github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/go/types/call.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of call and selector expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"go/ast"
    11  	"go/token"
    12  )
    13  
    14  func (check *Checker) call(x *operand, e *ast.CallExpr) exprKind {
    15  	check.exprOrType(x, e.Fun)
    16  
    17  	switch x.mode {
    18  	case invalid:
    19  		check.use(e.Args...)
    20  		x.mode = invalid
    21  		x.expr = e
    22  		return statement
    23  
    24  	case typexpr:
    25  		// conversion
    26  		T := x.typ
    27  		x.mode = invalid
    28  		switch n := len(e.Args); n {
    29  		case 0:
    30  			check.errorf(e.Rparen, "missing argument in conversion to %s", T)
    31  		case 1:
    32  			check.expr(x, e.Args[0])
    33  			if x.mode != invalid {
    34  				check.conversion(x, T)
    35  			}
    36  		default:
    37  			check.errorf(e.Args[n-1].Pos(), "too many arguments in conversion to %s", T)
    38  		}
    39  		x.expr = e
    40  		return conversion
    41  
    42  	case builtin:
    43  		id := x.id
    44  		if !check.builtin(x, e, id) {
    45  			x.mode = invalid
    46  		}
    47  		x.expr = e
    48  		// a non-constant result implies a function call
    49  		if x.mode != invalid && x.mode != constant_ {
    50  			check.hasCallOrRecv = true
    51  		}
    52  		return predeclaredFuncs[id].kind
    53  
    54  	default:
    55  		// function/method call
    56  		sig, _ := x.typ.Underlying().(*Signature)
    57  		if sig == nil {
    58  			check.invalidOp(x.pos(), "cannot call non-function %s", x)
    59  			x.mode = invalid
    60  			x.expr = e
    61  			return statement
    62  		}
    63  
    64  		arg, n, _ := unpack(func(x *operand, i int) { check.multiExpr(x, e.Args[i]) }, len(e.Args), false)
    65  		if arg == nil {
    66  			x.mode = invalid
    67  			x.expr = e
    68  			return statement
    69  		}
    70  
    71  		check.arguments(x, e, sig, arg, n)
    72  
    73  		// determine result
    74  		switch sig.results.Len() {
    75  		case 0:
    76  			x.mode = novalue
    77  		case 1:
    78  			x.mode = value
    79  			x.typ = sig.results.vars[0].typ // unpack tuple
    80  		default:
    81  			x.mode = value
    82  			x.typ = sig.results
    83  		}
    84  		x.expr = e
    85  		check.hasCallOrRecv = true
    86  
    87  		return statement
    88  	}
    89  }
    90  
    91  // use type-checks each argument.
    92  // Useful to make sure expressions are evaluated
    93  // (and variables are "used") in the presence of other errors.
    94  func (check *Checker) use(arg ...ast.Expr) {
    95  	var x operand
    96  	for _, e := range arg {
    97  		check.rawExpr(&x, e, nil)
    98  	}
    99  }
   100  
   101  // useGetter is like use, but takes a getter instead of a list of expressions.
   102  // It should be called instead of use if a getter is present to avoid repeated
   103  // evaluation of the first argument (since the getter was likely obtained via
   104  // unpack, which may have evaluated the first argument already).
   105  func (check *Checker) useGetter(get getter, n int) {
   106  	var x operand
   107  	for i := 0; i < n; i++ {
   108  		get(&x, i)
   109  	}
   110  }
   111  
   112  // A getter sets x as the i'th operand, where 0 <= i < n and n is the total
   113  // number of operands (context-specific, and maintained elsewhere). A getter
   114  // type-checks the i'th operand; the details of the actual check are getter-
   115  // specific.
   116  type getter func(x *operand, i int)
   117  
   118  // unpack takes a getter get and a number of operands n. If n == 1, unpack
   119  // calls the incoming getter for the first operand. If that operand is
   120  // invalid, unpack returns (nil, 0, false). Otherwise, if that operand is a
   121  // function call, or a comma-ok expression and allowCommaOk is set, the result
   122  // is a new getter and operand count providing access to the function results,
   123  // or comma-ok values, respectively. The third result value reports if it
   124  // is indeed the comma-ok case. In all other cases, the incoming getter and
   125  // operand count are returned unchanged, and the third result value is false.
   126  //
   127  // In other words, if there's exactly one operand that - after type-checking
   128  // by calling get - stands for multiple operands, the resulting getter provides
   129  // access to those operands instead.
   130  //
   131  // If the returned getter is called at most once for a given operand index i
   132  // (including i == 0), that operand is guaranteed to cause only one call of
   133  // the incoming getter with that i.
   134  //
   135  func unpack(get getter, n int, allowCommaOk bool) (getter, int, bool) {
   136  	if n == 1 {
   137  		// possibly result of an n-valued function call or comma,ok value
   138  		var x0 operand
   139  		get(&x0, 0)
   140  		if x0.mode == invalid {
   141  			return nil, 0, false
   142  		}
   143  
   144  		if t, ok := x0.typ.(*Tuple); ok {
   145  			// result of an n-valued function call
   146  			return func(x *operand, i int) {
   147  				x.mode = value
   148  				x.expr = x0.expr
   149  				x.typ = t.At(i).typ
   150  			}, t.Len(), false
   151  		}
   152  
   153  		if x0.mode == mapindex || x0.mode == commaok {
   154  			// comma-ok value
   155  			if allowCommaOk {
   156  				a := [2]Type{x0.typ, Typ[UntypedBool]}
   157  				return func(x *operand, i int) {
   158  					x.mode = value
   159  					x.expr = x0.expr
   160  					x.typ = a[i]
   161  				}, 2, true
   162  			}
   163  			x0.mode = value
   164  		}
   165  
   166  		// single value
   167  		return func(x *operand, i int) {
   168  			if i != 0 {
   169  				unreachable()
   170  			}
   171  			*x = x0
   172  		}, 1, false
   173  	}
   174  
   175  	// zero or multiple values
   176  	return get, n, false
   177  }
   178  
   179  // arguments checks argument passing for the call with the given signature.
   180  // The arg function provides the operand for the i'th argument.
   181  func (check *Checker) arguments(x *operand, call *ast.CallExpr, sig *Signature, arg getter, n int) {
   182  	if call.Ellipsis.IsValid() {
   183  		// last argument is of the form x...
   184  		if !sig.variadic {
   185  			check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
   186  			check.useGetter(arg, n)
   187  			return
   188  		}
   189  		if len(call.Args) == 1 && n > 1 {
   190  			// f()... is not permitted if f() is multi-valued
   191  			check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", n, call.Args[0])
   192  			check.useGetter(arg, n)
   193  			return
   194  		}
   195  	}
   196  
   197  	// evaluate arguments
   198  	for i := 0; i < n; i++ {
   199  		arg(x, i)
   200  		if x.mode != invalid {
   201  			var ellipsis token.Pos
   202  			if i == n-1 && call.Ellipsis.IsValid() {
   203  				ellipsis = call.Ellipsis
   204  			}
   205  			check.argument(call.Fun, sig, i, x, ellipsis)
   206  		}
   207  	}
   208  
   209  	// check argument count
   210  	if sig.variadic {
   211  		// a variadic function accepts an "empty"
   212  		// last argument: count one extra
   213  		n++
   214  	}
   215  	if n < sig.params.Len() {
   216  		check.errorf(call.Rparen, "too few arguments in call to %s", call.Fun)
   217  		// ok to continue
   218  	}
   219  }
   220  
   221  // argument checks passing of argument x to the i'th parameter of the given signature.
   222  // If ellipsis is valid, the argument is followed by ... at that position in the call.
   223  func (check *Checker) argument(fun ast.Expr, sig *Signature, i int, x *operand, ellipsis token.Pos) {
   224  	check.singleValue(x)
   225  	if x.mode == invalid {
   226  		return
   227  	}
   228  
   229  	n := sig.params.Len()
   230  
   231  	// determine parameter type
   232  	var typ Type
   233  	switch {
   234  	case i < n:
   235  		typ = sig.params.vars[i].typ
   236  	case sig.variadic:
   237  		typ = sig.params.vars[n-1].typ
   238  		if debug {
   239  			if _, ok := typ.(*Slice); !ok {
   240  				check.dump("%s: expected unnamed slice type, got %s", sig.params.vars[n-1].Pos(), typ)
   241  			}
   242  		}
   243  	default:
   244  		check.errorf(x.pos(), "too many arguments")
   245  		return
   246  	}
   247  
   248  	if ellipsis.IsValid() {
   249  		// argument is of the form x... and x is single-valued
   250  		if i != n-1 {
   251  			check.errorf(ellipsis, "can only use ... with matching parameter")
   252  			return
   253  		}
   254  		if _, ok := x.typ.Underlying().(*Slice); !ok {
   255  			check.errorf(x.pos(), "cannot use %s as parameter of type %s", x, typ)
   256  			return
   257  		}
   258  	} else if sig.variadic && i >= n-1 {
   259  		// use the variadic parameter slice's element type
   260  		typ = typ.(*Slice).elem
   261  	}
   262  
   263  	check.assignment(x, typ, check.sprintf("argument to %s", fun))
   264  }
   265  
   266  func (check *Checker) selector(x *operand, e *ast.SelectorExpr) {
   267  	// these must be declared before the "goto Error" statements
   268  	var (
   269  		obj      Object
   270  		index    []int
   271  		indirect bool
   272  	)
   273  
   274  	sel := e.Sel.Name
   275  	// If the identifier refers to a package, handle everything here
   276  	// so we don't need a "package" mode for operands: package names
   277  	// can only appear in qualified identifiers which are mapped to
   278  	// selector expressions.
   279  	if ident, ok := e.X.(*ast.Ident); ok {
   280  		_, obj := check.scope.LookupParent(ident.Name, check.pos)
   281  		if pkg, _ := obj.(*PkgName); pkg != nil {
   282  			assert(pkg.pkg == check.pkg)
   283  			check.recordUse(ident, pkg)
   284  			pkg.used = true
   285  			exp := pkg.imported.scope.Lookup(sel)
   286  			if exp == nil {
   287  				if !pkg.imported.fake {
   288  					check.errorf(e.Pos(), "%s not declared by package %s", sel, ident)
   289  				}
   290  				goto Error
   291  			}
   292  			if !exp.Exported() {
   293  				check.errorf(e.Pos(), "%s not exported by package %s", sel, ident)
   294  				// ok to continue
   295  			}
   296  			check.recordUse(e.Sel, exp)
   297  			// Simplified version of the code for *ast.Idents:
   298  			// - imported objects are always fully initialized
   299  			switch exp := exp.(type) {
   300  			case *Const:
   301  				assert(exp.Val() != nil)
   302  				x.mode = constant_
   303  				x.typ = exp.typ
   304  				x.val = exp.val
   305  			case *TypeName:
   306  				x.mode = typexpr
   307  				x.typ = exp.typ
   308  			case *Var:
   309  				x.mode = variable
   310  				x.typ = exp.typ
   311  			case *Func:
   312  				x.mode = value
   313  				x.typ = exp.typ
   314  			case *Builtin:
   315  				x.mode = builtin
   316  				x.typ = exp.typ
   317  				x.id = exp.id
   318  			default:
   319  				unreachable()
   320  			}
   321  			x.expr = e
   322  			return
   323  		}
   324  	}
   325  
   326  	check.exprOrType(x, e.X)
   327  	if x.mode == invalid {
   328  		goto Error
   329  	}
   330  
   331  	obj, index, indirect = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
   332  	if obj == nil {
   333  		switch {
   334  		case index != nil:
   335  			// TODO(gri) should provide actual type where the conflict happens
   336  			check.invalidOp(e.Pos(), "ambiguous selector %s", sel)
   337  		case indirect:
   338  			check.invalidOp(e.Pos(), "%s is not in method set of %s", sel, x.typ)
   339  		default:
   340  			check.invalidOp(e.Pos(), "%s has no field or method %s", x, sel)
   341  		}
   342  		goto Error
   343  	}
   344  
   345  	if x.mode == typexpr {
   346  		// method expression
   347  		m, _ := obj.(*Func)
   348  		if m == nil {
   349  			check.invalidOp(e.Pos(), "%s has no method %s", x, sel)
   350  			goto Error
   351  		}
   352  
   353  		check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)
   354  
   355  		// the receiver type becomes the type of the first function
   356  		// argument of the method expression's function type
   357  		var params []*Var
   358  		sig := m.typ.(*Signature)
   359  		if sig.params != nil {
   360  			params = sig.params.vars
   361  		}
   362  		x.mode = value
   363  		x.typ = &Signature{
   364  			params:   NewTuple(append([]*Var{NewVar(token.NoPos, check.pkg, "", x.typ)}, params...)...),
   365  			results:  sig.results,
   366  			variadic: sig.variadic,
   367  		}
   368  
   369  		check.addDeclDep(m)
   370  
   371  	} else {
   372  		// regular selector
   373  		switch obj := obj.(type) {
   374  		case *Var:
   375  			check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
   376  			if x.mode == variable || indirect {
   377  				x.mode = variable
   378  			} else {
   379  				x.mode = value
   380  			}
   381  			x.typ = obj.typ
   382  
   383  		case *Func:
   384  			// TODO(gri) If we needed to take into account the receiver's
   385  			// addressability, should we report the type &(x.typ) instead?
   386  			check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)
   387  
   388  			if debug {
   389  				// Verify that LookupFieldOrMethod and MethodSet.Lookup agree.
   390  				typ := x.typ
   391  				if x.mode == variable {
   392  					// If typ is not an (unnamed) pointer or an interface,
   393  					// use *typ instead, because the method set of *typ
   394  					// includes the methods of typ.
   395  					// Variables are addressable, so we can always take their
   396  					// address.
   397  					if _, ok := typ.(*Pointer); !ok && !IsInterface(typ) {
   398  						typ = &Pointer{base: typ}
   399  					}
   400  				}
   401  				// If we created a synthetic pointer type above, we will throw
   402  				// away the method set computed here after use.
   403  				// TODO(gri) Method set computation should probably always compute
   404  				// both, the value and the pointer receiver method set and represent
   405  				// them in a single structure.
   406  				// TODO(gri) Consider also using a method set cache for the lifetime
   407  				// of checker once we rely on MethodSet lookup instead of individual
   408  				// lookup.
   409  				mset := NewMethodSet(typ)
   410  				if m := mset.Lookup(check.pkg, sel); m == nil || m.obj != obj {
   411  					check.dump("%s: (%s).%v -> %s", e.Pos(), typ, obj.name, m)
   412  					check.dump("%s\n", mset)
   413  					panic("method sets and lookup don't agree")
   414  				}
   415  			}
   416  
   417  			x.mode = value
   418  
   419  			// remove receiver
   420  			sig := *obj.typ.(*Signature)
   421  			sig.recv = nil
   422  			x.typ = &sig
   423  
   424  			check.addDeclDep(obj)
   425  
   426  		default:
   427  			unreachable()
   428  		}
   429  	}
   430  
   431  	// everything went well
   432  	x.expr = e
   433  	return
   434  
   435  Error:
   436  	x.mode = invalid
   437  	x.expr = e
   438  }