f0) 640 } else { 641 gc.Cgen(nl, &f0) 642 gins(foptoas(n.Op, n.Type, Frev|Fpop), &f0, &f1) 643 } 644 } 645 646 gmove(&f0, res) 647 return 648 } 649 650 // unary 651 gc.Cgen(nl, &f0) 652 653 if n.Op != gc.OCONV && n.Op != gc.OPLUS { 654 gins(foptoas(n.Op, n.Type, 0), nil, nil) 655 } 656 gmove(&f0, res) 657 return 658 } 659 660 func cgen_floatsse(n *gc.Node, res *gc.Node) { 661 var a int 662 663 nl := n.Left 664 nr := n.Right 665 switch n.Op { 666 default: 667 gc.Dump("cgen_floatsse", n) 668 gc.Fatalf("cgen_floatsse %v", gc.Oconv(int(n.Op), 0)) 669 return 670 671 case gc.OMINUS, 672 gc.OCOM: 673 nr = gc.Nodintconst(-1) 674 gc.Convlit(&nr, n.Type) 675 a = foptoas(gc.OMUL, nl.Type, 0) 676 goto sbop 677 678 // symmetric binary 679 case gc.OADD, 680 gc.OMUL: 681 a = foptoas(n.Op, nl.Type, 0) 682 683 goto sbop 684 685 // asymmetric binary 686 case gc.OSUB, 687 gc.OMOD, 688 gc.ODIV: 689 a = foptoas(n.Op, nl.Type, 0) 690 691 goto abop 692 } 693 694 sbop: // symmetric binary 695 if nl.Ullman < nr.Ullman || nl.Op == gc.OLITERAL { 696 nl, nr = nr, nl 697 } 698 699 abop: // asymmetric binary 700 if nl.Ullman >= nr.Ullman { 701 var nt gc.Node 702 gc.Tempname(&nt, nl.Type) 703 gc.Cgen(nl, &nt) 704 var n2 gc.Node 705 gc.Mgen(nr, &n2, nil) 706 var n1 gc.Node 707 gc.Regalloc(&n1, nl.Type, res) 708 gmove(&nt, &n1) 709 gins(a, &n2, &n1) 710 gmove(&n1, res) 711 gc.Regfree(&n1) 712 gc.Mfree(&n2) 713 } else { 714 var n2 gc.Node 715 gc.Regalloc(&n2, nr.Type, res) 716 gc.Cgen(nr, &n2) 717 var n1 gc.Node 718 gc.Regalloc(&n1, nl.Type, nil) 719 gc.Cgen(nl, &n1) 720 gins(a, &n2, &n1) 721 gc.Regfree(&n2) 722 gmove(&n1, res) 723 gc.Regfree(&n1) 724 } 725 726 return 727 } 728 729 func bgen_float(n *gc.Node, wantTrue bool, likely int, to *obj.Prog) { 730 nl := n.Left 731 nr := n.Right 732 op := n.Op 733 if !wantTrue { 734 // brcom is not valid on floats when NaN is involved. 735 p1 := gc.Gbranch(obj.AJMP, nil, 0) 736 p2 := gc.Gbranch(obj.AJMP, nil, 0) 737 gc.Patch(p1, gc.Pc) 738 739 // No need to avoid re-genning ninit. 740 bgen_float(n, true, -likely, p2) 741 742 gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) 743 gc.Patch(p2, gc.Pc) 744 return 745 } 746 747 if gc.Thearch.Use387 { 748 op = gc.Brrev(op) // because the args are stacked 749 if op == gc.OGE || op == gc.OGT { 750 // only < and <= work right with NaN; reverse if needed 751 nl, nr = nr, nl 752 op = gc.Brrev(op) 753 } 754 755 var ax, n2, tmp gc.Node 756 gc.Nodreg(&tmp, nr.Type, x86.REG_F0) 757 gc.Nodreg(&n2, nr.Type, x86.REG_F0+1) 758 gc.Nodreg(&ax, gc.Types[gc.TUINT16], x86.REG_AX) 759 if gc.Simsimtype(nr.Type) == gc.TFLOAT64 { 760 if nl.Ullman > nr.Ullman { 761 gc.Cgen(nl, &tmp) 762 gc.Cgen(nr, &tmp) 763 gins(x86.AFXCHD, &tmp, &n2) 764 } else { 765 gc.Cgen(nr, &tmp) 766 gc.Cgen(nl, &tmp) 767 } 768 769 gins(x86.AFUCOMIP, &tmp, &n2) 770 gins(x86.AFMOVDP, &tmp, &tmp) // annoying pop but still better than STSW+SAHF 771 } else { 772 // TODO(rsc): The moves back and forth to memory 773 // here are for truncating the value to 32 bits. 774 // This handles 32-bit comparison but presumably 775 // all the other ops have the same problem. 776 // We need to figure out what the right general 777 // solution is, besides telling people to use float64. 778 var t1 gc.Node 779 gc.Tempname(&t1, gc.Types[gc.TFLOAT32]) 780 781 var t2 gc.Node 782 gc.Tempname(&t2, gc.Types[gc.TFLOAT32]) 783 gc.Cgen(nr, &t1) 784 gc.Cgen(nl, &t2) 785 gmove(&t2, &tmp) 786 gins(x86.AFCOMFP, &t1, &tmp) 787 gins(x86.AFSTSW, nil, &ax) 788 gins(x86.ASAHF, nil, nil) 789 } 790 } else { 791 // Not 387 792 if !nl.Addable { 793 nl = gc.CgenTemp(nl) 794 } 795 if !nr.Addable { 796 nr = gc.CgenTemp(nr) 797 } 798 799 var n2 gc.Node 800 gc.Regalloc(&n2, nr.Type, nil) 801 gmove(nr, &n2) 802 nr = &n2 803 804 if nl.Op != gc.OREGISTER { 805 var n3 gc.Node 806 gc.Regalloc(&n3, nl.Type, nil) 807 gmove(nl, &n3) 808 nl = &n3 809 } 810 811 if op == gc.OGE || op == gc.OGT { 812 // only < and <= work right with NopN; reverse if needed 813 nl, nr = nr, nl 814 op = gc.Brrev(op) 815 } 816 817 gins(foptoas(gc.OCMP, nr.Type, 0), nl, nr) 818 if nl.Op == gc.OREGISTER { 819 gc.Regfree(nl) 820 } 821 gc.Regfree(nr) 822 } 823 824 switch op { 825 case gc.OEQ: 826 // neither NE nor P 827 p1 := gc.Gbranch(x86.AJNE, nil, -likely) 828 p2 := gc.Gbranch(x86.AJPS, nil, -likely) 829 gc.Patch(gc.Gbranch(obj.AJMP, nil, 0), to) 830 gc.Patch(p1, gc.Pc) 831 gc.Patch(p2, gc.Pc) 832 case gc.ONE: 833 // either NE or P 834 gc.Patch(gc.Gbranch(x86.AJNE, nil, likely), to) 835 gc.Patch(gc.Gbranch(x86.AJPS, nil, likely), to) 836 default: 837 gc.Patch(gc.Gbranch(optoas(op, nr.Type), nil, likely), to) 838 } 839 } 840 841 // Called after regopt and peep have run. 842 // Expand CHECKNIL pseudo-op into actual nil pointer check. 843 func expandchecks(firstp *obj.Prog) { 844 var p1 *obj.Prog 845 var p2 *obj.Prog 846 847 for p := firstp; p != nil; p = p.Link { 848 if p.As != obj.ACHECKNIL { 849 continue 850 } 851 if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers 852 gc.Warnl(int(p.Lineno), "generated nil check") 853 } 854 855 // check is 856 // CMP arg, $0 857 // JNE 2(PC) (likely) 858 // MOV AX, 0 859 p1 = gc.Ctxt.NewProg() 860 861 p2 = gc.Ctxt.NewProg() 862 gc.Clearp(p1) 863 gc.Clearp(p2) 864 p1.Link = p2 865 p2.Link = p.Link 866 p.Link = p1 867 p1.Lineno = p.Lineno 868 p2.Lineno = p.Lineno 869 p1.Pc = 9999 870 p2.Pc = 9999 871 p.As = x86.ACMPL 872 p.To.Type = obj.TYPE_CONST 873 p.To.Offset = 0 874 p1.As = x86.AJNE 875 p1.From.Type = obj.TYPE_CONST 876 p1.From.Offset = 1 // likely 877 p1.To.Type = obj.TYPE_BRANCH 878 p1.To.Val = p2.Link 879 880 // crash by write to memory address 0. 881 // if possible, since we know arg is 0, use 0(arg), 882 // which will be shorter to encode than plain 0. 883 p2.As = x86.AMOVL 884 885 p2.From.Type = obj.TYPE_REG 886 p2.From.Reg = x86.REG_AX 887 if regtyp(&p.From) { 888 p2.To.Type = obj.TYPE_MEM 889 p2.To.Reg = p.From.Reg 890 } else { 891 p2.To.Type = obj.TYPE_MEM 892 } 893 p2.To.Offset = 0 894 } 895 } 896 897 // addr += index*width if possible. 898 func addindex(index *gc.Node, width int64, addr *gc.Node) bool { 899 switch width { 900 case 1, 2, 4, 8: 901 p1 := gins(x86.ALEAL, index, addr) 902 p1.From.Type = obj.TYPE_MEM 903 p1.From.Scale = int16(width) 904 p1.From.Index = p1.From.Reg 905 p1.From.Reg = p1.To.Reg 906 return true 907 } 908 return false 909 } 910 911 // res = runtime.getg() 912 func getg(res *gc.Node) { 913 var n1 gc.Node 914 gc.Regalloc(&n1, res.Type, res) 915 mov := optoas(gc.OAS, gc.Types[gc.Tptr]) 916 p := gins(mov, nil, &n1) 917 p.From.Type = obj.TYPE_REG 918 p.From.Reg = x86.REG_TLS 919 p = gins(mov, nil, &n1) 920 p.From = p.To 921 p.From.Type = obj.TYPE_MEM 922 p.From.Index = x86.REG_TLS 923 p.From.Scale = 1 924 gmove(&n1, res) 925 gc.Regfree(&n1) 926 }