github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/go/printer/nodes.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements printing of AST nodes; specifically
     6  // expressions, statements, declarations, and files. It uses
     7  // the print functionality implemented in printer.go.
     8  
     9  package printer
    10  
    11  import (
    12  	"bytes"
    13  	"go/ast"
    14  	"go/token"
    15  	"strconv"
    16  	"strings"
    17  	"unicode"
    18  	"unicode/utf8"
    19  )
    20  
    21  // Formatting issues:
    22  // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration)
    23  //   when the comment spans multiple lines; if such a comment is just two lines, formatting is
    24  //   not idempotent
    25  // - formatting of expression lists
    26  // - should use blank instead of tab to separate one-line function bodies from
    27  //   the function header unless there is a group of consecutive one-liners
    28  
    29  // ----------------------------------------------------------------------------
    30  // Common AST nodes.
    31  
    32  // Print as many newlines as necessary (but at least min newlines) to get to
    33  // the current line. ws is printed before the first line break. If newSection
    34  // is set, the first line break is printed as formfeed. Returns true if any
    35  // line break was printed; returns false otherwise.
    36  //
    37  // TODO(gri): linebreak may add too many lines if the next statement at "line"
    38  //            is preceded by comments because the computation of n assumes
    39  //            the current position before the comment and the target position
    40  //            after the comment. Thus, after interspersing such comments, the
    41  //            space taken up by them is not considered to reduce the number of
    42  //            linebreaks. At the moment there is no easy way to know about
    43  //            future (not yet interspersed) comments in this function.
    44  //
    45  func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (printedBreak bool) {
    46  	n := nlimit(line - p.pos.Line)
    47  	if n < min {
    48  		n = min
    49  	}
    50  	if n > 0 {
    51  		p.print(ws)
    52  		if newSection {
    53  			p.print(formfeed)
    54  			n--
    55  		}
    56  		for ; n > 0; n-- {
    57  			p.print(newline)
    58  		}
    59  		printedBreak = true
    60  	}
    61  	return
    62  }
    63  
    64  // setComment sets g as the next comment if g != nil and if node comments
    65  // are enabled - this mode is used when printing source code fragments such
    66  // as exports only. It assumes that there is no pending comment in p.comments
    67  // and at most one pending comment in the p.comment cache.
    68  func (p *printer) setComment(g *ast.CommentGroup) {
    69  	if g == nil || !p.useNodeComments {
    70  		return
    71  	}
    72  	if p.comments == nil {
    73  		// initialize p.comments lazily
    74  		p.comments = make([]*ast.CommentGroup, 1)
    75  	} else if p.cindex < len(p.comments) {
    76  		// for some reason there are pending comments; this
    77  		// should never happen - handle gracefully and flush
    78  		// all comments up to g, ignore anything after that
    79  		p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL)
    80  		p.comments = p.comments[0:1]
    81  		// in debug mode, report error
    82  		p.internalError("setComment found pending comments")
    83  	}
    84  	p.comments[0] = g
    85  	p.cindex = 0
    86  	// don't overwrite any pending comment in the p.comment cache
    87  	// (there may be a pending comment when a line comment is
    88  	// immediately followed by a lead comment with no other
    89  	// tokens between)
    90  	if p.commentOffset == infinity {
    91  		p.nextComment() // get comment ready for use
    92  	}
    93  }
    94  
    95  type exprListMode uint
    96  
    97  const (
    98  	commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma
    99  	noIndent                           // no extra indentation in multi-line lists
   100  )
   101  
   102  // If indent is set, a multi-line identifier list is indented after the
   103  // first linebreak encountered.
   104  func (p *printer) identList(list []*ast.Ident, indent bool) {
   105  	// convert into an expression list so we can re-use exprList formatting
   106  	xlist := make([]ast.Expr, len(list))
   107  	for i, x := range list {
   108  		xlist[i] = x
   109  	}
   110  	var mode exprListMode
   111  	if !indent {
   112  		mode = noIndent
   113  	}
   114  	p.exprList(token.NoPos, xlist, 1, mode, token.NoPos)
   115  }
   116  
   117  // Print a list of expressions. If the list spans multiple
   118  // source lines, the original line breaks are respected between
   119  // expressions.
   120  //
   121  // TODO(gri) Consider rewriting this to be independent of []ast.Expr
   122  //           so that we can use the algorithm for any kind of list
   123  //           (e.g., pass list via a channel over which to range).
   124  func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos) {
   125  	if len(list) == 0 {
   126  		return
   127  	}
   128  
   129  	prev := p.posFor(prev0)
   130  	next := p.posFor(next0)
   131  	line := p.lineFor(list[0].Pos())
   132  	endLine := p.lineFor(list[len(list)-1].End())
   133  
   134  	if prev.IsValid() && prev.Line == line && line == endLine {
   135  		// all list entries on a single line
   136  		for i, x := range list {
   137  			if i > 0 {
   138  				// use position of expression following the comma as
   139  				// comma position for correct comment placement
   140  				p.print(x.Pos(), token.COMMA, blank)
   141  			}
   142  			p.expr0(x, depth)
   143  		}
   144  		return
   145  	}
   146  
   147  	// list entries span multiple lines;
   148  	// use source code positions to guide line breaks
   149  
   150  	// don't add extra indentation if noIndent is set;
   151  	// i.e., pretend that the first line is already indented
   152  	ws := ignore
   153  	if mode&noIndent == 0 {
   154  		ws = indent
   155  	}
   156  
   157  	// the first linebreak is always a formfeed since this section must not
   158  	// depend on any previous formatting
   159  	prevBreak := -1 // index of last expression that was followed by a linebreak
   160  	if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) {
   161  		ws = ignore
   162  		prevBreak = 0
   163  	}
   164  
   165  	// initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line
   166  	size := 0
   167  
   168  	// print all list elements
   169  	prevLine := prev.Line
   170  	for i, x := range list {
   171  		line = p.lineFor(x.Pos())
   172  
   173  		// determine if the next linebreak, if any, needs to use formfeed:
   174  		// in general, use the entire node size to make the decision; for
   175  		// key:value expressions, use the key size
   176  		// TODO(gri) for a better result, should probably incorporate both
   177  		//           the key and the node size into the decision process
   178  		useFF := true
   179  
   180  		// determine element size: all bets are off if we don't have
   181  		// position information for the previous and next token (likely
   182  		// generated code - simply ignore the size in this case by setting
   183  		// it to 0)
   184  		prevSize := size
   185  		const infinity = 1e6 // larger than any source line
   186  		size = p.nodeSize(x, infinity)
   187  		pair, isPair := x.(*ast.KeyValueExpr)
   188  		if size <= infinity && prev.IsValid() && next.IsValid() {
   189  			// x fits on a single line
   190  			if isPair {
   191  				size = p.nodeSize(pair.Key, infinity) // size <= infinity
   192  			}
   193  		} else {
   194  			// size too large or we don't have good layout information
   195  			size = 0
   196  		}
   197  
   198  		// if the previous line and the current line had single-
   199  		// line-expressions and the key sizes are small or the
   200  		// the ratio between the key sizes does not exceed a
   201  		// threshold, align columns and do not use formfeed
   202  		if prevSize > 0 && size > 0 {
   203  			const smallSize = 20
   204  			if prevSize <= smallSize && size <= smallSize {
   205  				useFF = false
   206  			} else {
   207  				const r = 4 // threshold
   208  				ratio := float64(size) / float64(prevSize)
   209  				useFF = ratio <= 1.0/r || r <= ratio
   210  			}
   211  		}
   212  
   213  		needsLinebreak := 0 < prevLine && prevLine < line
   214  		if i > 0 {
   215  			// use position of expression following the comma as
   216  			// comma position for correct comment placement, but
   217  			// only if the expression is on the same line
   218  			if !needsLinebreak {
   219  				p.print(x.Pos())
   220  			}
   221  			p.print(token.COMMA)
   222  			needsBlank := true
   223  			if needsLinebreak {
   224  				// lines are broken using newlines so comments remain aligned
   225  				// unless forceFF is set or there are multiple expressions on
   226  				// the same line in which case formfeed is used
   227  				if p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) {
   228  					ws = ignore
   229  					prevBreak = i
   230  					needsBlank = false // we got a line break instead
   231  				}
   232  			}
   233  			if needsBlank {
   234  				p.print(blank)
   235  			}
   236  		}
   237  
   238  		if len(list) > 1 && isPair && size > 0 && needsLinebreak {
   239  			// we have a key:value expression that fits onto one line
   240  			// and it's not on the same line as the prior expression:
   241  			// use a column for the key such that consecutive entries
   242  			// can align if possible
   243  			// (needsLinebreak is set if we started a new line before)
   244  			p.expr(pair.Key)
   245  			p.print(pair.Colon, token.COLON, vtab)
   246  			p.expr(pair.Value)
   247  		} else {
   248  			p.expr0(x, depth)
   249  		}
   250  
   251  		prevLine = line
   252  	}
   253  
   254  	if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line {
   255  		// print a terminating comma if the next token is on a new line
   256  		p.print(token.COMMA)
   257  		if ws == ignore && mode&noIndent == 0 {
   258  			// unindent if we indented
   259  			p.print(unindent)
   260  		}
   261  		p.print(formfeed) // terminating comma needs a line break to look good
   262  		return
   263  	}
   264  
   265  	if ws == ignore && mode&noIndent == 0 {
   266  		// unindent if we indented
   267  		p.print(unindent)
   268  	}
   269  }
   270  
   271  func (p *printer) parameters(fields *ast.FieldList) {
   272  	p.print(fields.Opening, token.LPAREN)
   273  	if len(fields.List) > 0 {
   274  		prevLine := p.lineFor(fields.Opening)
   275  		ws := indent
   276  		for i, par := range fields.List {
   277  			// determine par begin and end line (may be different
   278  			// if there are multiple parameter names for this par
   279  			// or the type is on a separate line)
   280  			var parLineBeg int
   281  			if len(par.Names) > 0 {
   282  				parLineBeg = p.lineFor(par.Names[0].Pos())
   283  			} else {
   284  				parLineBeg = p.lineFor(par.Type.Pos())
   285  			}
   286  			var parLineEnd = p.lineFor(par.Type.End())
   287  			// separating "," if needed
   288  			needsLinebreak := 0 < prevLine && prevLine < parLineBeg
   289  			if i > 0 {
   290  				// use position of parameter following the comma as
   291  				// comma position for correct comma placement, but
   292  				// only if the next parameter is on the same line
   293  				if !needsLinebreak {
   294  					p.print(par.Pos())
   295  				}
   296  				p.print(token.COMMA)
   297  			}
   298  			// separator if needed (linebreak or blank)
   299  			if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) {
   300  				// break line if the opening "(" or previous parameter ended on a different line
   301  				ws = ignore
   302  			} else if i > 0 {
   303  				p.print(blank)
   304  			}
   305  			// parameter names
   306  			if len(par.Names) > 0 {
   307  				// Very subtle: If we indented before (ws == ignore), identList
   308  				// won't indent again. If we didn't (ws == indent), identList will
   309  				// indent if the identList spans multiple lines, and it will outdent
   310  				// again at the end (and still ws == indent). Thus, a subsequent indent
   311  				// by a linebreak call after a type, or in the next multi-line identList
   312  				// will do the right thing.
   313  				p.identList(par.Names, ws == indent)
   314  				p.print(blank)
   315  			}
   316  			// parameter type
   317  			p.expr(stripParensAlways(par.Type))
   318  			prevLine = parLineEnd
   319  		}
   320  		// if the closing ")" is on a separate line from the last parameter,
   321  		// print an additional "," and line break
   322  		if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing {
   323  			p.print(token.COMMA)
   324  			p.linebreak(closing, 0, ignore, true)
   325  		}
   326  		// unindent if we indented
   327  		if ws == ignore {
   328  			p.print(unindent)
   329  		}
   330  	}
   331  	p.print(fields.Closing, token.RPAREN)
   332  }
   333  
   334  func (p *printer) signature(params, result *ast.FieldList) {
   335  	if params != nil {
   336  		p.parameters(params)
   337  	} else {
   338  		p.print(token.LPAREN, token.RPAREN)
   339  	}
   340  	n := result.NumFields()
   341  	if n > 0 {
   342  		// result != nil
   343  		p.print(blank)
   344  		if n == 1 && result.List[0].Names == nil {
   345  			// single anonymous result; no ()'s
   346  			p.expr(stripParensAlways(result.List[0].Type))
   347  			return
   348  		}
   349  		p.parameters(result)
   350  	}
   351  }
   352  
   353  func identListSize(list []*ast.Ident, maxSize int) (size int) {
   354  	for i, x := range list {
   355  		if i > 0 {
   356  			size += len(", ")
   357  		}
   358  		size += utf8.RuneCountInString(x.Name)
   359  		if size >= maxSize {
   360  			break
   361  		}
   362  	}
   363  	return
   364  }
   365  
   366  func (p *printer) isOneLineFieldList(list []*ast.Field) bool {
   367  	if len(list) != 1 {
   368  		return false // allow only one field
   369  	}
   370  	f := list[0]
   371  	if f.Tag != nil || f.Comment != nil {
   372  		return false // don't allow tags or comments
   373  	}
   374  	// only name(s) and type
   375  	const maxSize = 30 // adjust as appropriate, this is an approximate value
   376  	namesSize := identListSize(f.Names, maxSize)
   377  	if namesSize > 0 {
   378  		namesSize = 1 // blank between names and types
   379  	}
   380  	typeSize := p.nodeSize(f.Type, maxSize)
   381  	return namesSize+typeSize <= maxSize
   382  }
   383  
   384  func (p *printer) setLineComment(text string) {
   385  	p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}})
   386  }
   387  
   388  func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) {
   389  	lbrace := fields.Opening
   390  	list := fields.List
   391  	rbrace := fields.Closing
   392  	hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace))
   393  	srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace)
   394  
   395  	if !hasComments && srcIsOneLine {
   396  		// possibly a one-line struct/interface
   397  		if len(list) == 0 {
   398  			// no blank between keyword and {} in this case
   399  			p.print(lbrace, token.LBRACE, rbrace, token.RBRACE)
   400  			return
   401  		} else if isStruct && p.isOneLineFieldList(list) { // for now ignore interfaces
   402  			// small enough - print on one line
   403  			// (don't use identList and ignore source line breaks)
   404  			p.print(lbrace, token.LBRACE, blank)
   405  			f := list[0]
   406  			for i, x := range f.Names {
   407  				if i > 0 {
   408  					// no comments so no need for comma position
   409  					p.print(token.COMMA, blank)
   410  				}
   411  				p.expr(x)
   412  			}
   413  			if len(f.Names) > 0 {
   414  				p.print(blank)
   415  			}
   416  			p.expr(f.Type)
   417  			p.print(blank, rbrace, token.RBRACE)
   418  			return
   419  		}
   420  	}
   421  	// hasComments || !srcIsOneLine
   422  
   423  	p.print(blank, lbrace, token.LBRACE, indent)
   424  	if hasComments || len(list) > 0 {
   425  		p.print(formfeed)
   426  	}
   427  
   428  	if isStruct {
   429  
   430  		sep := vtab
   431  		if len(list) == 1 {
   432  			sep = blank
   433  		}
   434  		var line int
   435  		for i, f := range list {
   436  			if i > 0 {
   437  				p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0)
   438  			}
   439  			extraTabs := 0
   440  			p.setComment(f.Doc)
   441  			p.recordLine(&line)
   442  			if len(f.Names) > 0 {
   443  				// named fields
   444  				p.identList(f.Names, false)
   445  				p.print(sep)
   446  				p.expr(f.Type)
   447  				extraTabs = 1
   448  			} else {
   449  				// anonymous field
   450  				p.expr(f.Type)
   451  				extraTabs = 2
   452  			}
   453  			if f.Tag != nil {
   454  				if len(f.Names) > 0 && sep == vtab {
   455  					p.print(sep)
   456  				}
   457  				p.print(sep)
   458  				p.expr(f.Tag)
   459  				extraTabs = 0
   460  			}
   461  			if f.Comment != nil {
   462  				for ; extraTabs > 0; extraTabs-- {
   463  					p.print(sep)
   464  				}
   465  				p.setComment(f.Comment)
   466  			}
   467  		}
   468  		if isIncomplete {
   469  			if len(list) > 0 {
   470  				p.print(formfeed)
   471  			}
   472  			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
   473  			p.setLineComment("// contains filtered or unexported fields")
   474  		}
   475  
   476  	} else { // interface
   477  
   478  		var line int
   479  		for i, f := range list {
   480  			if i > 0 {
   481  				p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0)
   482  			}
   483  			p.setComment(f.Doc)
   484  			p.recordLine(&line)
   485  			if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp {
   486  				// method
   487  				p.expr(f.Names[0])
   488  				p.signature(ftyp.Params, ftyp.Results)
   489  			} else {
   490  				// embedded interface
   491  				p.expr(f.Type)
   492  			}
   493  			p.setComment(f.Comment)
   494  		}
   495  		if isIncomplete {
   496  			if len(list) > 0 {
   497  				p.print(formfeed)
   498  			}
   499  			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
   500  			p.setLineComment("// contains filtered or unexported methods")
   501  		}
   502  
   503  	}
   504  	p.print(unindent, formfeed, rbrace, token.RBRACE)
   505  }
   506  
   507  // ----------------------------------------------------------------------------
   508  // Expressions
   509  
   510  func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) {
   511  	switch e.Op.Precedence() {
   512  	case 4:
   513  		has4 = true
   514  	case 5:
   515  		has5 = true
   516  	}
   517  
   518  	switch l := e.X.(type) {
   519  	case *ast.BinaryExpr:
   520  		if l.Op.Precedence() < e.Op.Precedence() {
   521  			// parens will be inserted.
   522  			// pretend this is an *ast.ParenExpr and do nothing.
   523  			break
   524  		}
   525  		h4, h5, mp := walkBinary(l)
   526  		has4 = has4 || h4
   527  		has5 = has5 || h5
   528  		if maxProblem < mp {
   529  			maxProblem = mp
   530  		}
   531  	}
   532  
   533  	switch r := e.Y.(type) {
   534  	case *ast.BinaryExpr:
   535  		if r.Op.Precedence() <= e.Op.Precedence() {
   536  			// parens will be inserted.
   537  			// pretend this is an *ast.ParenExpr and do nothing.
   538  			break
   539  		}
   540  		h4, h5, mp := walkBinary(r)
   541  		has4 = has4 || h4
   542  		has5 = has5 || h5
   543  		if maxProblem < mp {
   544  			maxProblem = mp
   545  		}
   546  
   547  	case *ast.StarExpr:
   548  		if e.Op == token.QUO { // `*/`
   549  			maxProblem = 5
   550  		}
   551  
   552  	case *ast.UnaryExpr:
   553  		switch e.Op.String() + r.Op.String() {
   554  		case "/*", "&&", "&^":
   555  			maxProblem = 5
   556  		case "++", "--":
   557  			if maxProblem < 4 {
   558  				maxProblem = 4
   559  			}
   560  		}
   561  	}
   562  	return
   563  }
   564  
   565  func cutoff(e *ast.BinaryExpr, depth int) int {
   566  	has4, has5, maxProblem := walkBinary(e)
   567  	if maxProblem > 0 {
   568  		return maxProblem + 1
   569  	}
   570  	if has4 && has5 {
   571  		if depth == 1 {
   572  			return 5
   573  		}
   574  		return 4
   575  	}
   576  	if depth == 1 {
   577  		return 6
   578  	}
   579  	return 4
   580  }
   581  
   582  func diffPrec(expr ast.Expr, prec int) int {
   583  	x, ok := expr.(*ast.BinaryExpr)
   584  	if !ok || prec != x.Op.Precedence() {
   585  		return 1
   586  	}
   587  	return 0
   588  }
   589  
   590  func reduceDepth(depth int) int {
   591  	depth--
   592  	if depth < 1 {
   593  		depth = 1
   594  	}
   595  	return depth
   596  }
   597  
   598  // Format the binary expression: decide the cutoff and then format.
   599  // Let's call depth == 1 Normal mode, and depth > 1 Compact mode.
   600  // (Algorithm suggestion by Russ Cox.)
   601  //
   602  // The precedences are:
   603  //	5             *  /  %  <<  >>  &  &^
   604  //	4             +  -  |  ^
   605  //	3             ==  !=  <  <=  >  >=
   606  //	2             &&
   607  //	1             ||
   608  //
   609  // The only decision is whether there will be spaces around levels 4 and 5.
   610  // There are never spaces at level 6 (unary), and always spaces at levels 3 and below.
   611  //
   612  // To choose the cutoff, look at the whole expression but excluding primary
   613  // expressions (function calls, parenthesized exprs), and apply these rules:
   614  //
   615  //	1) If there is a binary operator with a right side unary operand
   616  //	   that would clash without a space, the cutoff must be (in order):
   617  //
   618  //		/*	6
   619  //		&&	6
   620  //		&^	6
   621  //		++	5
   622  //		--	5
   623  //
   624  //         (Comparison operators always have spaces around them.)
   625  //
   626  //	2) If there is a mix of level 5 and level 4 operators, then the cutoff
   627  //	   is 5 (use spaces to distinguish precedence) in Normal mode
   628  //	   and 4 (never use spaces) in Compact mode.
   629  //
   630  //	3) If there are no level 4 operators or no level 5 operators, then the
   631  //	   cutoff is 6 (always use spaces) in Normal mode
   632  //	   and 4 (never use spaces) in Compact mode.
   633  //
   634  func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) {
   635  	prec := x.Op.Precedence()
   636  	if prec < prec1 {
   637  		// parenthesis needed
   638  		// Note: The parser inserts an ast.ParenExpr node; thus this case
   639  		//       can only occur if the AST is created in a different way.
   640  		p.print(token.LPAREN)
   641  		p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth
   642  		p.print(token.RPAREN)
   643  		return
   644  	}
   645  
   646  	printBlank := prec < cutoff
   647  
   648  	ws := indent
   649  	p.expr1(x.X, prec, depth+diffPrec(x.X, prec))
   650  	if printBlank {
   651  		p.print(blank)
   652  	}
   653  	xline := p.pos.Line // before the operator (it may be on the next line!)
   654  	yline := p.lineFor(x.Y.Pos())
   655  	p.print(x.OpPos, x.Op)
   656  	if xline != yline && xline > 0 && yline > 0 {
   657  		// at least one line break, but respect an extra empty line
   658  		// in the source
   659  		if p.linebreak(yline, 1, ws, true) {
   660  			ws = ignore
   661  			printBlank = false // no blank after line break
   662  		}
   663  	}
   664  	if printBlank {
   665  		p.print(blank)
   666  	}
   667  	p.expr1(x.Y, prec+1, depth+1)
   668  	if ws == ignore {
   669  		p.print(unindent)
   670  	}
   671  }
   672  
   673  func isBinary(expr ast.Expr) bool {
   674  	_, ok := expr.(*ast.BinaryExpr)
   675  	return ok
   676  }
   677  
   678  func (p *printer) expr1(expr ast.Expr, prec1, depth int) {
   679  	p.print(expr.Pos())
   680  
   681  	switch x := expr.(type) {
   682  	case *ast.BadExpr:
   683  		p.print("BadExpr")
   684  
   685  	case *ast.Ident:
   686  		p.print(x)
   687  
   688  	case *ast.BinaryExpr:
   689  		if depth < 1 {
   690  			p.internalError("depth < 1:", depth)
   691  			depth = 1
   692  		}
   693  		p.binaryExpr(x, prec1, cutoff(x, depth), depth)
   694  
   695  	case *ast.KeyValueExpr:
   696  		p.expr(x.Key)
   697  		p.print(x.Colon, token.COLON, blank)
   698  		p.expr(x.Value)
   699  
   700  	case *ast.StarExpr:
   701  		const prec = token.UnaryPrec
   702  		if prec < prec1 {
   703  			// parenthesis needed
   704  			p.print(token.LPAREN)
   705  			p.print(token.MUL)
   706  			p.expr(x.X)
   707  			p.print(token.RPAREN)
   708  		} else {
   709  			// no parenthesis needed
   710  			p.print(token.MUL)
   711  			p.expr(x.X)
   712  		}
   713  
   714  	case *ast.UnaryExpr:
   715  		const prec = token.UnaryPrec
   716  		if prec < prec1 {
   717  			// parenthesis needed
   718  			p.print(token.LPAREN)
   719  			p.expr(x)
   720  			p.print(token.RPAREN)
   721  		} else {
   722  			// no parenthesis needed
   723  			p.print(x.Op)
   724  			if x.Op == token.RANGE {
   725  				// TODO(gri) Remove this code if it cannot be reached.
   726  				p.print(blank)
   727  			}
   728  			p.expr1(x.X, prec, depth)
   729  		}
   730  
   731  	case *ast.BasicLit:
   732  		p.print(x)
   733  
   734  	case *ast.FuncLit:
   735  		p.expr(x.Type)
   736  		p.adjBlock(p.distanceFrom(x.Type.Pos()), blank, x.Body)
   737  
   738  	case *ast.ParenExpr:
   739  		if _, hasParens := x.X.(*ast.ParenExpr); hasParens {
   740  			// don't print parentheses around an already parenthesized expression
   741  			// TODO(gri) consider making this more general and incorporate precedence levels
   742  			p.expr0(x.X, depth)
   743  		} else {
   744  			p.print(token.LPAREN)
   745  			p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth
   746  			p.print(x.Rparen, token.RPAREN)
   747  		}
   748  
   749  	case *ast.SelectorExpr:
   750  		p.selectorExpr(x, depth, false)
   751  
   752  	case *ast.TypeAssertExpr:
   753  		p.expr1(x.X, token.HighestPrec, depth)
   754  		p.print(token.PERIOD, x.Lparen, token.LPAREN)
   755  		if x.Type != nil {
   756  			p.expr(x.Type)
   757  		} else {
   758  			p.print(token.TYPE)
   759  		}
   760  		p.print(x.Rparen, token.RPAREN)
   761  
   762  	case *ast.IndexExpr:
   763  		// TODO(gri): should treat[] like parentheses and undo one level of depth
   764  		p.expr1(x.X, token.HighestPrec, 1)
   765  		p.print(x.Lbrack, token.LBRACK)
   766  		p.expr0(x.Index, depth+1)
   767  		p.print(x.Rbrack, token.RBRACK)
   768  
   769  	case *ast.SliceExpr:
   770  		// TODO(gri): should treat[] like parentheses and undo one level of depth
   771  		p.expr1(x.X, token.HighestPrec, 1)
   772  		p.print(x.Lbrack, token.LBRACK)
   773  		indices := []ast.Expr{x.Low, x.High}
   774  		if x.Max != nil {
   775  			indices = append(indices, x.Max)
   776  		}
   777  		for i, y := range indices {
   778  			if i > 0 {
   779  				// blanks around ":" if both sides exist and either side is a binary expression
   780  				// TODO(gri) once we have committed a variant of a[i:j:k] we may want to fine-
   781  				//           tune the formatting here
   782  				x := indices[i-1]
   783  				if depth <= 1 && x != nil && y != nil && (isBinary(x) || isBinary(y)) {
   784  					p.print(blank, token.COLON, blank)
   785  				} else {
   786  					p.print(token.COLON)
   787  				}
   788  			}
   789  			if y != nil {
   790  				p.expr0(y, depth+1)
   791  			}
   792  		}
   793  		p.print(x.Rbrack, token.RBRACK)
   794  
   795  	case *ast.CallExpr:
   796  		if len(x.Args) > 1 {
   797  			depth++
   798  		}
   799  		var wasIndented bool
   800  		if _, ok := x.Fun.(*ast.FuncType); ok {
   801  			// conversions to literal function types require parentheses around the type
   802  			p.print(token.LPAREN)
   803  			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
   804  			p.print(token.RPAREN)
   805  		} else {
   806  			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
   807  		}
   808  		p.print(x.Lparen, token.LPAREN)
   809  		if x.Ellipsis.IsValid() {
   810  			p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis)
   811  			p.print(x.Ellipsis, token.ELLIPSIS)
   812  			if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) {
   813  				p.print(token.COMMA, formfeed)
   814  			}
   815  		} else {
   816  			p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen)
   817  		}
   818  		p.print(x.Rparen, token.RPAREN)
   819  		if wasIndented {
   820  			p.print(unindent)
   821  		}
   822  
   823  	case *ast.CompositeLit:
   824  		// composite literal elements that are composite literals themselves may have the type omitted
   825  		if x.Type != nil {
   826  			p.expr1(x.Type, token.HighestPrec, depth)
   827  		}
   828  		p.print(x.Lbrace, token.LBRACE)
   829  		p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace)
   830  		// do not insert extra line break following a /*-style comment
   831  		// before the closing '}' as it might break the code if there
   832  		// is no trailing ','
   833  		mode := noExtraLinebreak
   834  		// do not insert extra blank following a /*-style comment
   835  		// before the closing '}' unless the literal is empty
   836  		if len(x.Elts) > 0 {
   837  			mode |= noExtraBlank
   838  		}
   839  		p.print(mode, x.Rbrace, token.RBRACE, mode)
   840  
   841  	case *ast.Ellipsis:
   842  		p.print(token.ELLIPSIS)
   843  		if x.Elt != nil {
   844  			p.expr(x.Elt)
   845  		}
   846  
   847  	case *ast.ArrayType:
   848  		p.print(token.LBRACK)
   849  		if x.Len != nil {
   850  			p.expr(x.Len)
   851  		}
   852  		p.print(token.RBRACK)
   853  		p.expr(x.Elt)
   854  
   855  	case *ast.StructType:
   856  		p.print(token.STRUCT)
   857  		p.fieldList(x.Fields, true, x.Incomplete)
   858  
   859  	case *ast.FuncType:
   860  		p.print(token.FUNC)
   861  		p.signature(x.Params, x.Results)
   862  
   863  	case *ast.InterfaceType:
   864  		p.print(token.INTERFACE)
   865  		p.fieldList(x.Methods, false, x.Incomplete)
   866  
   867  	case *ast.MapType:
   868  		p.print(token.MAP, token.LBRACK)
   869  		p.expr(x.Key)
   870  		p.print(token.RBRACK)
   871  		p.expr(x.Value)
   872  
   873  	case *ast.ChanType:
   874  		switch x.Dir {
   875  		case ast.SEND | ast.RECV:
   876  			p.print(token.CHAN)
   877  		case ast.RECV:
   878  			p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same
   879  		case ast.SEND:
   880  			p.print(token.CHAN, x.Arrow, token.ARROW)
   881  		}
   882  		p.print(blank)
   883  		p.expr(x.Value)
   884  
   885  	default:
   886  		panic("unreachable")
   887  	}
   888  
   889  	return
   890  }
   891  
   892  func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool {
   893  	if x, ok := expr.(*ast.SelectorExpr); ok {
   894  		return p.selectorExpr(x, depth, true)
   895  	}
   896  	p.expr1(expr, prec1, depth)
   897  	return false
   898  }
   899  
   900  // selectorExpr handles an *ast.SelectorExpr node and returns whether x spans
   901  // multiple lines.
   902  func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool {
   903  	p.expr1(x.X, token.HighestPrec, depth)
   904  	p.print(token.PERIOD)
   905  	if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line {
   906  		p.print(indent, newline, x.Sel.Pos(), x.Sel)
   907  		if !isMethod {
   908  			p.print(unindent)
   909  		}
   910  		return true
   911  	}
   912  	p.print(x.Sel.Pos(), x.Sel)
   913  	return false
   914  }
   915  
   916  func (p *printer) expr0(x ast.Expr, depth int) {
   917  	p.expr1(x, token.LowestPrec, depth)
   918  }
   919  
   920  func (p *printer) expr(x ast.Expr) {
   921  	const depth = 1
   922  	p.expr1(x, token.LowestPrec, depth)
   923  }
   924  
   925  // ----------------------------------------------------------------------------
   926  // Statements
   927  
   928  // Print the statement list indented, but without a newline after the last statement.
   929  // Extra line breaks between statements in the source are respected but at most one
   930  // empty line is printed between statements.
   931  func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) {
   932  	if nindent > 0 {
   933  		p.print(indent)
   934  	}
   935  	var line int
   936  	i := 0
   937  	for _, s := range list {
   938  		// ignore empty statements (was issue 3466)
   939  		if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty {
   940  			// nindent == 0 only for lists of switch/select case clauses;
   941  			// in those cases each clause is a new section
   942  			if len(p.output) > 0 {
   943  				// only print line break if we are not at the beginning of the output
   944  				// (i.e., we are not printing only a partial program)
   945  				p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0)
   946  			}
   947  			p.recordLine(&line)
   948  			p.stmt(s, nextIsRBrace && i == len(list)-1)
   949  			// labeled statements put labels on a separate line, but here
   950  			// we only care about the start line of the actual statement
   951  			// without label - correct line for each label
   952  			for t := s; ; {
   953  				lt, _ := t.(*ast.LabeledStmt)
   954  				if lt == nil {
   955  					break
   956  				}
   957  				line++
   958  				t = lt.Stmt
   959  			}
   960  			i++
   961  		}
   962  	}
   963  	if nindent > 0 {
   964  		p.print(unindent)
   965  	}
   966  }
   967  
   968  // block prints an *ast.BlockStmt; it always spans at least two lines.
   969  func (p *printer) block(b *ast.BlockStmt, nindent int) {
   970  	p.print(b.Lbrace, token.LBRACE)
   971  	p.stmtList(b.List, nindent, true)
   972  	p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true)
   973  	p.print(b.Rbrace, token.RBRACE)
   974  }
   975  
   976  func isTypeName(x ast.Expr) bool {
   977  	switch t := x.(type) {
   978  	case *ast.Ident:
   979  		return true
   980  	case *ast.SelectorExpr:
   981  		return isTypeName(t.X)
   982  	}
   983  	return false
   984  }
   985  
   986  func stripParens(x ast.Expr) ast.Expr {
   987  	if px, strip := x.(*ast.ParenExpr); strip {
   988  		// parentheses must not be stripped if there are any
   989  		// unparenthesized composite literals starting with
   990  		// a type name
   991  		ast.Inspect(px.X, func(node ast.Node) bool {
   992  			switch x := node.(type) {
   993  			case *ast.ParenExpr:
   994  				// parentheses protect enclosed composite literals
   995  				return false
   996  			case *ast.CompositeLit:
   997  				if isTypeName(x.Type) {
   998  					strip = false // do not strip parentheses
   999  				}
  1000  				return false
  1001  			}
  1002  			// in all other cases, keep inspecting
  1003  			return true
  1004  		})
  1005  		if strip {
  1006  			return stripParens(px.X)
  1007  		}
  1008  	}
  1009  	return x
  1010  }
  1011  
  1012  func stripParensAlways(x ast.Expr) ast.Expr {
  1013  	if x, ok := x.(*ast.ParenExpr); ok {
  1014  		return stripParensAlways(x.X)
  1015  	}
  1016  	return x
  1017  }
  1018  
  1019  func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) {
  1020  	p.print(blank)
  1021  	needsBlank := false
  1022  	if init == nil && post == nil {
  1023  		// no semicolons required
  1024  		if expr != nil {
  1025  			p.expr(stripParens(expr))
  1026  			needsBlank = true
  1027  		}
  1028  	} else {
  1029  		// all semicolons required
  1030  		// (they are not separators, print them explicitly)
  1031  		if init != nil {
  1032  			p.stmt(init, false)
  1033  		}
  1034  		p.print(token.SEMICOLON, blank)
  1035  		if expr != nil {
  1036  			p.expr(stripParens(expr))
  1037  			needsBlank = true
  1038  		}
  1039  		if isForStmt {
  1040  			p.print(token.SEMICOLON, blank)
  1041  			needsBlank = false
  1042  			if post != nil {
  1043  				p.stmt(post, false)
  1044  				needsBlank = true
  1045  			}
  1046  		}
  1047  	}
  1048  	if needsBlank {
  1049  		p.print(blank)
  1050  	}
  1051  }
  1052  
  1053  // indentList reports whether an expression list would look better if it
  1054  // were indented wholesale (starting with the very first element, rather
  1055  // than starting at the first line break).
  1056  //
  1057  func (p *printer) indentList(list []ast.Expr) bool {
  1058  	// Heuristic: indentList returns true if there are more than one multi-
  1059  	// line element in the list, or if there is any element that is not
  1060  	// starting on the same line as the previous one ends.
  1061  	if len(list) >= 2 {
  1062  		var b = p.lineFor(list[0].Pos())
  1063  		var e = p.lineFor(list[len(list)-1].End())
  1064  		if 0 < b && b < e {
  1065  			// list spans multiple lines
  1066  			n := 0 // multi-line element count
  1067  			line := b
  1068  			for _, x := range list {
  1069  				xb := p.lineFor(x.Pos())
  1070  				xe := p.lineFor(x.End())
  1071  				if line < xb {
  1072  					// x is not starting on the same
  1073  					// line as the previous one ended
  1074  					return true
  1075  				}
  1076  				if xb < xe {
  1077  					// x is a multi-line element
  1078  					n++
  1079  				}
  1080  				line = xe
  1081  			}
  1082  			return n > 1
  1083  		}
  1084  	}
  1085  	return false
  1086  }
  1087  
  1088  func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) {
  1089  	p.print(stmt.Pos())
  1090  
  1091  	switch s := stmt.(type) {
  1092  	case *ast.BadStmt:
  1093  		p.print("BadStmt")
  1094  
  1095  	case *ast.DeclStmt:
  1096  		p.decl(s.Decl)
  1097  
  1098  	case *ast.EmptyStmt:
  1099  		// nothing to do
  1100  
  1101  	case *ast.LabeledStmt:
  1102  		// a "correcting" unindent immediately following a line break
  1103  		// is applied before the line break if there is no comment
  1104  		// between (see writeWhitespace)
  1105  		p.print(unindent)
  1106  		p.expr(s.Label)
  1107  		p.print(s.Colon, token.COLON, indent)
  1108  		if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty {
  1109  			if !nextIsRBrace {
  1110  				p.print(newline, e.Pos(), token.SEMICOLON)
  1111  				break
  1112  			}
  1113  		} else {
  1114  			p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true)
  1115  		}
  1116  		p.stmt(s.Stmt, nextIsRBrace)
  1117  
  1118  	case *ast.ExprStmt:
  1119  		const depth = 1
  1120  		p.expr0(s.X, depth)
  1121  
  1122  	case *ast.SendStmt:
  1123  		const depth = 1
  1124  		p.expr0(s.Chan, depth)
  1125  		p.print(blank, s.Arrow, token.ARROW, blank)
  1126  		p.expr0(s.Value, depth)
  1127  
  1128  	case *ast.IncDecStmt:
  1129  		const depth = 1
  1130  		p.expr0(s.X, depth+1)
  1131  		p.print(s.TokPos, s.Tok)
  1132  
  1133  	case *ast.AssignStmt:
  1134  		var depth = 1
  1135  		if len(s.Lhs) > 1 && len(s.Rhs) > 1 {
  1136  			depth++
  1137  		}
  1138  		p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos)
  1139  		p.print(blank, s.TokPos, s.Tok, blank)
  1140  		p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos)
  1141  
  1142  	case *ast.GoStmt:
  1143  		p.print(token.GO, blank)
  1144  		p.expr(s.Call)
  1145  
  1146  	case *ast.DeferStmt:
  1147  		p.print(token.DEFER, blank)
  1148  		p.expr(s.Call)
  1149  
  1150  	case *ast.ReturnStmt:
  1151  		p.print(token.RETURN)
  1152  		if s.Results != nil {
  1153  			p.print(blank)
  1154  			// Use indentList heuristic to make corner cases look
  1155  			// better (issue 1207). A more systematic approach would
  1156  			// always indent, but this would cause significant
  1157  			// reformatting of the code base and not necessarily
  1158  			// lead to more nicely formatted code in general.
  1159  			if p.indentList(s.Results) {
  1160  				p.print(indent)
  1161  				p.exprList(s.Pos(), s.Results, 1, noIndent, token.NoPos)
  1162  				p.print(unindent)
  1163  			} else {
  1164  				p.exprList(s.Pos(), s.Results, 1, 0, token.NoPos)
  1165  			}
  1166  		}
  1167  
  1168  	case *ast.BranchStmt:
  1169  		p.print(s.Tok)
  1170  		if s.Label != nil {
  1171  			p.print(blank)
  1172  			p.expr(s.Label)
  1173  		}
  1174  
  1175  	case *ast.BlockStmt:
  1176  		p.block(s, 1)
  1177  
  1178  	case *ast.IfStmt:
  1179  		p.print(token.IF)
  1180  		p.controlClause(false, s.Init, s.Cond, nil)
  1181  		p.block(s.Body, 1)
  1182  		if s.Else != nil {
  1183  			p.print(blank, token.ELSE, blank)
  1184  			switch s.Else.(type) {
  1185  			case *ast.BlockStmt, *ast.IfStmt:
  1186  				p.stmt(s.Else, nextIsRBrace)
  1187  			default:
  1188  				p.print(token.LBRACE, indent, formfeed)
  1189  				p.stmt(s.Else, true)
  1190  				p.print(unindent, formfeed, token.RBRACE)
  1191  			}
  1192  		}
  1193  
  1194  	case *ast.CaseClause:
  1195  		if s.List != nil {
  1196  			p.print(token.CASE, blank)
  1197  			p.exprList(s.Pos(), s.List, 1, 0, s.Colon)
  1198  		} else {
  1199  			p.print(token.DEFAULT)
  1200  		}
  1201  		p.print(s.Colon, token.COLON)
  1202  		p.stmtList(s.Body, 1, nextIsRBrace)
  1203  
  1204  	case *ast.SwitchStmt:
  1205  		p.print(token.SWITCH)
  1206  		p.controlClause(false, s.Init, s.Tag, nil)
  1207  		p.block(s.Body, 0)
  1208  
  1209  	case *ast.TypeSwitchStmt:
  1210  		p.print(token.SWITCH)
  1211  		if s.Init != nil {
  1212  			p.print(blank)
  1213  			p.stmt(s.Init, false)
  1214  			p.print(token.SEMICOLON)
  1215  		}
  1216  		p.print(blank)
  1217  		p.stmt(s.Assign, false)
  1218  		p.print(blank)
  1219  		p.block(s.Body, 0)
  1220  
  1221  	case *ast.CommClause:
  1222  		if s.Comm != nil {
  1223  			p.print(token.CASE, blank)
  1224  			p.stmt(s.Comm, false)
  1225  		} else {
  1226  			p.print(token.DEFAULT)
  1227  		}
  1228  		p.print(s.Colon, token.COLON)
  1229  		p.stmtList(s.Body, 1, nextIsRBrace)
  1230  
  1231  	case *ast.SelectStmt:
  1232  		p.print(token.SELECT, blank)
  1233  		body := s.Body
  1234  		if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) {
  1235  			// print empty select statement w/o comments on one line
  1236  			p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE)
  1237  		} else {
  1238  			p.block(body, 0)
  1239  		}
  1240  
  1241  	case *ast.ForStmt:
  1242  		p.print(token.FOR)
  1243  		p.controlClause(true, s.Init, s.Cond, s.Post)
  1244  		p.block(s.Body, 1)
  1245  
  1246  	case *ast.RangeStmt:
  1247  		p.print(token.FOR, blank)
  1248  		if s.Key != nil {
  1249  			p.expr(s.Key)
  1250  			if s.Value != nil {
  1251  				// use position of value following the comma as
  1252  				// comma position for correct comment placement
  1253  				p.print(s.Value.Pos(), token.COMMA, blank)
  1254  				p.expr(s.Value)
  1255  			}
  1256  			p.print(blank, s.TokPos, s.Tok, blank)
  1257  		}
  1258  		p.print(token.RANGE, blank)
  1259  		p.expr(stripParens(s.X))
  1260  		p.print(blank)
  1261  		p.block(s.Body, 1)
  1262  
  1263  	default:
  1264  		panic("unreachable")
  1265  	}
  1266  
  1267  	return
  1268  }
  1269  
  1270  // ----------------------------------------------------------------------------
  1271  // Declarations
  1272  
  1273  // The keepTypeColumn function determines if the type column of a series of
  1274  // consecutive const or var declarations must be kept, or if initialization
  1275  // values (V) can be placed in the type column (T) instead. The i'th entry
  1276  // in the result slice is true if the type column in spec[i] must be kept.
  1277  //
  1278  // For example, the declaration:
  1279  //
  1280  //	const (
  1281  //		foobar int = 42 // comment
  1282  //		x          = 7  // comment
  1283  //		foo
  1284  //              bar = 991
  1285  //	)
  1286  //
  1287  // leads to the type/values matrix below. A run of value columns (V) can
  1288  // be moved into the type column if there is no type for any of the values
  1289  // in that column (we only move entire columns so that they align properly).
  1290  //
  1291  //	matrix        formatted     result
  1292  //                    matrix
  1293  //	T  V    ->    T  V     ->   true      there is a T and so the type
  1294  //	-  V          -  V          true      column must be kept
  1295  //	-  -          -  -          false
  1296  //	-  V          V  -          false     V is moved into T column
  1297  //
  1298  func keepTypeColumn(specs []ast.Spec) []bool {
  1299  	m := make([]bool, len(specs))
  1300  
  1301  	populate := func(i, j int, keepType bool) {
  1302  		if keepType {
  1303  			for ; i < j; i++ {
  1304  				m[i] = true
  1305  			}
  1306  		}
  1307  	}
  1308  
  1309  	i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run
  1310  	var keepType bool
  1311  	for i, s := range specs {
  1312  		t := s.(*ast.ValueSpec)
  1313  		if t.Values != nil {
  1314  			if i0 < 0 {
  1315  				// start of a run of ValueSpecs with non-nil Values
  1316  				i0 = i
  1317  				keepType = false
  1318  			}
  1319  		} else {
  1320  			if i0 >= 0 {
  1321  				// end of a run
  1322  				populate(i0, i, keepType)
  1323  				i0 = -1
  1324  			}
  1325  		}
  1326  		if t.Type != nil {
  1327  			keepType = true
  1328  		}
  1329  	}
  1330  	if i0 >= 0 {
  1331  		// end of a run
  1332  		populate(i0, len(specs), keepType)
  1333  	}
  1334  
  1335  	return m
  1336  }
  1337  
  1338  func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) {
  1339  	p.setComment(s.Doc)
  1340  	p.identList(s.Names, false) // always present
  1341  	extraTabs := 3
  1342  	if s.Type != nil || keepType {
  1343  		p.print(vtab)
  1344  		extraTabs--
  1345  	}
  1346  	if s.Type != nil {
  1347  		p.expr(s.Type)
  1348  	}
  1349  	if s.Values != nil {
  1350  		p.print(vtab, token.ASSIGN, blank)
  1351  		p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos)
  1352  		extraTabs--
  1353  	}
  1354  	if s.Comment != nil {
  1355  		for ; extraTabs > 0; extraTabs-- {
  1356  			p.print(vtab)
  1357  		}
  1358  		p.setComment(s.Comment)
  1359  	}
  1360  }
  1361  
  1362  func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit {
  1363  	// Note: An unmodified AST generated by go/parser will already
  1364  	// contain a backward- or double-quoted path string that does
  1365  	// not contain any invalid characters, and most of the work
  1366  	// here is not needed. However, a modified or generated AST
  1367  	// may possibly contain non-canonical paths. Do the work in
  1368  	// all cases since it's not too hard and not speed-critical.
  1369  
  1370  	// if we don't have a proper string, be conservative and return whatever we have
  1371  	if lit.Kind != token.STRING {
  1372  		return lit
  1373  	}
  1374  	s, err := strconv.Unquote(lit.Value)
  1375  	if err != nil {
  1376  		return lit
  1377  	}
  1378  
  1379  	// if the string is an invalid path, return whatever we have
  1380  	//
  1381  	// spec: "Implementation restriction: A compiler may restrict
  1382  	// ImportPaths to non-empty strings using only characters belonging
  1383  	// to Unicode's L, M, N, P, and S general categories (the Graphic
  1384  	// characters without spaces) and may also exclude the characters
  1385  	// !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character
  1386  	// U+FFFD."
  1387  	if s == "" {
  1388  		return lit
  1389  	}
  1390  	const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
  1391  	for _, r := range s {
  1392  		if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
  1393  			return lit
  1394  		}
  1395  	}
  1396  
  1397  	// otherwise, return the double-quoted path
  1398  	s = strconv.Quote(s)
  1399  	if s == lit.Value {
  1400  		return lit // nothing wrong with lit
  1401  	}
  1402  	return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s}
  1403  }
  1404  
  1405  // The parameter n is the number of specs in the group. If doIndent is set,
  1406  // multi-line identifier lists in the spec are indented when the first
  1407  // linebreak is encountered.
  1408  //
  1409  func (p *printer) spec(spec ast.Spec, n int, doIndent bool) {
  1410  	switch s := spec.(type) {
  1411  	case *ast.ImportSpec:
  1412  		p.setComment(s.Doc)
  1413  		if s.Name != nil {
  1414  			p.expr(s.Name)
  1415  			p.print(blank)
  1416  		}
  1417  		p.expr(sanitizeImportPath(s.Path))
  1418  		p.setComment(s.Comment)
  1419  		p.print(s.EndPos)
  1420  
  1421  	case *ast.ValueSpec:
  1422  		if n != 1 {
  1423  			p.internalError("expected n = 1; got", n)
  1424  		}
  1425  		p.setComment(s.Doc)
  1426  		p.identList(s.Names, doIndent) // always present
  1427  		if s.Type != nil {
  1428  			p.print(blank)
  1429  			p.expr(s.Type)
  1430  		}
  1431  		if s.Values != nil {
  1432  			p.print(blank, token.ASSIGN, blank)
  1433  			p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos)
  1434  		}
  1435  		p.setComment(s.Comment)
  1436  
  1437  	case *ast.TypeSpec:
  1438  		p.setComment(s.Doc)
  1439  		p.expr(s.Name)
  1440  		if n == 1 {
  1441  			p.print(blank)
  1442  		} else {
  1443  			p.print(vtab)
  1444  		}
  1445  		p.expr(s.Type)
  1446  		p.setComment(s.Comment)
  1447  
  1448  	default:
  1449  		panic("unreachable")
  1450  	}
  1451  }
  1452  
  1453  func (p *printer) genDecl(d *ast.GenDecl) {
  1454  	p.setComment(d.Doc)
  1455  	p.print(d.Pos(), d.Tok, blank)
  1456  
  1457  	if d.Lparen.IsValid() {
  1458  		// group of parenthesized declarations
  1459  		p.print(d.Lparen, token.LPAREN)
  1460  		if n := len(d.Specs); n > 0 {
  1461  			p.print(indent, formfeed)
  1462  			if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) {
  1463  				// two or more grouped const/var declarations:
  1464  				// determine if the type column must be kept
  1465  				keepType := keepTypeColumn(d.Specs)
  1466  				var line int
  1467  				for i, s := range d.Specs {
  1468  					if i > 0 {
  1469  						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
  1470  					}
  1471  					p.recordLine(&line)
  1472  					p.valueSpec(s.(*ast.ValueSpec), keepType[i])
  1473  				}
  1474  			} else {
  1475  				var line int
  1476  				for i, s := range d.Specs {
  1477  					if i > 0 {
  1478  						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
  1479  					}
  1480  					p.recordLine(&line)
  1481  					p.spec(s, n, false)
  1482  				}
  1483  			}
  1484  			p.print(unindent, formfeed)
  1485  		}
  1486  		p.print(d.Rparen, token.RPAREN)
  1487  
  1488  	} else {
  1489  		// single declaration
  1490  		p.spec(d.Specs[0], 1, true)
  1491  	}
  1492  }
  1493  
  1494  // nodeSize determines the size of n in chars after formatting.
  1495  // The result is <= maxSize if the node fits on one line with at
  1496  // most maxSize chars and the formatted output doesn't contain
  1497  // any control chars. Otherwise, the result is > maxSize.
  1498  //
  1499  func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) {
  1500  	// nodeSize invokes the printer, which may invoke nodeSize
  1501  	// recursively. For deep composite literal nests, this can
  1502  	// lead to an exponential algorithm. Remember previous
  1503  	// results to prune the recursion (was issue 1628).
  1504  	if size, found := p.nodeSizes[n]; found {
  1505  		return size
  1506  	}
  1507  
  1508  	size = maxSize + 1 // assume n doesn't fit
  1509  	p.nodeSizes[n] = size
  1510  
  1511  	// nodeSize computation must be independent of particular
  1512  	// style so that we always get the same decision; print
  1513  	// in RawFormat
  1514  	cfg := Config{Mode: RawFormat}
  1515  	var buf bytes.Buffer
  1516  	if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil {
  1517  		return
  1518  	}
  1519  	if buf.Len() <= maxSize {
  1520  		for _, ch := range buf.Bytes() {
  1521  			if ch < ' ' {
  1522  				return
  1523  			}
  1524  		}
  1525  		size = buf.Len() // n fits
  1526  		p.nodeSizes[n] = size
  1527  	}
  1528  	return
  1529  }
  1530  
  1531  // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's.
  1532  func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int {
  1533  	pos1 := b.Pos()
  1534  	pos2 := b.Rbrace
  1535  	if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) {
  1536  		// opening and closing brace are on different lines - don't make it a one-liner
  1537  		return maxSize + 1
  1538  	}
  1539  	if len(b.List) > 5 {
  1540  		// too many statements - don't make it a one-liner
  1541  		return maxSize + 1
  1542  	}
  1543  	// otherwise, estimate body size
  1544  	bodySize := p.commentSizeBefore(p.posFor(pos2))
  1545  	for i, s := range b.List {
  1546  		if bodySize > maxSize {
  1547  			break // no need to continue
  1548  		}
  1549  		if i > 0 {
  1550  			bodySize += 2 // space for a semicolon and blank
  1551  		}
  1552  		bodySize += p.nodeSize(s, maxSize)
  1553  	}
  1554  	return bodySize
  1555  }
  1556  
  1557  // adjBlock prints an "adjacent" block (e.g., a for-loop or function body) following
  1558  // a header (e.g., a for-loop control clause or function signature) of given headerSize.
  1559  // If the header's and block's size are "small enough" and the block is "simple enough",
  1560  // the block is printed on the current line, without line breaks, spaced from the header
  1561  // by sep. Otherwise the block's opening "{" is printed on the current line, followed by
  1562  // lines for the block's statements and its closing "}".
  1563  //
  1564  func (p *printer) adjBlock(headerSize int, sep whiteSpace, b *ast.BlockStmt) {
  1565  	if b == nil {
  1566  		return
  1567  	}
  1568  
  1569  	const maxSize = 100
  1570  	if headerSize+p.bodySize(b, maxSize) <= maxSize {
  1571  		p.print(sep, b.Lbrace, token.LBRACE)
  1572  		if len(b.List) > 0 {
  1573  			p.print(blank)
  1574  			for i, s := range b.List {
  1575  				if i > 0 {
  1576  					p.print(token.SEMICOLON, blank)
  1577  				}
  1578  				p.stmt(s, i == len(b.List)-1)
  1579  			}
  1580  			p.print(blank)
  1581  		}
  1582  		p.print(noExtraLinebreak, b.Rbrace, token.RBRACE, noExtraLinebreak)
  1583  		return
  1584  	}
  1585  
  1586  	if sep != ignore {
  1587  		p.print(blank) // always use blank
  1588  	}
  1589  	p.block(b, 1)
  1590  }
  1591  
  1592  // distanceFrom returns the column difference between from and p.pos (the current
  1593  // estimated position) if both are on the same line; if they are on different lines
  1594  // (or unknown) the result is infinity.
  1595  func (p *printer) distanceFrom(from token.Pos) int {
  1596  	if from.IsValid() && p.pos.IsValid() {
  1597  		if f := p.posFor(from); f.Line == p.pos.Line {
  1598  			return p.pos.Column - f.Column
  1599  		}
  1600  	}
  1601  	return infinity
  1602  }
  1603  
  1604  func (p *printer) funcDecl(d *ast.FuncDecl) {
  1605  	p.setComment(d.Doc)
  1606  	p.print(d.Pos(), token.FUNC, blank)
  1607  	if d.Recv != nil {
  1608  		p.parameters(d.Recv) // method: print receiver
  1609  		p.print(blank)
  1610  	}
  1611  	p.expr(d.Name)
  1612  	p.signature(d.Type.Params, d.Type.Results)
  1613  	p.adjBlock(p.distanceFrom(d.Pos()), vtab, d.Body)
  1614  }
  1615  
  1616  func (p *printer) decl(decl ast.Decl) {
  1617  	switch d := decl.(type) {
  1618  	case *ast.BadDecl:
  1619  		p.print(d.Pos(), "BadDecl")
  1620  	case *ast.GenDecl:
  1621  		p.genDecl(d)
  1622  	case *ast.FuncDecl:
  1623  		p.funcDecl(d)
  1624  	default:
  1625  		panic("unreachable")
  1626  	}
  1627  }
  1628  
  1629  // ----------------------------------------------------------------------------
  1630  // Files
  1631  
  1632  func declToken(decl ast.Decl) (tok token.Token) {
  1633  	tok = token.ILLEGAL
  1634  	switch d := decl.(type) {
  1635  	case *ast.GenDecl:
  1636  		tok = d.Tok
  1637  	case *ast.FuncDecl:
  1638  		tok = token.FUNC
  1639  	}
  1640  	return
  1641  }
  1642  
  1643  func (p *printer) declList(list []ast.Decl) {
  1644  	tok := token.ILLEGAL
  1645  	for _, d := range list {
  1646  		prev := tok
  1647  		tok = declToken(d)
  1648  		// If the declaration token changed (e.g., from CONST to TYPE)
  1649  		// or the next declaration has documentation associated with it,
  1650  		// print an empty line between top-level declarations.
  1651  		// (because p.linebreak is called with the position of d, which
  1652  		// is past any documentation, the minimum requirement is satisfied
  1653  		// even w/o the extra getDoc(d) nil-check - leave it in case the
  1654  		// linebreak logic improves - there's already a TODO).
  1655  		if len(p.output) > 0 {
  1656  			// only print line break if we are not at the beginning of the output
  1657  			// (i.e., we are not printing only a partial program)
  1658  			min := 1
  1659  			if prev != tok || getDoc(d) != nil {
  1660  				min = 2
  1661  			}
  1662  			p.linebreak(p.lineFor(d.Pos()), min, ignore, false)
  1663  		}
  1664  		p.decl(d)
  1665  	}
  1666  }
  1667  
  1668  func (p *printer) file(src *ast.File) {
  1669  	p.setComment(src.Doc)
  1670  	p.print(src.Pos(), token.PACKAGE, blank)
  1671  	p.expr(src.Name)
  1672  	p.declList(src.Decls)
  1673  	p.print(newline)
  1674  }