github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/runtime/proc.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import "unsafe" 8 9 // Goroutine scheduler 10 // The scheduler's job is to distribute ready-to-run goroutines over worker threads. 11 // 12 // The main concepts are: 13 // G - goroutine. 14 // M - worker thread, or machine. 15 // P - processor, a resource that is required to execute Go code. 16 // M must have an associated P to execute Go code, however it can be 17 // blocked or in a syscall w/o an associated P. 18 // 19 // Design doc at https://golang.org/s/go11sched. 20 21 var ( 22 m0 m 23 g0 g 24 ) 25 26 //go:linkname runtime_init runtime.init 27 func runtime_init() 28 29 //go:linkname main_init main.init 30 func main_init() 31 32 // main_init_done is a signal used by cgocallbackg that initialization 33 // has been completed. It is made before _cgo_notify_runtime_init_done, 34 // so all cgo calls can rely on it existing. When main_init is complete, 35 // it is closed, meaning cgocallbackg can reliably receive from it. 36 var main_init_done chan bool 37 38 //go:linkname main_main main.main 39 func main_main() 40 41 // runtimeInitTime is the nanotime() at which the runtime started. 42 var runtimeInitTime int64 43 44 // The main goroutine. 45 func main() { 46 g := getg() 47 48 // Racectx of m0->g0 is used only as the parent of the main goroutine. 49 // It must not be used for anything else. 50 g.m.g0.racectx = 0 51 52 // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. 53 // Using decimal instead of binary GB and MB because 54 // they look nicer in the stack overflow failure message. 55 if ptrSize == 8 { 56 maxstacksize = 1000000000 57 } else { 58 maxstacksize = 250000000 59 } 60 61 // Record when the world started. 62 runtimeInitTime = nanotime() 63 64 systemstack(func() { 65 newm(sysmon, nil) 66 }) 67 68 // Lock the main goroutine onto this, the main OS thread, 69 // during initialization. Most programs won't care, but a few 70 // do require certain calls to be made by the main thread. 71 // Those can arrange for main.main to run in the main thread 72 // by calling runtime.LockOSThread during initialization 73 // to preserve the lock. 74 lockOSThread() 75 76 if g.m != &m0 { 77 throw("runtime.main not on m0") 78 } 79 80 runtime_init() // must be before defer 81 82 // Defer unlock so that runtime.Goexit during init does the unlock too. 83 needUnlock := true 84 defer func() { 85 if needUnlock { 86 unlockOSThread() 87 } 88 }() 89 90 gcenable() 91 92 main_init_done = make(chan bool) 93 if iscgo { 94 if _cgo_thread_start == nil { 95 throw("_cgo_thread_start missing") 96 } 97 if _cgo_malloc == nil { 98 throw("_cgo_malloc missing") 99 } 100 if _cgo_free == nil { 101 throw("_cgo_free missing") 102 } 103 if GOOS != "windows" { 104 if _cgo_setenv == nil { 105 throw("_cgo_setenv missing") 106 } 107 if _cgo_unsetenv == nil { 108 throw("_cgo_unsetenv missing") 109 } 110 } 111 if _cgo_notify_runtime_init_done == nil { 112 throw("_cgo_notify_runtime_init_done missing") 113 } 114 cgocall(_cgo_notify_runtime_init_done, nil) 115 } 116 117 main_init() 118 close(main_init_done) 119 120 needUnlock = false 121 unlockOSThread() 122 123 if isarchive || islibrary { 124 // A program compiled with -buildmode=c-archive or c-shared 125 // has a main, but it is not executed. 126 return 127 } 128 main_main() 129 if raceenabled { 130 racefini() 131 } 132 133 // Make racy client program work: if panicking on 134 // another goroutine at the same time as main returns, 135 // let the other goroutine finish printing the panic trace. 136 // Once it does, it will exit. See issue 3934. 137 if panicking != 0 { 138 gopark(nil, nil, "panicwait", traceEvGoStop, 1) 139 } 140 141 exit(0) 142 for { 143 var x *int32 144 *x = 0 145 } 146 } 147 148 // os_beforeExit is called from os.Exit(0). 149 //go:linkname os_beforeExit os.runtime_beforeExit 150 func os_beforeExit() { 151 if raceenabled { 152 racefini() 153 } 154 } 155 156 // start forcegc helper goroutine 157 func init() { 158 go forcegchelper() 159 } 160 161 func forcegchelper() { 162 forcegc.g = getg() 163 for { 164 lock(&forcegc.lock) 165 if forcegc.idle != 0 { 166 throw("forcegc: phase error") 167 } 168 atomicstore(&forcegc.idle, 1) 169 goparkunlock(&forcegc.lock, "force gc (idle)", traceEvGoBlock, 1) 170 // this goroutine is explicitly resumed by sysmon 171 if debug.gctrace > 0 { 172 println("GC forced") 173 } 174 startGC(gcBackgroundMode, true) 175 } 176 } 177 178 //go:nosplit 179 180 // Gosched yields the processor, allowing other goroutines to run. It does not 181 // suspend the current goroutine, so execution resumes automatically. 182 func Gosched() { 183 mcall(gosched_m) 184 } 185 186 // Puts the current goroutine into a waiting state and calls unlockf. 187 // If unlockf returns false, the goroutine is resumed. 188 func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) { 189 mp := acquirem() 190 gp := mp.curg 191 status := readgstatus(gp) 192 if status != _Grunning && status != _Gscanrunning { 193 throw("gopark: bad g status") 194 } 195 mp.waitlock = lock 196 mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf)) 197 gp.waitreason = reason 198 mp.waittraceev = traceEv 199 mp.waittraceskip = traceskip 200 releasem(mp) 201 // can't do anything that might move the G between Ms here. 202 mcall(park_m) 203 } 204 205 // Puts the current goroutine into a waiting state and unlocks the lock. 206 // The goroutine can be made runnable again by calling goready(gp). 207 func goparkunlock(lock *mutex, reason string, traceEv byte, traceskip int) { 208 gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip) 209 } 210 211 func goready(gp *g, traceskip int) { 212 systemstack(func() { 213 ready(gp, traceskip) 214 }) 215 } 216 217 //go:nosplit 218 func acquireSudog() *sudog { 219 // Delicate dance: the semaphore implementation calls 220 // acquireSudog, acquireSudog calls new(sudog), 221 // new calls malloc, malloc can call the garbage collector, 222 // and the garbage collector calls the semaphore implementation 223 // in stopTheWorld. 224 // Break the cycle by doing acquirem/releasem around new(sudog). 225 // The acquirem/releasem increments m.locks during new(sudog), 226 // which keeps the garbage collector from being invoked. 227 mp := acquirem() 228 pp := mp.p.ptr() 229 if len(pp.sudogcache) == 0 { 230 lock(&sched.sudoglock) 231 // First, try to grab a batch from central cache. 232 for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { 233 s := sched.sudogcache 234 sched.sudogcache = s.next 235 s.next = nil 236 pp.sudogcache = append(pp.sudogcache, s) 237 } 238 unlock(&sched.sudoglock) 239 // If the central cache is empty, allocate a new one. 240 if len(pp.sudogcache) == 0 { 241 pp.sudogcache = append(pp.sudogcache, new(sudog)) 242 } 243 } 244 n := len(pp.sudogcache) 245 s := pp.sudogcache[n-1] 246 pp.sudogcache[n-1] = nil 247 pp.sudogcache = pp.sudogcache[:n-1] 248 if s.elem != nil { 249 throw("acquireSudog: found s.elem != nil in cache") 250 } 251 releasem(mp) 252 return s 253 } 254 255 //go:nosplit 256 func releaseSudog(s *sudog) { 257 if s.elem != nil { 258 throw("runtime: sudog with non-nil elem") 259 } 260 if s.selectdone != nil { 261 throw("runtime: sudog with non-nil selectdone") 262 } 263 if s.next != nil { 264 throw("runtime: sudog with non-nil next") 265 } 266 if s.prev != nil { 267 throw("runtime: sudog with non-nil prev") 268 } 269 if s.waitlink != nil { 270 throw("runtime: sudog with non-nil waitlink") 271 } 272 gp := getg() 273 if gp.param != nil { 274 throw("runtime: releaseSudog with non-nil gp.param") 275 } 276 mp := acquirem() // avoid rescheduling to another P 277 pp := mp.p.ptr() 278 if len(pp.sudogcache) == cap(pp.sudogcache) { 279 // Transfer half of local cache to the central cache. 280 var first, last *sudog 281 for len(pp.sudogcache) > cap(pp.sudogcache)/2 { 282 n := len(pp.sudogcache) 283 p := pp.sudogcache[n-1] 284 pp.sudogcache[n-1] = nil 285 pp.sudogcache = pp.sudogcache[:n-1] 286 if first == nil { 287 first = p 288 } else { 289 last.next = p 290 } 291 last = p 292 } 293 lock(&sched.sudoglock) 294 last.next = sched.sudogcache 295 sched.sudogcache = first 296 unlock(&sched.sudoglock) 297 } 298 pp.sudogcache = append(pp.sudogcache, s) 299 releasem(mp) 300 } 301 302 // funcPC returns the entry PC of the function f. 303 // It assumes that f is a func value. Otherwise the behavior is undefined. 304 //go:nosplit 305 func funcPC(f interface{}) uintptr { 306 return **(**uintptr)(add(unsafe.Pointer(&f), ptrSize)) 307 } 308 309 // called from assembly 310 func badmcall(fn func(*g)) { 311 throw("runtime: mcall called on m->g0 stack") 312 } 313 314 func badmcall2(fn func(*g)) { 315 throw("runtime: mcall function returned") 316 } 317 318 func badreflectcall() { 319 panic("runtime: arg size to reflect.call more than 1GB") 320 } 321 322 func lockedOSThread() bool { 323 gp := getg() 324 return gp.lockedm != nil && gp.m.lockedg != nil 325 } 326 327 var ( 328 allgs []*g 329 allglock mutex 330 ) 331 332 func allgadd(gp *g) { 333 if readgstatus(gp) == _Gidle { 334 throw("allgadd: bad status Gidle") 335 } 336 337 lock(&allglock) 338 allgs = append(allgs, gp) 339 allglen = uintptr(len(allgs)) 340 unlock(&allglock) 341 } 342 343 const ( 344 // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. 345 // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. 346 _GoidCacheBatch = 16 347 ) 348 349 // The bootstrap sequence is: 350 // 351 // call osinit 352 // call schedinit 353 // make & queue new G 354 // call runtime·mstart 355 // 356 // The new G calls runtime·main. 357 func schedinit() { 358 // raceinit must be the first call to race detector. 359 // In particular, it must be done before mallocinit below calls racemapshadow. 360 _g_ := getg() 361 if raceenabled { 362 _g_.racectx = raceinit() 363 } 364 365 sched.maxmcount = 10000 366 367 // Cache the framepointer experiment. This affects stack unwinding. 368 framepointer_enabled = haveexperiment("framepointer") 369 370 tracebackinit() 371 moduledataverify() 372 stackinit() 373 mallocinit() 374 mcommoninit(_g_.m) 375 376 goargs() 377 goenvs() 378 parsedebugvars() 379 gcinit() 380 381 sched.lastpoll = uint64(nanotime()) 382 procs := int(ncpu) 383 if n := atoi(gogetenv("GOMAXPROCS")); n > 0 { 384 if n > _MaxGomaxprocs { 385 n = _MaxGomaxprocs 386 } 387 procs = n 388 } 389 if procresize(int32(procs)) != nil { 390 throw("unknown runnable goroutine during bootstrap") 391 } 392 393 if buildVersion == "" { 394 // Condition should never trigger. This code just serves 395 // to ensure runtime·buildVersion is kept in the resulting binary. 396 buildVersion = "unknown" 397 } 398 } 399 400 func dumpgstatus(gp *g) { 401 _g_ := getg() 402 print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") 403 print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") 404 } 405 406 func checkmcount() { 407 // sched lock is held 408 if sched.mcount > sched.maxmcount { 409 print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") 410 throw("thread exhaustion") 411 } 412 } 413 414 func mcommoninit(mp *m) { 415 _g_ := getg() 416 417 // g0 stack won't make sense for user (and is not necessary unwindable). 418 if _g_ != _g_.m.g0 { 419 callers(1, mp.createstack[:]) 420 } 421 422 mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks()) 423 if mp.fastrand == 0 { 424 mp.fastrand = 0x49f6428a 425 } 426 427 lock(&sched.lock) 428 mp.id = sched.mcount 429 sched.mcount++ 430 checkmcount() 431 mpreinit(mp) 432 if mp.gsignal != nil { 433 mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard 434 } 435 436 // Add to allm so garbage collector doesn't free g->m 437 // when it is just in a register or thread-local storage. 438 mp.alllink = allm 439 440 // NumCgoCall() iterates over allm w/o schedlock, 441 // so we need to publish it safely. 442 atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) 443 unlock(&sched.lock) 444 } 445 446 // Mark gp ready to run. 447 func ready(gp *g, traceskip int) { 448 if trace.enabled { 449 traceGoUnpark(gp, traceskip) 450 } 451 452 status := readgstatus(gp) 453 454 // Mark runnable. 455 _g_ := getg() 456 _g_.m.locks++ // disable preemption because it can be holding p in a local var 457 if status&^_Gscan != _Gwaiting { 458 dumpgstatus(gp) 459 throw("bad g->status in ready") 460 } 461 462 // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq 463 casgstatus(gp, _Gwaiting, _Grunnable) 464 runqput(_g_.m.p.ptr(), gp, true) 465 if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic 466 wakep() 467 } 468 _g_.m.locks-- 469 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 470 _g_.stackguard0 = stackPreempt 471 } 472 } 473 474 func gcprocs() int32 { 475 // Figure out how many CPUs to use during GC. 476 // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. 477 lock(&sched.lock) 478 n := gomaxprocs 479 if n > ncpu { 480 n = ncpu 481 } 482 if n > _MaxGcproc { 483 n = _MaxGcproc 484 } 485 if n > sched.nmidle+1 { // one M is currently running 486 n = sched.nmidle + 1 487 } 488 unlock(&sched.lock) 489 return n 490 } 491 492 func needaddgcproc() bool { 493 lock(&sched.lock) 494 n := gomaxprocs 495 if n > ncpu { 496 n = ncpu 497 } 498 if n > _MaxGcproc { 499 n = _MaxGcproc 500 } 501 n -= sched.nmidle + 1 // one M is currently running 502 unlock(&sched.lock) 503 return n > 0 504 } 505 506 func helpgc(nproc int32) { 507 _g_ := getg() 508 lock(&sched.lock) 509 pos := 0 510 for n := int32(1); n < nproc; n++ { // one M is currently running 511 if allp[pos].mcache == _g_.m.mcache { 512 pos++ 513 } 514 mp := mget() 515 if mp == nil { 516 throw("gcprocs inconsistency") 517 } 518 mp.helpgc = n 519 mp.p.set(allp[pos]) 520 mp.mcache = allp[pos].mcache 521 pos++ 522 notewakeup(&mp.park) 523 } 524 unlock(&sched.lock) 525 } 526 527 // freezeStopWait is a large value that freezetheworld sets 528 // sched.stopwait to in order to request that all Gs permanently stop. 529 const freezeStopWait = 0x7fffffff 530 531 // Similar to stopTheWorld but best-effort and can be called several times. 532 // There is no reverse operation, used during crashing. 533 // This function must not lock any mutexes. 534 func freezetheworld() { 535 // stopwait and preemption requests can be lost 536 // due to races with concurrently executing threads, 537 // so try several times 538 for i := 0; i < 5; i++ { 539 // this should tell the scheduler to not start any new goroutines 540 sched.stopwait = freezeStopWait 541 atomicstore(&sched.gcwaiting, 1) 542 // this should stop running goroutines 543 if !preemptall() { 544 break // no running goroutines 545 } 546 usleep(1000) 547 } 548 // to be sure 549 usleep(1000) 550 preemptall() 551 usleep(1000) 552 } 553 554 func isscanstatus(status uint32) bool { 555 if status == _Gscan { 556 throw("isscanstatus: Bad status Gscan") 557 } 558 return status&_Gscan == _Gscan 559 } 560 561 // All reads and writes of g's status go through readgstatus, casgstatus 562 // castogscanstatus, casfrom_Gscanstatus. 563 //go:nosplit 564 func readgstatus(gp *g) uint32 { 565 return atomicload(&gp.atomicstatus) 566 } 567 568 // Ownership of gscanvalid: 569 // 570 // If gp is running (meaning status == _Grunning or _Grunning|_Gscan), 571 // then gp owns gp.gscanvalid, and other goroutines must not modify it. 572 // 573 // Otherwise, a second goroutine can lock the scan state by setting _Gscan 574 // in the status bit and then modify gscanvalid, and then unlock the scan state. 575 // 576 // Note that the first condition implies an exception to the second: 577 // if a second goroutine changes gp's status to _Grunning|_Gscan, 578 // that second goroutine still does not have the right to modify gscanvalid. 579 580 // The Gscanstatuses are acting like locks and this releases them. 581 // If it proves to be a performance hit we should be able to make these 582 // simple atomic stores but for now we are going to throw if 583 // we see an inconsistent state. 584 func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { 585 success := false 586 587 // Check that transition is valid. 588 switch oldval { 589 default: 590 print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 591 dumpgstatus(gp) 592 throw("casfrom_Gscanstatus:top gp->status is not in scan state") 593 case _Gscanrunnable, 594 _Gscanwaiting, 595 _Gscanrunning, 596 _Gscansyscall: 597 if newval == oldval&^_Gscan { 598 success = cas(&gp.atomicstatus, oldval, newval) 599 } 600 case _Gscanenqueue: 601 if newval == _Gwaiting { 602 success = cas(&gp.atomicstatus, oldval, newval) 603 } 604 } 605 if !success { 606 print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") 607 dumpgstatus(gp) 608 throw("casfrom_Gscanstatus: gp->status is not in scan state") 609 } 610 if newval == _Grunning { 611 gp.gcscanvalid = false 612 } 613 } 614 615 // This will return false if the gp is not in the expected status and the cas fails. 616 // This acts like a lock acquire while the casfromgstatus acts like a lock release. 617 func castogscanstatus(gp *g, oldval, newval uint32) bool { 618 switch oldval { 619 case _Grunnable, 620 _Gwaiting, 621 _Gsyscall: 622 if newval == oldval|_Gscan { 623 return cas(&gp.atomicstatus, oldval, newval) 624 } 625 case _Grunning: 626 if newval == _Gscanrunning || newval == _Gscanenqueue { 627 return cas(&gp.atomicstatus, oldval, newval) 628 } 629 } 630 print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") 631 throw("castogscanstatus") 632 panic("not reached") 633 } 634 635 // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus 636 // and casfrom_Gscanstatus instead. 637 // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that 638 // put it in the Gscan state is finished. 639 //go:nosplit 640 func casgstatus(gp *g, oldval, newval uint32) { 641 if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { 642 systemstack(func() { 643 print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") 644 throw("casgstatus: bad incoming values") 645 }) 646 } 647 648 if oldval == _Grunning && gp.gcscanvalid { 649 // If oldvall == _Grunning, then the actual status must be 650 // _Grunning or _Grunning|_Gscan; either way, 651 // we own gp.gcscanvalid, so it's safe to read. 652 // gp.gcscanvalid must not be true when we are running. 653 print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n") 654 throw("casgstatus") 655 } 656 657 // loop if gp->atomicstatus is in a scan state giving 658 // GC time to finish and change the state to oldval. 659 for !cas(&gp.atomicstatus, oldval, newval) { 660 if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { 661 systemstack(func() { 662 throw("casgstatus: waiting for Gwaiting but is Grunnable") 663 }) 664 } 665 // Help GC if needed. 666 // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) { 667 // gp.preemptscan = false 668 // systemstack(func() { 669 // gcphasework(gp) 670 // }) 671 // } 672 } 673 if newval == _Grunning { 674 gp.gcscanvalid = false 675 } 676 } 677 678 // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable. 679 // Returns old status. Cannot call casgstatus directly, because we are racing with an 680 // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus, 681 // it might have become Grunnable by the time we get to the cas. If we called casgstatus, 682 // it would loop waiting for the status to go back to Gwaiting, which it never will. 683 //go:nosplit 684 func casgcopystack(gp *g) uint32 { 685 for { 686 oldstatus := readgstatus(gp) &^ _Gscan 687 if oldstatus != _Gwaiting && oldstatus != _Grunnable { 688 throw("copystack: bad status, not Gwaiting or Grunnable") 689 } 690 if cas(&gp.atomicstatus, oldstatus, _Gcopystack) { 691 return oldstatus 692 } 693 } 694 } 695 696 // scang blocks until gp's stack has been scanned. 697 // It might be scanned by scang or it might be scanned by the goroutine itself. 698 // Either way, the stack scan has completed when scang returns. 699 func scang(gp *g) { 700 // Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone. 701 // Nothing is racing with us now, but gcscandone might be set to true left over 702 // from an earlier round of stack scanning (we scan twice per GC). 703 // We use gcscandone to record whether the scan has been done during this round. 704 // It is important that the scan happens exactly once: if called twice, 705 // the installation of stack barriers will detect the double scan and die. 706 707 gp.gcscandone = false 708 709 // Endeavor to get gcscandone set to true, 710 // either by doing the stack scan ourselves or by coercing gp to scan itself. 711 // gp.gcscandone can transition from false to true when we're not looking 712 // (if we asked for preemption), so any time we lock the status using 713 // castogscanstatus we have to double-check that the scan is still not done. 714 for !gp.gcscandone { 715 switch s := readgstatus(gp); s { 716 default: 717 dumpgstatus(gp) 718 throw("stopg: invalid status") 719 720 case _Gdead: 721 // No stack. 722 gp.gcscandone = true 723 724 case _Gcopystack: 725 // Stack being switched. Go around again. 726 727 case _Grunnable, _Gsyscall, _Gwaiting: 728 // Claim goroutine by setting scan bit. 729 // Racing with execution or readying of gp. 730 // The scan bit keeps them from running 731 // the goroutine until we're done. 732 if castogscanstatus(gp, s, s|_Gscan) { 733 if !gp.gcscandone { 734 // Coordinate with traceback 735 // in sigprof. 736 for !cas(&gp.stackLock, 0, 1) { 737 osyield() 738 } 739 scanstack(gp) 740 atomicstore(&gp.stackLock, 0) 741 gp.gcscandone = true 742 } 743 restartg(gp) 744 } 745 746 case _Gscanwaiting: 747 // newstack is doing a scan for us right now. Wait. 748 749 case _Grunning: 750 // Goroutine running. Try to preempt execution so it can scan itself. 751 // The preemption handler (in newstack) does the actual scan. 752 753 // Optimization: if there is already a pending preemption request 754 // (from the previous loop iteration), don't bother with the atomics. 755 if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt { 756 break 757 } 758 759 // Ask for preemption and self scan. 760 if castogscanstatus(gp, _Grunning, _Gscanrunning) { 761 if !gp.gcscandone { 762 gp.preemptscan = true 763 gp.preempt = true 764 gp.stackguard0 = stackPreempt 765 } 766 casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning) 767 } 768 } 769 } 770 771 gp.preemptscan = false // cancel scan request if no longer needed 772 } 773 774 // The GC requests that this routine be moved from a scanmumble state to a mumble state. 775 func restartg(gp *g) { 776 s := readgstatus(gp) 777 switch s { 778 default: 779 dumpgstatus(gp) 780 throw("restartg: unexpected status") 781 782 case _Gdead: 783 // ok 784 785 case _Gscanrunnable, 786 _Gscanwaiting, 787 _Gscansyscall: 788 casfrom_Gscanstatus(gp, s, s&^_Gscan) 789 790 // Scan is now completed. 791 // Goroutine now needs to be made runnable. 792 // We put it on the global run queue; ready blocks on the global scheduler lock. 793 case _Gscanenqueue: 794 casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting) 795 if gp != getg().m.curg { 796 throw("processing Gscanenqueue on wrong m") 797 } 798 dropg() 799 ready(gp, 0) 800 } 801 } 802 803 // stopTheWorld stops all P's from executing goroutines, interrupting 804 // all goroutines at GC safe points and records reason as the reason 805 // for the stop. On return, only the current goroutine's P is running. 806 // stopTheWorld must not be called from a system stack and the caller 807 // must not hold worldsema. The caller must call startTheWorld when 808 // other P's should resume execution. 809 // 810 // stopTheWorld is safe for multiple goroutines to call at the 811 // same time. Each will execute its own stop, and the stops will 812 // be serialized. 813 // 814 // This is also used by routines that do stack dumps. If the system is 815 // in panic or being exited, this may not reliably stop all 816 // goroutines. 817 func stopTheWorld(reason string) { 818 semacquire(&worldsema, false) 819 getg().m.preemptoff = reason 820 systemstack(stopTheWorldWithSema) 821 } 822 823 // startTheWorld undoes the effects of stopTheWorld. 824 func startTheWorld() { 825 systemstack(startTheWorldWithSema) 826 // worldsema must be held over startTheWorldWithSema to ensure 827 // gomaxprocs cannot change while worldsema is held. 828 semrelease(&worldsema) 829 getg().m.preemptoff = "" 830 } 831 832 // Holding worldsema grants an M the right to try to stop the world 833 // and prevents gomaxprocs from changing concurrently. 834 var worldsema uint32 = 1 835 836 // stopTheWorldWithSema is the core implementation of stopTheWorld. 837 // The caller is responsible for acquiring worldsema and disabling 838 // preemption first and then should stopTheWorldWithSema on the system 839 // stack: 840 // 841 // semacquire(&worldsema, false) 842 // m.preemptoff = "reason" 843 // systemstack(stopTheWorldWithSema) 844 // 845 // When finished, the caller must either call startTheWorld or undo 846 // these three operations separately: 847 // 848 // m.preemptoff = "" 849 // systemstack(startTheWorldWithSema) 850 // semrelease(&worldsema) 851 // 852 // It is allowed to acquire worldsema once and then execute multiple 853 // startTheWorldWithSema/stopTheWorldWithSema pairs. 854 // Other P's are able to execute between successive calls to 855 // startTheWorldWithSema and stopTheWorldWithSema. 856 // Holding worldsema causes any other goroutines invoking 857 // stopTheWorld to block. 858 func stopTheWorldWithSema() { 859 _g_ := getg() 860 861 // If we hold a lock, then we won't be able to stop another M 862 // that is blocked trying to acquire the lock. 863 if _g_.m.locks > 0 { 864 throw("stopTheWorld: holding locks") 865 } 866 867 lock(&sched.lock) 868 sched.stopwait = gomaxprocs 869 atomicstore(&sched.gcwaiting, 1) 870 preemptall() 871 // stop current P 872 _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic. 873 sched.stopwait-- 874 // try to retake all P's in Psyscall status 875 for i := 0; i < int(gomaxprocs); i++ { 876 p := allp[i] 877 s := p.status 878 if s == _Psyscall && cas(&p.status, s, _Pgcstop) { 879 if trace.enabled { 880 traceGoSysBlock(p) 881 traceProcStop(p) 882 } 883 p.syscalltick++ 884 sched.stopwait-- 885 } 886 } 887 // stop idle P's 888 for { 889 p := pidleget() 890 if p == nil { 891 break 892 } 893 p.status = _Pgcstop 894 sched.stopwait-- 895 } 896 wait := sched.stopwait > 0 897 unlock(&sched.lock) 898 899 // wait for remaining P's to stop voluntarily 900 if wait { 901 for { 902 // wait for 100us, then try to re-preempt in case of any races 903 if notetsleep(&sched.stopnote, 100*1000) { 904 noteclear(&sched.stopnote) 905 break 906 } 907 preemptall() 908 } 909 } 910 if sched.stopwait != 0 { 911 throw("stopTheWorld: not stopped") 912 } 913 for i := 0; i < int(gomaxprocs); i++ { 914 p := allp[i] 915 if p.status != _Pgcstop { 916 throw("stopTheWorld: not stopped") 917 } 918 } 919 } 920 921 func mhelpgc() { 922 _g_ := getg() 923 _g_.m.helpgc = -1 924 } 925 926 func startTheWorldWithSema() { 927 _g_ := getg() 928 929 _g_.m.locks++ // disable preemption because it can be holding p in a local var 930 gp := netpoll(false) // non-blocking 931 injectglist(gp) 932 add := needaddgcproc() 933 lock(&sched.lock) 934 935 procs := gomaxprocs 936 if newprocs != 0 { 937 procs = newprocs 938 newprocs = 0 939 } 940 p1 := procresize(procs) 941 sched.gcwaiting = 0 942 if sched.sysmonwait != 0 { 943 sched.sysmonwait = 0 944 notewakeup(&sched.sysmonnote) 945 } 946 unlock(&sched.lock) 947 948 for p1 != nil { 949 p := p1 950 p1 = p1.link.ptr() 951 if p.m != 0 { 952 mp := p.m.ptr() 953 p.m = 0 954 if mp.nextp != 0 { 955 throw("startTheWorld: inconsistent mp->nextp") 956 } 957 mp.nextp.set(p) 958 notewakeup(&mp.park) 959 } else { 960 // Start M to run P. Do not start another M below. 961 newm(nil, p) 962 add = false 963 } 964 } 965 966 // Wakeup an additional proc in case we have excessive runnable goroutines 967 // in local queues or in the global queue. If we don't, the proc will park itself. 968 // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. 969 if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { 970 wakep() 971 } 972 973 if add { 974 // If GC could have used another helper proc, start one now, 975 // in the hope that it will be available next time. 976 // It would have been even better to start it before the collection, 977 // but doing so requires allocating memory, so it's tricky to 978 // coordinate. This lazy approach works out in practice: 979 // we don't mind if the first couple gc rounds don't have quite 980 // the maximum number of procs. 981 newm(mhelpgc, nil) 982 } 983 _g_.m.locks-- 984 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 985 _g_.stackguard0 = stackPreempt 986 } 987 } 988 989 // Called to start an M. 990 //go:nosplit 991 func mstart() { 992 _g_ := getg() 993 994 if _g_.stack.lo == 0 { 995 // Initialize stack bounds from system stack. 996 // Cgo may have left stack size in stack.hi. 997 size := _g_.stack.hi 998 if size == 0 { 999 size = 8192 * stackGuardMultiplier 1000 } 1001 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size))) 1002 _g_.stack.lo = _g_.stack.hi - size + 1024 1003 } 1004 // Initialize stack guards so that we can start calling 1005 // both Go and C functions with stack growth prologues. 1006 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1007 _g_.stackguard1 = _g_.stackguard0 1008 mstart1() 1009 } 1010 1011 func mstart1() { 1012 _g_ := getg() 1013 1014 if _g_ != _g_.m.g0 { 1015 throw("bad runtime·mstart") 1016 } 1017 1018 // Record top of stack for use by mcall. 1019 // Once we call schedule we're never coming back, 1020 // so other calls can reuse this stack space. 1021 gosave(&_g_.m.g0.sched) 1022 _g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used 1023 asminit() 1024 minit() 1025 1026 // Install signal handlers; after minit so that minit can 1027 // prepare the thread to be able to handle the signals. 1028 if _g_.m == &m0 { 1029 // Create an extra M for callbacks on threads not created by Go. 1030 if iscgo && !cgoHasExtraM { 1031 cgoHasExtraM = true 1032 newextram() 1033 } 1034 initsig() 1035 } 1036 1037 if fn := _g_.m.mstartfn; fn != nil { 1038 fn() 1039 } 1040 1041 if _g_.m.helpgc != 0 { 1042 _g_.m.helpgc = 0 1043 stopm() 1044 } else if _g_.m != &m0 { 1045 acquirep(_g_.m.nextp.ptr()) 1046 _g_.m.nextp = 0 1047 } 1048 schedule() 1049 } 1050 1051 // forEachP calls fn(p) for every P p when p reaches a GC safe point. 1052 // If a P is currently executing code, this will bring the P to a GC 1053 // safe point and execute fn on that P. If the P is not executing code 1054 // (it is idle or in a syscall), this will call fn(p) directly while 1055 // preventing the P from exiting its state. This does not ensure that 1056 // fn will run on every CPU executing Go code, but it acts as a global 1057 // memory barrier. GC uses this as a "ragged barrier." 1058 // 1059 // The caller must hold worldsema. 1060 func forEachP(fn func(*p)) { 1061 mp := acquirem() 1062 _p_ := getg().m.p.ptr() 1063 1064 lock(&sched.lock) 1065 if sched.safePointWait != 0 { 1066 throw("forEachP: sched.safePointWait != 0") 1067 } 1068 sched.safePointWait = gomaxprocs - 1 1069 sched.safePointFn = fn 1070 1071 // Ask all Ps to run the safe point function. 1072 for _, p := range allp[:gomaxprocs] { 1073 if p != _p_ { 1074 atomicstore(&p.runSafePointFn, 1) 1075 } 1076 } 1077 preemptall() 1078 1079 // Any P entering _Pidle or _Psyscall from now on will observe 1080 // p.runSafePointFn == 1 and will call runSafePointFn when 1081 // changing its status to _Pidle/_Psyscall. 1082 1083 // Run safe point function for all idle Ps. sched.pidle will 1084 // not change because we hold sched.lock. 1085 for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() { 1086 if cas(&p.runSafePointFn, 1, 0) { 1087 fn(p) 1088 sched.safePointWait-- 1089 } 1090 } 1091 1092 wait := sched.safePointWait > 0 1093 unlock(&sched.lock) 1094 1095 // Run fn for the current P. 1096 fn(_p_) 1097 1098 // Force Ps currently in _Psyscall into _Pidle and hand them 1099 // off to induce safe point function execution. 1100 for i := 0; i < int(gomaxprocs); i++ { 1101 p := allp[i] 1102 s := p.status 1103 if s == _Psyscall && p.runSafePointFn == 1 && cas(&p.status, s, _Pidle) { 1104 if trace.enabled { 1105 traceGoSysBlock(p) 1106 traceProcStop(p) 1107 } 1108 p.syscalltick++ 1109 handoffp(p) 1110 } 1111 } 1112 1113 // Wait for remaining Ps to run fn. 1114 if wait { 1115 for { 1116 // Wait for 100us, then try to re-preempt in 1117 // case of any races. 1118 if notetsleep(&sched.safePointNote, 100*1000) { 1119 noteclear(&sched.safePointNote) 1120 break 1121 } 1122 preemptall() 1123 } 1124 } 1125 if sched.safePointWait != 0 { 1126 throw("forEachP: not done") 1127 } 1128 for i := 0; i < int(gomaxprocs); i++ { 1129 p := allp[i] 1130 if p.runSafePointFn != 0 { 1131 throw("forEachP: P did not run fn") 1132 } 1133 } 1134 1135 lock(&sched.lock) 1136 sched.safePointFn = nil 1137 unlock(&sched.lock) 1138 releasem(mp) 1139 } 1140 1141 // runSafePointFn runs the safe point function, if any, for this P. 1142 // This should be called like 1143 // 1144 // if getg().m.p.runSafePointFn != 0 { 1145 // runSafePointFn() 1146 // } 1147 // 1148 // runSafePointFn must be checked on any transition in to _Pidle or 1149 // _Psyscall to avoid a race where forEachP sees that the P is running 1150 // just before the P goes into _Pidle/_Psyscall and neither forEachP 1151 // nor the P run the safe-point function. 1152 func runSafePointFn() { 1153 p := getg().m.p.ptr() 1154 // Resolve the race between forEachP running the safe-point 1155 // function on this P's behalf and this P running the 1156 // safe-point function directly. 1157 if !cas(&p.runSafePointFn, 1, 0) { 1158 return 1159 } 1160 sched.safePointFn(p) 1161 lock(&sched.lock) 1162 sched.safePointWait-- 1163 if sched.safePointWait == 0 { 1164 notewakeup(&sched.safePointNote) 1165 } 1166 unlock(&sched.lock) 1167 } 1168 1169 // When running with cgo, we call _cgo_thread_start 1170 // to start threads for us so that we can play nicely with 1171 // foreign code. 1172 var cgoThreadStart unsafe.Pointer 1173 1174 type cgothreadstart struct { 1175 g guintptr 1176 tls *uint64 1177 fn unsafe.Pointer 1178 } 1179 1180 // Allocate a new m unassociated with any thread. 1181 // Can use p for allocation context if needed. 1182 // fn is recorded as the new m's m.mstartfn. 1183 func allocm(_p_ *p, fn func()) *m { 1184 _g_ := getg() 1185 _g_.m.locks++ // disable GC because it can be called from sysmon 1186 if _g_.m.p == 0 { 1187 acquirep(_p_) // temporarily borrow p for mallocs in this function 1188 } 1189 mp := new(m) 1190 mp.mstartfn = fn 1191 mcommoninit(mp) 1192 1193 // In case of cgo or Solaris, pthread_create will make us a stack. 1194 // Windows and Plan 9 will layout sched stack on OS stack. 1195 if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" { 1196 mp.g0 = malg(-1) 1197 } else { 1198 mp.g0 = malg(8192 * stackGuardMultiplier) 1199 } 1200 mp.g0.m = mp 1201 1202 if _p_ == _g_.m.p.ptr() { 1203 releasep() 1204 } 1205 _g_.m.locks-- 1206 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 1207 _g_.stackguard0 = stackPreempt 1208 } 1209 1210 return mp 1211 } 1212 1213 // needm is called when a cgo callback happens on a 1214 // thread without an m (a thread not created by Go). 1215 // In this case, needm is expected to find an m to use 1216 // and return with m, g initialized correctly. 1217 // Since m and g are not set now (likely nil, but see below) 1218 // needm is limited in what routines it can call. In particular 1219 // it can only call nosplit functions (textflag 7) and cannot 1220 // do any scheduling that requires an m. 1221 // 1222 // In order to avoid needing heavy lifting here, we adopt 1223 // the following strategy: there is a stack of available m's 1224 // that can be stolen. Using compare-and-swap 1225 // to pop from the stack has ABA races, so we simulate 1226 // a lock by doing an exchange (via casp) to steal the stack 1227 // head and replace the top pointer with MLOCKED (1). 1228 // This serves as a simple spin lock that we can use even 1229 // without an m. The thread that locks the stack in this way 1230 // unlocks the stack by storing a valid stack head pointer. 1231 // 1232 // In order to make sure that there is always an m structure 1233 // available to be stolen, we maintain the invariant that there 1234 // is always one more than needed. At the beginning of the 1235 // program (if cgo is in use) the list is seeded with a single m. 1236 // If needm finds that it has taken the last m off the list, its job 1237 // is - once it has installed its own m so that it can do things like 1238 // allocate memory - to create a spare m and put it on the list. 1239 // 1240 // Each of these extra m's also has a g0 and a curg that are 1241 // pressed into service as the scheduling stack and current 1242 // goroutine for the duration of the cgo callback. 1243 // 1244 // When the callback is done with the m, it calls dropm to 1245 // put the m back on the list. 1246 //go:nosplit 1247 func needm(x byte) { 1248 if iscgo && !cgoHasExtraM { 1249 // Can happen if C/C++ code calls Go from a global ctor. 1250 // Can not throw, because scheduler is not initialized yet. 1251 write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) 1252 exit(1) 1253 } 1254 1255 // Lock extra list, take head, unlock popped list. 1256 // nilokay=false is safe here because of the invariant above, 1257 // that the extra list always contains or will soon contain 1258 // at least one m. 1259 mp := lockextra(false) 1260 1261 // Set needextram when we've just emptied the list, 1262 // so that the eventual call into cgocallbackg will 1263 // allocate a new m for the extra list. We delay the 1264 // allocation until then so that it can be done 1265 // after exitsyscall makes sure it is okay to be 1266 // running at all (that is, there's no garbage collection 1267 // running right now). 1268 mp.needextram = mp.schedlink == 0 1269 unlockextra(mp.schedlink.ptr()) 1270 1271 // Install g (= m->g0) and set the stack bounds 1272 // to match the current stack. We don't actually know 1273 // how big the stack is, like we don't know how big any 1274 // scheduling stack is, but we assume there's at least 32 kB, 1275 // which is more than enough for us. 1276 setg(mp.g0) 1277 _g_ := getg() 1278 _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024 1279 _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024 1280 _g_.stackguard0 = _g_.stack.lo + _StackGuard 1281 1282 msigsave(mp) 1283 // Initialize this thread to use the m. 1284 asminit() 1285 minit() 1286 } 1287 1288 var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") 1289 1290 // newextram allocates an m and puts it on the extra list. 1291 // It is called with a working local m, so that it can do things 1292 // like call schedlock and allocate. 1293 func newextram() { 1294 // Create extra goroutine locked to extra m. 1295 // The goroutine is the context in which the cgo callback will run. 1296 // The sched.pc will never be returned to, but setting it to 1297 // goexit makes clear to the traceback routines where 1298 // the goroutine stack ends. 1299 mp := allocm(nil, nil) 1300 gp := malg(4096) 1301 gp.sched.pc = funcPC(goexit) + _PCQuantum 1302 gp.sched.sp = gp.stack.hi 1303 gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame 1304 gp.sched.lr = 0 1305 gp.sched.g = guintptr(unsafe.Pointer(gp)) 1306 gp.syscallpc = gp.sched.pc 1307 gp.syscallsp = gp.sched.sp 1308 gp.stktopsp = gp.sched.sp 1309 // malg returns status as Gidle, change to Gsyscall before adding to allg 1310 // where GC will see it. 1311 casgstatus(gp, _Gidle, _Gsyscall) 1312 gp.m = mp 1313 mp.curg = gp 1314 mp.locked = _LockInternal 1315 mp.lockedg = gp 1316 gp.lockedm = mp 1317 gp.goid = int64(xadd64(&sched.goidgen, 1)) 1318 if raceenabled { 1319 gp.racectx = racegostart(funcPC(newextram)) 1320 } 1321 // put on allg for garbage collector 1322 allgadd(gp) 1323 1324 // Add m to the extra list. 1325 mnext := lockextra(true) 1326 mp.schedlink.set(mnext) 1327 unlockextra(mp) 1328 } 1329 1330 // dropm is called when a cgo callback has called needm but is now 1331 // done with the callback and returning back into the non-Go thread. 1332 // It puts the current m back onto the extra list. 1333 // 1334 // The main expense here is the call to signalstack to release the 1335 // m's signal stack, and then the call to needm on the next callback 1336 // from this thread. It is tempting to try to save the m for next time, 1337 // which would eliminate both these costs, but there might not be 1338 // a next time: the current thread (which Go does not control) might exit. 1339 // If we saved the m for that thread, there would be an m leak each time 1340 // such a thread exited. Instead, we acquire and release an m on each 1341 // call. These should typically not be scheduling operations, just a few 1342 // atomics, so the cost should be small. 1343 // 1344 // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread 1345 // variable using pthread_key_create. Unlike the pthread keys we already use 1346 // on OS X, this dummy key would never be read by Go code. It would exist 1347 // only so that we could register at thread-exit-time destructor. 1348 // That destructor would put the m back onto the extra list. 1349 // This is purely a performance optimization. The current version, 1350 // in which dropm happens on each cgo call, is still correct too. 1351 // We may have to keep the current version on systems with cgo 1352 // but without pthreads, like Windows. 1353 func dropm() { 1354 // Undo whatever initialization minit did during needm. 1355 unminit() 1356 1357 // Clear m and g, and return m to the extra list. 1358 // After the call to setg we can only call nosplit functions 1359 // with no pointer manipulation. 1360 mp := getg().m 1361 mnext := lockextra(true) 1362 mp.schedlink.set(mnext) 1363 1364 setg(nil) 1365 unlockextra(mp) 1366 } 1367 1368 var extram uintptr 1369 1370 // lockextra locks the extra list and returns the list head. 1371 // The caller must unlock the list by storing a new list head 1372 // to extram. If nilokay is true, then lockextra will 1373 // return a nil list head if that's what it finds. If nilokay is false, 1374 // lockextra will keep waiting until the list head is no longer nil. 1375 //go:nosplit 1376 func lockextra(nilokay bool) *m { 1377 const locked = 1 1378 1379 for { 1380 old := atomicloaduintptr(&extram) 1381 if old == locked { 1382 yield := osyield 1383 yield() 1384 continue 1385 } 1386 if old == 0 && !nilokay { 1387 usleep(1) 1388 continue 1389 } 1390 if casuintptr(&extram, old, locked) { 1391 return (*m)(unsafe.Pointer(old)) 1392 } 1393 yield := osyield 1394 yield() 1395 continue 1396 } 1397 } 1398 1399 //go:nosplit 1400 func unlockextra(mp *m) { 1401 atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp))) 1402 } 1403 1404 // Create a new m. It will start off with a call to fn, or else the scheduler. 1405 // fn needs to be static and not a heap allocated closure. 1406 // May run with m.p==nil, so write barriers are not allowed. 1407 //go:nowritebarrier 1408 func newm(fn func(), _p_ *p) { 1409 mp := allocm(_p_, fn) 1410 mp.nextp.set(_p_) 1411 msigsave(mp) 1412 if iscgo { 1413 var ts cgothreadstart 1414 if _cgo_thread_start == nil { 1415 throw("_cgo_thread_start missing") 1416 } 1417 ts.g.set(mp.g0) 1418 ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0])) 1419 ts.fn = unsafe.Pointer(funcPC(mstart)) 1420 asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts)) 1421 return 1422 } 1423 newosproc(mp, unsafe.Pointer(mp.g0.stack.hi)) 1424 } 1425 1426 // Stops execution of the current m until new work is available. 1427 // Returns with acquired P. 1428 func stopm() { 1429 _g_ := getg() 1430 1431 if _g_.m.locks != 0 { 1432 throw("stopm holding locks") 1433 } 1434 if _g_.m.p != 0 { 1435 throw("stopm holding p") 1436 } 1437 if _g_.m.spinning { 1438 _g_.m.spinning = false 1439 xadd(&sched.nmspinning, -1) 1440 } 1441 1442 retry: 1443 lock(&sched.lock) 1444 mput(_g_.m) 1445 unlock(&sched.lock) 1446 notesleep(&_g_.m.park) 1447 noteclear(&_g_.m.park) 1448 if _g_.m.helpgc != 0 { 1449 gchelper() 1450 _g_.m.helpgc = 0 1451 _g_.m.mcache = nil 1452 _g_.m.p = 0 1453 goto retry 1454 } 1455 acquirep(_g_.m.nextp.ptr()) 1456 _g_.m.nextp = 0 1457 } 1458 1459 func mspinning() { 1460 gp := getg() 1461 if !runqempty(gp.m.nextp.ptr()) { 1462 // Something (presumably the GC) was readied while the 1463 // runtime was starting up this M, so the M is no 1464 // longer spinning. 1465 if int32(xadd(&sched.nmspinning, -1)) < 0 { 1466 throw("mspinning: nmspinning underflowed") 1467 } 1468 } else { 1469 gp.m.spinning = true 1470 } 1471 } 1472 1473 // Schedules some M to run the p (creates an M if necessary). 1474 // If p==nil, tries to get an idle P, if no idle P's does nothing. 1475 // May run with m.p==nil, so write barriers are not allowed. 1476 //go:nowritebarrier 1477 func startm(_p_ *p, spinning bool) { 1478 lock(&sched.lock) 1479 if _p_ == nil { 1480 _p_ = pidleget() 1481 if _p_ == nil { 1482 unlock(&sched.lock) 1483 if spinning { 1484 xadd(&sched.nmspinning, -1) 1485 } 1486 return 1487 } 1488 } 1489 mp := mget() 1490 unlock(&sched.lock) 1491 if mp == nil { 1492 var fn func() 1493 if spinning { 1494 fn = mspinning 1495 } 1496 newm(fn, _p_) 1497 return 1498 } 1499 if mp.spinning { 1500 throw("startm: m is spinning") 1501 } 1502 if mp.nextp != 0 { 1503 throw("startm: m has p") 1504 } 1505 if spinning && !runqempty(_p_) { 1506 throw("startm: p has runnable gs") 1507 } 1508 mp.spinning = spinning 1509 mp.nextp.set(_p_) 1510 notewakeup(&mp.park) 1511 } 1512 1513 // Hands off P from syscall or locked M. 1514 // Always runs without a P, so write barriers are not allowed. 1515 //go:nowritebarrier 1516 func handoffp(_p_ *p) { 1517 // if it has local work, start it straight away 1518 if !runqempty(_p_) || sched.runqsize != 0 { 1519 startm(_p_, false) 1520 return 1521 } 1522 // no local work, check that there are no spinning/idle M's, 1523 // otherwise our help is not required 1524 if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic 1525 startm(_p_, true) 1526 return 1527 } 1528 lock(&sched.lock) 1529 if sched.gcwaiting != 0 { 1530 _p_.status = _Pgcstop 1531 sched.stopwait-- 1532 if sched.stopwait == 0 { 1533 notewakeup(&sched.stopnote) 1534 } 1535 unlock(&sched.lock) 1536 return 1537 } 1538 if _p_.runSafePointFn != 0 && cas(&_p_.runSafePointFn, 1, 0) { 1539 sched.safePointFn(_p_) 1540 sched.safePointWait-- 1541 if sched.safePointWait == 0 { 1542 notewakeup(&sched.safePointNote) 1543 } 1544 } 1545 if sched.runqsize != 0 { 1546 unlock(&sched.lock) 1547 startm(_p_, false) 1548 return 1549 } 1550 // If this is the last running P and nobody is polling network, 1551 // need to wakeup another M to poll network. 1552 if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 { 1553 unlock(&sched.lock) 1554 startm(_p_, false) 1555 return 1556 } 1557 pidleput(_p_) 1558 unlock(&sched.lock) 1559 } 1560 1561 // Tries to add one more P to execute G's. 1562 // Called when a G is made runnable (newproc, ready). 1563 func wakep() { 1564 // be conservative about spinning threads 1565 if !cas(&sched.nmspinning, 0, 1) { 1566 return 1567 } 1568 startm(nil, true) 1569 } 1570 1571 // Stops execution of the current m that is locked to a g until the g is runnable again. 1572 // Returns with acquired P. 1573 func stoplockedm() { 1574 _g_ := getg() 1575 1576 if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m { 1577 throw("stoplockedm: inconsistent locking") 1578 } 1579 if _g_.m.p != 0 { 1580 // Schedule another M to run this p. 1581 _p_ := releasep() 1582 handoffp(_p_) 1583 } 1584 incidlelocked(1) 1585 // Wait until another thread schedules lockedg again. 1586 notesleep(&_g_.m.park) 1587 noteclear(&_g_.m.park) 1588 status := readgstatus(_g_.m.lockedg) 1589 if status&^_Gscan != _Grunnable { 1590 print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n") 1591 dumpgstatus(_g_) 1592 throw("stoplockedm: not runnable") 1593 } 1594 acquirep(_g_.m.nextp.ptr()) 1595 _g_.m.nextp = 0 1596 } 1597 1598 // Schedules the locked m to run the locked gp. 1599 // May run during STW, so write barriers are not allowed. 1600 //go:nowritebarrier 1601 func startlockedm(gp *g) { 1602 _g_ := getg() 1603 1604 mp := gp.lockedm 1605 if mp == _g_.m { 1606 throw("startlockedm: locked to me") 1607 } 1608 if mp.nextp != 0 { 1609 throw("startlockedm: m has p") 1610 } 1611 // directly handoff current P to the locked m 1612 incidlelocked(-1) 1613 _p_ := releasep() 1614 mp.nextp.set(_p_) 1615 notewakeup(&mp.park) 1616 stopm() 1617 } 1618 1619 // Stops the current m for stopTheWorld. 1620 // Returns when the world is restarted. 1621 func gcstopm() { 1622 _g_ := getg() 1623 1624 if sched.gcwaiting == 0 { 1625 throw("gcstopm: not waiting for gc") 1626 } 1627 if _g_.m.spinning { 1628 _g_.m.spinning = false 1629 xadd(&sched.nmspinning, -1) 1630 } 1631 _p_ := releasep() 1632 lock(&sched.lock) 1633 _p_.status = _Pgcstop 1634 sched.stopwait-- 1635 if sched.stopwait == 0 { 1636 notewakeup(&sched.stopnote) 1637 } 1638 unlock(&sched.lock) 1639 stopm() 1640 } 1641 1642 // Schedules gp to run on the current M. 1643 // If inheritTime is true, gp inherits the remaining time in the 1644 // current time slice. Otherwise, it starts a new time slice. 1645 // Never returns. 1646 func execute(gp *g, inheritTime bool) { 1647 _g_ := getg() 1648 1649 casgstatus(gp, _Grunnable, _Grunning) 1650 gp.waitsince = 0 1651 gp.preempt = false 1652 gp.stackguard0 = gp.stack.lo + _StackGuard 1653 if !inheritTime { 1654 _g_.m.p.ptr().schedtick++ 1655 } 1656 _g_.m.curg = gp 1657 gp.m = _g_.m 1658 1659 // Check whether the profiler needs to be turned on or off. 1660 hz := sched.profilehz 1661 if _g_.m.profilehz != hz { 1662 resetcpuprofiler(hz) 1663 } 1664 1665 if trace.enabled { 1666 // GoSysExit has to happen when we have a P, but before GoStart. 1667 // So we emit it here. 1668 if gp.syscallsp != 0 && gp.sysblocktraced { 1669 // Since gp.sysblocktraced is true, we must emit an event. 1670 // There is a race between the code that initializes sysexitseq 1671 // and sysexitticks (in exitsyscall, which runs without a P, 1672 // and therefore is not stopped with the rest of the world) 1673 // and the code that initializes a new trace. 1674 // The recorded sysexitseq and sysexitticks must therefore 1675 // be treated as "best effort". If they are valid for this trace, 1676 // then great, use them for greater accuracy. 1677 // But if they're not valid for this trace, assume that the 1678 // trace was started after the actual syscall exit (but before 1679 // we actually managed to start the goroutine, aka right now), 1680 // and assign a fresh time stamp to keep the log consistent. 1681 seq, ts := gp.sysexitseq, gp.sysexitticks 1682 if seq == 0 || int64(seq)-int64(trace.seqStart) < 0 { 1683 seq, ts = tracestamp() 1684 } 1685 traceGoSysExit(seq, ts) 1686 } 1687 traceGoStart() 1688 } 1689 1690 gogo(&gp.sched) 1691 } 1692 1693 // Finds a runnable goroutine to execute. 1694 // Tries to steal from other P's, get g from global queue, poll network. 1695 func findrunnable() (gp *g, inheritTime bool) { 1696 _g_ := getg() 1697 1698 top: 1699 if sched.gcwaiting != 0 { 1700 gcstopm() 1701 goto top 1702 } 1703 if _g_.m.p.ptr().runSafePointFn != 0 { 1704 runSafePointFn() 1705 } 1706 if fingwait && fingwake { 1707 if gp := wakefing(); gp != nil { 1708 ready(gp, 0) 1709 } 1710 } 1711 1712 // local runq 1713 if gp, inheritTime := runqget(_g_.m.p.ptr()); gp != nil { 1714 return gp, inheritTime 1715 } 1716 1717 // global runq 1718 if sched.runqsize != 0 { 1719 lock(&sched.lock) 1720 gp := globrunqget(_g_.m.p.ptr(), 0) 1721 unlock(&sched.lock) 1722 if gp != nil { 1723 return gp, false 1724 } 1725 } 1726 1727 // Poll network. 1728 // This netpoll is only an optimization before we resort to stealing. 1729 // We can safely skip it if there a thread blocked in netpoll already. 1730 // If there is any kind of logical race with that blocked thread 1731 // (e.g. it has already returned from netpoll, but does not set lastpoll yet), 1732 // this thread will do blocking netpoll below anyway. 1733 if netpollinited() && sched.lastpoll != 0 { 1734 if gp := netpoll(false); gp != nil { // non-blocking 1735 // netpoll returns list of goroutines linked by schedlink. 1736 injectglist(gp.schedlink.ptr()) 1737 casgstatus(gp, _Gwaiting, _Grunnable) 1738 if trace.enabled { 1739 traceGoUnpark(gp, 0) 1740 } 1741 return gp, false 1742 } 1743 } 1744 1745 // If number of spinning M's >= number of busy P's, block. 1746 // This is necessary to prevent excessive CPU consumption 1747 // when GOMAXPROCS>>1 but the program parallelism is low. 1748 if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic 1749 goto stop 1750 } 1751 if !_g_.m.spinning { 1752 _g_.m.spinning = true 1753 xadd(&sched.nmspinning, 1) 1754 } 1755 // random steal from other P's 1756 for i := 0; i < int(4*gomaxprocs); i++ { 1757 if sched.gcwaiting != 0 { 1758 goto top 1759 } 1760 _p_ := allp[fastrand1()%uint32(gomaxprocs)] 1761 var gp *g 1762 if _p_ == _g_.m.p.ptr() { 1763 gp, _ = runqget(_p_) 1764 } else { 1765 stealRunNextG := i > 2*int(gomaxprocs) // first look for ready queues with more than 1 g 1766 gp = runqsteal(_g_.m.p.ptr(), _p_, stealRunNextG) 1767 } 1768 if gp != nil { 1769 return gp, false 1770 } 1771 } 1772 1773 stop: 1774 1775 // We have nothing to do. If we're in the GC mark phase and can 1776 // safely scan and blacken objects, run idle-time marking 1777 // rather than give up the P. 1778 if _p_ := _g_.m.p.ptr(); gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != nil && gcMarkWorkAvailable(_p_) { 1779 _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode 1780 gp := _p_.gcBgMarkWorker 1781 casgstatus(gp, _Gwaiting, _Grunnable) 1782 if trace.enabled { 1783 traceGoUnpark(gp, 0) 1784 } 1785 return gp, false 1786 } 1787 1788 // return P and block 1789 lock(&sched.lock) 1790 if sched.gcwaiting != 0 || _g_.m.p.ptr().runSafePointFn != 0 { 1791 unlock(&sched.lock) 1792 goto top 1793 } 1794 if sched.runqsize != 0 { 1795 gp := globrunqget(_g_.m.p.ptr(), 0) 1796 unlock(&sched.lock) 1797 return gp, false 1798 } 1799 _p_ := releasep() 1800 pidleput(_p_) 1801 unlock(&sched.lock) 1802 if _g_.m.spinning { 1803 _g_.m.spinning = false 1804 xadd(&sched.nmspinning, -1) 1805 } 1806 1807 // check all runqueues once again 1808 for i := 0; i < int(gomaxprocs); i++ { 1809 _p_ := allp[i] 1810 if _p_ != nil && !runqempty(_p_) { 1811 lock(&sched.lock) 1812 _p_ = pidleget() 1813 unlock(&sched.lock) 1814 if _p_ != nil { 1815 acquirep(_p_) 1816 goto top 1817 } 1818 break 1819 } 1820 } 1821 1822 // poll network 1823 if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 { 1824 if _g_.m.p != 0 { 1825 throw("findrunnable: netpoll with p") 1826 } 1827 if _g_.m.spinning { 1828 throw("findrunnable: netpoll with spinning") 1829 } 1830 gp := netpoll(true) // block until new work is available 1831 atomicstore64(&sched.lastpoll, uint64(nanotime())) 1832 if gp != nil { 1833 lock(&sched.lock) 1834 _p_ = pidleget() 1835 unlock(&sched.lock) 1836 if _p_ != nil { 1837 acquirep(_p_) 1838 injectglist(gp.schedlink.ptr()) 1839 casgstatus(gp, _Gwaiting, _Grunnable) 1840 if trace.enabled { 1841 traceGoUnpark(gp, 0) 1842 } 1843 return gp, false 1844 } 1845 injectglist(gp) 1846 } 1847 } 1848 stopm() 1849 goto top 1850 } 1851 1852 func resetspinning() { 1853 _g_ := getg() 1854 1855 var nmspinning uint32 1856 if _g_.m.spinning { 1857 _g_.m.spinning = false 1858 nmspinning = xadd(&sched.nmspinning, -1) 1859 if int32(nmspinning) < 0 { 1860 throw("findrunnable: negative nmspinning") 1861 } 1862 } else { 1863 nmspinning = atomicload(&sched.nmspinning) 1864 } 1865 1866 // M wakeup policy is deliberately somewhat conservative (see nmspinning handling), 1867 // so see if we need to wakeup another P here. 1868 if nmspinning == 0 && atomicload(&sched.npidle) > 0 { 1869 wakep() 1870 } 1871 } 1872 1873 // Injects the list of runnable G's into the scheduler. 1874 // Can run concurrently with GC. 1875 func injectglist(glist *g) { 1876 if glist == nil { 1877 return 1878 } 1879 if trace.enabled { 1880 for gp := glist; gp != nil; gp = gp.schedlink.ptr() { 1881 traceGoUnpark(gp, 0) 1882 } 1883 } 1884 lock(&sched.lock) 1885 var n int 1886 for n = 0; glist != nil; n++ { 1887 gp := glist 1888 glist = gp.schedlink.ptr() 1889 casgstatus(gp, _Gwaiting, _Grunnable) 1890 globrunqput(gp) 1891 } 1892 unlock(&sched.lock) 1893 for ; n != 0 && sched.npidle != 0; n-- { 1894 startm(nil, false) 1895 } 1896 } 1897 1898 // One round of scheduler: find a runnable goroutine and execute it. 1899 // Never returns. 1900 func schedule() { 1901 _g_ := getg() 1902 1903 if _g_.m.locks != 0 { 1904 throw("schedule: holding locks") 1905 } 1906 1907 if _g_.m.lockedg != nil { 1908 stoplockedm() 1909 execute(_g_.m.lockedg, false) // Never returns. 1910 } 1911 1912 top: 1913 if sched.gcwaiting != 0 { 1914 gcstopm() 1915 goto top 1916 } 1917 if _g_.m.p.ptr().runSafePointFn != 0 { 1918 runSafePointFn() 1919 } 1920 1921 var gp *g 1922 var inheritTime bool 1923 if trace.enabled || trace.shutdown { 1924 gp = traceReader() 1925 if gp != nil { 1926 casgstatus(gp, _Gwaiting, _Grunnable) 1927 traceGoUnpark(gp, 0) 1928 resetspinning() 1929 } 1930 } 1931 if gp == nil && gcBlackenEnabled != 0 { 1932 gp = gcController.findRunnableGCWorker(_g_.m.p.ptr()) 1933 if gp != nil { 1934 resetspinning() 1935 } 1936 } 1937 if gp == nil { 1938 // Check the global runnable queue once in a while to ensure fairness. 1939 // Otherwise two goroutines can completely occupy the local runqueue 1940 // by constantly respawning each other. 1941 if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { 1942 lock(&sched.lock) 1943 gp = globrunqget(_g_.m.p.ptr(), 1) 1944 unlock(&sched.lock) 1945 if gp != nil { 1946 resetspinning() 1947 } 1948 } 1949 } 1950 if gp == nil { 1951 gp, inheritTime = runqget(_g_.m.p.ptr()) 1952 if gp != nil && _g_.m.spinning { 1953 throw("schedule: spinning with local work") 1954 } 1955 } 1956 if gp == nil { 1957 gp, inheritTime = findrunnable() // blocks until work is available 1958 resetspinning() 1959 } 1960 1961 if gp.lockedm != nil { 1962 // Hands off own p to the locked m, 1963 // then blocks waiting for a new p. 1964 startlockedm(gp) 1965 goto top 1966 } 1967 1968 execute(gp, inheritTime) 1969 } 1970 1971 // dropg removes the association between m and the current goroutine m->curg (gp for short). 1972 // Typically a caller sets gp's status away from Grunning and then 1973 // immediately calls dropg to finish the job. The caller is also responsible 1974 // for arranging that gp will be restarted using ready at an 1975 // appropriate time. After calling dropg and arranging for gp to be 1976 // readied later, the caller can do other work but eventually should 1977 // call schedule to restart the scheduling of goroutines on this m. 1978 func dropg() { 1979 _g_ := getg() 1980 1981 if _g_.m.lockedg == nil { 1982 _g_.m.curg.m = nil 1983 _g_.m.curg = nil 1984 } 1985 } 1986 1987 func parkunlock_c(gp *g, lock unsafe.Pointer) bool { 1988 unlock((*mutex)(lock)) 1989 return true 1990 } 1991 1992 // park continuation on g0. 1993 func park_m(gp *g) { 1994 _g_ := getg() 1995 1996 if trace.enabled { 1997 traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp) 1998 } 1999 2000 casgstatus(gp, _Grunning, _Gwaiting) 2001 dropg() 2002 2003 if _g_.m.waitunlockf != nil { 2004 fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf)) 2005 ok := fn(gp, _g_.m.waitlock) 2006 _g_.m.waitunlockf = nil 2007 _g_.m.waitlock = nil 2008 if !ok { 2009 if trace.enabled { 2010 traceGoUnpark(gp, 2) 2011 } 2012 casgstatus(gp, _Gwaiting, _Grunnable) 2013 execute(gp, true) // Schedule it back, never returns. 2014 } 2015 } 2016 schedule() 2017 } 2018 2019 func goschedImpl(gp *g) { 2020 status := readgstatus(gp) 2021 if status&^_Gscan != _Grunning { 2022 dumpgstatus(gp) 2023 throw("bad g status") 2024 } 2025 casgstatus(gp, _Grunning, _Grunnable) 2026 dropg() 2027 lock(&sched.lock) 2028 globrunqput(gp) 2029 unlock(&sched.lock) 2030 2031 schedule() 2032 } 2033 2034 // Gosched continuation on g0. 2035 func gosched_m(gp *g) { 2036 if trace.enabled { 2037 traceGoSched() 2038 } 2039 goschedImpl(gp) 2040 } 2041 2042 func gopreempt_m(gp *g) { 2043 if trace.enabled { 2044 traceGoPreempt() 2045 } 2046 goschedImpl(gp) 2047 } 2048 2049 // Finishes execution of the current goroutine. 2050 func goexit1() { 2051 if raceenabled { 2052 racegoend() 2053 } 2054 if trace.enabled { 2055 traceGoEnd() 2056 } 2057 mcall(goexit0) 2058 } 2059 2060 // goexit continuation on g0. 2061 func goexit0(gp *g) { 2062 _g_ := getg() 2063 2064 casgstatus(gp, _Grunning, _Gdead) 2065 gp.m = nil 2066 gp.lockedm = nil 2067 _g_.m.lockedg = nil 2068 gp.paniconfault = false 2069 gp._defer = nil // should be true already but just in case. 2070 gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. 2071 gp.writebuf = nil 2072 gp.waitreason = "" 2073 gp.param = nil 2074 2075 dropg() 2076 2077 if _g_.m.locked&^_LockExternal != 0 { 2078 print("invalid m->locked = ", _g_.m.locked, "\n") 2079 throw("internal lockOSThread error") 2080 } 2081 _g_.m.locked = 0 2082 gfput(_g_.m.p.ptr(), gp) 2083 schedule() 2084 } 2085 2086 //go:nosplit 2087 //go:nowritebarrier 2088 func save(pc, sp uintptr) { 2089 _g_ := getg() 2090 2091 _g_.sched.pc = pc 2092 _g_.sched.sp = sp 2093 _g_.sched.lr = 0 2094 _g_.sched.ret = 0 2095 _g_.sched.ctxt = nil 2096 _g_.sched.g = guintptr(unsafe.Pointer(_g_)) 2097 } 2098 2099 // The goroutine g is about to enter a system call. 2100 // Record that it's not using the cpu anymore. 2101 // This is called only from the go syscall library and cgocall, 2102 // not from the low-level system calls used by the runtime. 2103 // 2104 // Entersyscall cannot split the stack: the gosave must 2105 // make g->sched refer to the caller's stack segment, because 2106 // entersyscall is going to return immediately after. 2107 // 2108 // Nothing entersyscall calls can split the stack either. 2109 // We cannot safely move the stack during an active call to syscall, 2110 // because we do not know which of the uintptr arguments are 2111 // really pointers (back into the stack). 2112 // In practice, this means that we make the fast path run through 2113 // entersyscall doing no-split things, and the slow path has to use systemstack 2114 // to run bigger things on the system stack. 2115 // 2116 // reentersyscall is the entry point used by cgo callbacks, where explicitly 2117 // saved SP and PC are restored. This is needed when exitsyscall will be called 2118 // from a function further up in the call stack than the parent, as g->syscallsp 2119 // must always point to a valid stack frame. entersyscall below is the normal 2120 // entry point for syscalls, which obtains the SP and PC from the caller. 2121 // 2122 // Syscall tracing: 2123 // At the start of a syscall we emit traceGoSysCall to capture the stack trace. 2124 // If the syscall does not block, that is it, we do not emit any other events. 2125 // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; 2126 // when syscall returns we emit traceGoSysExit and when the goroutine starts running 2127 // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. 2128 // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, 2129 // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick), 2130 // whoever emits traceGoSysBlock increments p.syscalltick afterwards; 2131 // and we wait for the increment before emitting traceGoSysExit. 2132 // Note that the increment is done even if tracing is not enabled, 2133 // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. 2134 // 2135 //go:nosplit 2136 func reentersyscall(pc, sp uintptr) { 2137 _g_ := getg() 2138 2139 // Disable preemption because during this function g is in Gsyscall status, 2140 // but can have inconsistent g->sched, do not let GC observe it. 2141 _g_.m.locks++ 2142 2143 // Entersyscall must not call any function that might split/grow the stack. 2144 // (See details in comment above.) 2145 // Catch calls that might, by replacing the stack guard with something that 2146 // will trip any stack check and leaving a flag to tell newstack to die. 2147 _g_.stackguard0 = stackPreempt 2148 _g_.throwsplit = true 2149 2150 // Leave SP around for GC and traceback. 2151 save(pc, sp) 2152 _g_.syscallsp = sp 2153 _g_.syscallpc = pc 2154 casgstatus(_g_, _Grunning, _Gsyscall) 2155 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2156 systemstack(func() { 2157 print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2158 throw("entersyscall") 2159 }) 2160 } 2161 2162 if trace.enabled { 2163 systemstack(traceGoSysCall) 2164 // systemstack itself clobbers g.sched.{pc,sp} and we might 2165 // need them later when the G is genuinely blocked in a 2166 // syscall 2167 save(pc, sp) 2168 } 2169 2170 if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic 2171 systemstack(entersyscall_sysmon) 2172 save(pc, sp) 2173 } 2174 2175 if _g_.m.p.ptr().runSafePointFn != 0 { 2176 // runSafePointFn may stack split if run on this stack 2177 systemstack(runSafePointFn) 2178 save(pc, sp) 2179 } 2180 2181 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 2182 _g_.sysblocktraced = true 2183 _g_.m.mcache = nil 2184 _g_.m.p.ptr().m = 0 2185 atomicstore(&_g_.m.p.ptr().status, _Psyscall) 2186 if sched.gcwaiting != 0 { 2187 systemstack(entersyscall_gcwait) 2188 save(pc, sp) 2189 } 2190 2191 // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched). 2192 // We set _StackGuard to StackPreempt so that first split stack check calls morestack. 2193 // Morestack detects this case and throws. 2194 _g_.stackguard0 = stackPreempt 2195 _g_.m.locks-- 2196 } 2197 2198 // Standard syscall entry used by the go syscall library and normal cgo calls. 2199 //go:nosplit 2200 func entersyscall(dummy int32) { 2201 reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy))) 2202 } 2203 2204 func entersyscall_sysmon() { 2205 lock(&sched.lock) 2206 if atomicload(&sched.sysmonwait) != 0 { 2207 atomicstore(&sched.sysmonwait, 0) 2208 notewakeup(&sched.sysmonnote) 2209 } 2210 unlock(&sched.lock) 2211 } 2212 2213 func entersyscall_gcwait() { 2214 _g_ := getg() 2215 _p_ := _g_.m.p.ptr() 2216 2217 lock(&sched.lock) 2218 if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) { 2219 if trace.enabled { 2220 traceGoSysBlock(_p_) 2221 traceProcStop(_p_) 2222 } 2223 _p_.syscalltick++ 2224 if sched.stopwait--; sched.stopwait == 0 { 2225 notewakeup(&sched.stopnote) 2226 } 2227 } 2228 unlock(&sched.lock) 2229 } 2230 2231 // The same as entersyscall(), but with a hint that the syscall is blocking. 2232 //go:nosplit 2233 func entersyscallblock(dummy int32) { 2234 _g_ := getg() 2235 2236 _g_.m.locks++ // see comment in entersyscall 2237 _g_.throwsplit = true 2238 _g_.stackguard0 = stackPreempt // see comment in entersyscall 2239 _g_.m.syscalltick = _g_.m.p.ptr().syscalltick 2240 _g_.sysblocktraced = true 2241 _g_.m.p.ptr().syscalltick++ 2242 2243 // Leave SP around for GC and traceback. 2244 pc := getcallerpc(unsafe.Pointer(&dummy)) 2245 sp := getcallersp(unsafe.Pointer(&dummy)) 2246 save(pc, sp) 2247 _g_.syscallsp = _g_.sched.sp 2248 _g_.syscallpc = _g_.sched.pc 2249 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2250 sp1 := sp 2251 sp2 := _g_.sched.sp 2252 sp3 := _g_.syscallsp 2253 systemstack(func() { 2254 print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2255 throw("entersyscallblock") 2256 }) 2257 } 2258 casgstatus(_g_, _Grunning, _Gsyscall) 2259 if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp { 2260 systemstack(func() { 2261 print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n") 2262 throw("entersyscallblock") 2263 }) 2264 } 2265 2266 systemstack(entersyscallblock_handoff) 2267 2268 // Resave for traceback during blocked call. 2269 save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy))) 2270 2271 _g_.m.locks-- 2272 } 2273 2274 func entersyscallblock_handoff() { 2275 if trace.enabled { 2276 traceGoSysCall() 2277 traceGoSysBlock(getg().m.p.ptr()) 2278 } 2279 handoffp(releasep()) 2280 } 2281 2282 // The goroutine g exited its system call. 2283 // Arrange for it to run on a cpu again. 2284 // This is called only from the go syscall library, not 2285 // from the low-level system calls used by the 2286 //go:nosplit 2287 func exitsyscall(dummy int32) { 2288 _g_ := getg() 2289 2290 _g_.m.locks++ // see comment in entersyscall 2291 if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp { 2292 throw("exitsyscall: syscall frame is no longer valid") 2293 } 2294 2295 _g_.waitsince = 0 2296 oldp := _g_.m.p.ptr() 2297 if exitsyscallfast() { 2298 if _g_.m.mcache == nil { 2299 throw("lost mcache") 2300 } 2301 if trace.enabled { 2302 if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 2303 systemstack(traceGoStart) 2304 } 2305 } 2306 // There's a cpu for us, so we can run. 2307 _g_.m.p.ptr().syscalltick++ 2308 // We need to cas the status and scan before resuming... 2309 casgstatus(_g_, _Gsyscall, _Grunning) 2310 2311 // Garbage collector isn't running (since we are), 2312 // so okay to clear syscallsp. 2313 _g_.syscallsp = 0 2314 _g_.m.locks-- 2315 if _g_.preempt { 2316 // restore the preemption request in case we've cleared it in newstack 2317 _g_.stackguard0 = stackPreempt 2318 } else { 2319 // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock 2320 _g_.stackguard0 = _g_.stack.lo + _StackGuard 2321 } 2322 _g_.throwsplit = false 2323 return 2324 } 2325 2326 _g_.sysexitticks = 0 2327 _g_.sysexitseq = 0 2328 if trace.enabled { 2329 // Wait till traceGoSysBlock event is emitted. 2330 // This ensures consistency of the trace (the goroutine is started after it is blocked). 2331 for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { 2332 osyield() 2333 } 2334 // We can't trace syscall exit right now because we don't have a P. 2335 // Tracing code can invoke write barriers that cannot run without a P. 2336 // So instead we remember the syscall exit time and emit the event 2337 // in execute when we have a P. 2338 _g_.sysexitseq, _g_.sysexitticks = tracestamp() 2339 } 2340 2341 _g_.m.locks-- 2342 2343 // Call the scheduler. 2344 mcall(exitsyscall0) 2345 2346 if _g_.m.mcache == nil { 2347 throw("lost mcache") 2348 } 2349 2350 // Scheduler returned, so we're allowed to run now. 2351 // Delete the syscallsp information that we left for 2352 // the garbage collector during the system call. 2353 // Must wait until now because until gosched returns 2354 // we don't know for sure that the garbage collector 2355 // is not running. 2356 _g_.syscallsp = 0 2357 _g_.m.p.ptr().syscalltick++ 2358 _g_.throwsplit = false 2359 } 2360 2361 //go:nosplit 2362 func exitsyscallfast() bool { 2363 _g_ := getg() 2364 2365 // Freezetheworld sets stopwait but does not retake P's. 2366 if sched.stopwait == freezeStopWait { 2367 _g_.m.mcache = nil 2368 _g_.m.p = 0 2369 return false 2370 } 2371 2372 // Try to re-acquire the last P. 2373 if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) { 2374 // There's a cpu for us, so we can run. 2375 _g_.m.mcache = _g_.m.p.ptr().mcache 2376 _g_.m.p.ptr().m.set(_g_.m) 2377 if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { 2378 if trace.enabled { 2379 // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). 2380 // traceGoSysBlock for this syscall was already emitted, 2381 // but here we effectively retake the p from the new syscall running on the same p. 2382 systemstack(func() { 2383 // Denote blocking of the new syscall. 2384 traceGoSysBlock(_g_.m.p.ptr()) 2385 // Denote completion of the current syscall. 2386 traceGoSysExit(tracestamp()) 2387 }) 2388 } 2389 _g_.m.p.ptr().syscalltick++ 2390 } 2391 return true 2392 } 2393 2394 // Try to get any other idle P. 2395 oldp := _g_.m.p.ptr() 2396 _g_.m.mcache = nil 2397 _g_.m.p = 0 2398 if sched.pidle != 0 { 2399 var ok bool 2400 systemstack(func() { 2401 ok = exitsyscallfast_pidle() 2402 if ok && trace.enabled { 2403 if oldp != nil { 2404 // Wait till traceGoSysBlock event is emitted. 2405 // This ensures consistency of the trace (the goroutine is started after it is blocked). 2406 for oldp.syscalltick == _g_.m.syscalltick { 2407 osyield() 2408 } 2409 } 2410 traceGoSysExit(tracestamp()) 2411 } 2412 }) 2413 if ok { 2414 return true 2415 } 2416 } 2417 return false 2418 } 2419 2420 func exitsyscallfast_pidle() bool { 2421 lock(&sched.lock) 2422 _p_ := pidleget() 2423 if _p_ != nil && atomicload(&sched.sysmonwait) != 0 { 2424 atomicstore(&sched.sysmonwait, 0) 2425 notewakeup(&sched.sysmonnote) 2426 } 2427 unlock(&sched.lock) 2428 if _p_ != nil { 2429 acquirep(_p_) 2430 return true 2431 } 2432 return false 2433 } 2434 2435 // exitsyscall slow path on g0. 2436 // Failed to acquire P, enqueue gp as runnable. 2437 func exitsyscall0(gp *g) { 2438 _g_ := getg() 2439 2440 casgstatus(gp, _Gsyscall, _Grunnable) 2441 dropg() 2442 lock(&sched.lock) 2443 _p_ := pidleget() 2444 if _p_ == nil { 2445 globrunqput(gp) 2446 } else if atomicload(&sched.sysmonwait) != 0 { 2447 atomicstore(&sched.sysmonwait, 0) 2448 notewakeup(&sched.sysmonnote) 2449 } 2450 unlock(&sched.lock) 2451 if _p_ != nil { 2452 acquirep(_p_) 2453 execute(gp, false) // Never returns. 2454 } 2455 if _g_.m.lockedg != nil { 2456 // Wait until another thread schedules gp and so m again. 2457 stoplockedm() 2458 execute(gp, false) // Never returns. 2459 } 2460 stopm() 2461 schedule() // Never returns. 2462 } 2463 2464 func beforefork() { 2465 gp := getg().m.curg 2466 2467 // Fork can hang if preempted with signals frequently enough (see issue 5517). 2468 // Ensure that we stay on the same M where we disable profiling. 2469 gp.m.locks++ 2470 if gp.m.profilehz != 0 { 2471 resetcpuprofiler(0) 2472 } 2473 2474 // This function is called before fork in syscall package. 2475 // Code between fork and exec must not allocate memory nor even try to grow stack. 2476 // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack. 2477 // runtime_AfterFork will undo this in parent process, but not in child. 2478 gp.stackguard0 = stackFork 2479 } 2480 2481 // Called from syscall package before fork. 2482 //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork 2483 //go:nosplit 2484 func syscall_runtime_BeforeFork() { 2485 systemstack(beforefork) 2486 } 2487 2488 func afterfork() { 2489 gp := getg().m.curg 2490 2491 // See the comment in beforefork. 2492 gp.stackguard0 = gp.stack.lo + _StackGuard 2493 2494 hz := sched.profilehz 2495 if hz != 0 { 2496 resetcpuprofiler(hz) 2497 } 2498 gp.m.locks-- 2499 } 2500 2501 // Called from syscall package after fork in parent. 2502 //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork 2503 //go:nosplit 2504 func syscall_runtime_AfterFork() { 2505 systemstack(afterfork) 2506 } 2507 2508 // Allocate a new g, with a stack big enough for stacksize bytes. 2509 func malg(stacksize int32) *g { 2510 newg := new(g) 2511 if stacksize >= 0 { 2512 stacksize = round2(_StackSystem + stacksize) 2513 systemstack(func() { 2514 newg.stack, newg.stkbar = stackalloc(uint32(stacksize)) 2515 }) 2516 newg.stackguard0 = newg.stack.lo + _StackGuard 2517 newg.stackguard1 = ^uintptr(0) 2518 newg.stackAlloc = uintptr(stacksize) 2519 } 2520 return newg 2521 } 2522 2523 // Create a new g running fn with siz bytes of arguments. 2524 // Put it on the queue of g's waiting to run. 2525 // The compiler turns a go statement into a call to this. 2526 // Cannot split the stack because it assumes that the arguments 2527 // are available sequentially after &fn; they would not be 2528 // copied if a stack split occurred. 2529 //go:nosplit 2530 func newproc(siz int32, fn *funcval) { 2531 argp := add(unsafe.Pointer(&fn), ptrSize) 2532 pc := getcallerpc(unsafe.Pointer(&siz)) 2533 systemstack(func() { 2534 newproc1(fn, (*uint8)(argp), siz, 0, pc) 2535 }) 2536 } 2537 2538 // Create a new g running fn with narg bytes of arguments starting 2539 // at argp and returning nret bytes of results. callerpc is the 2540 // address of the go statement that created this. The new g is put 2541 // on the queue of g's waiting to run. 2542 func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g { 2543 _g_ := getg() 2544 2545 if fn == nil { 2546 _g_.m.throwing = -1 // do not dump full stacks 2547 throw("go of nil func value") 2548 } 2549 _g_.m.locks++ // disable preemption because it can be holding p in a local var 2550 siz := narg + nret 2551 siz = (siz + 7) &^ 7 2552 2553 // We could allocate a larger initial stack if necessary. 2554 // Not worth it: this is almost always an error. 2555 // 4*sizeof(uintreg): extra space added below 2556 // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall). 2557 if siz >= _StackMin-4*regSize-regSize { 2558 throw("newproc: function arguments too large for new goroutine") 2559 } 2560 2561 _p_ := _g_.m.p.ptr() 2562 newg := gfget(_p_) 2563 if newg == nil { 2564 newg = malg(_StackMin) 2565 casgstatus(newg, _Gidle, _Gdead) 2566 allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. 2567 } 2568 if newg.stack.hi == 0 { 2569 throw("newproc1: newg missing stack") 2570 } 2571 2572 if readgstatus(newg) != _Gdead { 2573 throw("newproc1: new g is not Gdead") 2574 } 2575 2576 totalSize := 4*regSize + uintptr(siz) + minFrameSize // extra space in case of reads slightly beyond frame 2577 totalSize += -totalSize & (spAlign - 1) // align to spAlign 2578 sp := newg.stack.hi - totalSize 2579 spArg := sp 2580 if usesLR { 2581 // caller's LR 2582 *(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil 2583 spArg += minFrameSize 2584 } 2585 memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg)) 2586 2587 memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched)) 2588 newg.sched.sp = sp 2589 newg.stktopsp = sp 2590 newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function 2591 newg.sched.g = guintptr(unsafe.Pointer(newg)) 2592 gostartcallfn(&newg.sched, fn) 2593 newg.gopc = callerpc 2594 newg.startpc = fn.fn 2595 casgstatus(newg, _Gdead, _Grunnable) 2596 2597 if _p_.goidcache == _p_.goidcacheend { 2598 // Sched.goidgen is the last allocated id, 2599 // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. 2600 // At startup sched.goidgen=0, so main goroutine receives goid=1. 2601 _p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch) 2602 _p_.goidcache -= _GoidCacheBatch - 1 2603 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch 2604 } 2605 newg.goid = int64(_p_.goidcache) 2606 _p_.goidcache++ 2607 if raceenabled { 2608 newg.racectx = racegostart(callerpc) 2609 } 2610 if trace.enabled { 2611 traceGoCreate(newg, newg.startpc) 2612 } 2613 runqput(_p_, newg, true) 2614 2615 if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic 2616 wakep() 2617 } 2618 _g_.m.locks-- 2619 if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack 2620 _g_.stackguard0 = stackPreempt 2621 } 2622 return newg 2623 } 2624 2625 // Put on gfree list. 2626 // If local list is too long, transfer a batch to the global list. 2627 func gfput(_p_ *p, gp *g) { 2628 if readgstatus(gp) != _Gdead { 2629 throw("gfput: bad status (not Gdead)") 2630 } 2631 2632 stksize := gp.stackAlloc 2633 2634 if stksize != _FixedStack { 2635 // non-standard stack size - free it. 2636 stackfree(gp.stack, gp.stackAlloc) 2637 gp.stack.lo = 0 2638 gp.stack.hi = 0 2639 gp.stackguard0 = 0 2640 gp.stkbar = nil 2641 gp.stkbarPos = 0 2642 } else { 2643 // Reset stack barriers. 2644 gp.stkbar = gp.stkbar[:0] 2645 gp.stkbarPos = 0 2646 } 2647 2648 gp.schedlink.set(_p_.gfree) 2649 _p_.gfree = gp 2650 _p_.gfreecnt++ 2651 if _p_.gfreecnt >= 64 { 2652 lock(&sched.gflock) 2653 for _p_.gfreecnt >= 32 { 2654 _p_.gfreecnt-- 2655 gp = _p_.gfree 2656 _p_.gfree = gp.schedlink.ptr() 2657 gp.schedlink.set(sched.gfree) 2658 sched.gfree = gp 2659 sched.ngfree++ 2660 } 2661 unlock(&sched.gflock) 2662 } 2663 } 2664 2665 // Get from gfree list. 2666 // If local list is empty, grab a batch from global list. 2667 func gfget(_p_ *p) *g { 2668 retry: 2669 gp := _p_.gfree 2670 if gp == nil && sched.gfree != nil { 2671 lock(&sched.gflock) 2672 for _p_.gfreecnt < 32 && sched.gfree != nil { 2673 _p_.gfreecnt++ 2674 gp = sched.gfree 2675 sched.gfree = gp.schedlink.ptr() 2676 sched.ngfree-- 2677 gp.schedlink.set(_p_.gfree) 2678 _p_.gfree = gp 2679 } 2680 unlock(&sched.gflock) 2681 goto retry 2682 } 2683 if gp != nil { 2684 _p_.gfree = gp.schedlink.ptr() 2685 _p_.gfreecnt-- 2686 if gp.stack.lo == 0 { 2687 // Stack was deallocated in gfput. Allocate a new one. 2688 systemstack(func() { 2689 gp.stack, gp.stkbar = stackalloc(_FixedStack) 2690 }) 2691 gp.stackguard0 = gp.stack.lo + _StackGuard 2692 gp.stackAlloc = _FixedStack 2693 } else { 2694 if raceenabled { 2695 racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc) 2696 } 2697 if msanenabled { 2698 msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc) 2699 } 2700 } 2701 } 2702 return gp 2703 } 2704 2705 // Purge all cached G's from gfree list to the global list. 2706 func gfpurge(_p_ *p) { 2707 lock(&sched.gflock) 2708 for _p_.gfreecnt != 0 { 2709 _p_.gfreecnt-- 2710 gp := _p_.gfree 2711 _p_.gfree = gp.schedlink.ptr() 2712 gp.schedlink.set(sched.gfree) 2713 sched.gfree = gp 2714 sched.ngfree++ 2715 } 2716 unlock(&sched.gflock) 2717 } 2718 2719 // Breakpoint executes a breakpoint trap. 2720 func Breakpoint() { 2721 breakpoint() 2722 } 2723 2724 // dolockOSThread is called by LockOSThread and lockOSThread below 2725 // after they modify m.locked. Do not allow preemption during this call, 2726 // or else the m might be different in this function than in the caller. 2727 //go:nosplit 2728 func dolockOSThread() { 2729 _g_ := getg() 2730 _g_.m.lockedg = _g_ 2731 _g_.lockedm = _g_.m 2732 } 2733 2734 //go:nosplit 2735 2736 // LockOSThread wires the calling goroutine to its current operating system thread. 2737 // Until the calling goroutine exits or calls UnlockOSThread, it will always 2738 // execute in that thread, and no other goroutine can. 2739 func LockOSThread() { 2740 getg().m.locked |= _LockExternal 2741 dolockOSThread() 2742 } 2743 2744 //go:nosplit 2745 func lockOSThread() { 2746 getg().m.locked += _LockInternal 2747 dolockOSThread() 2748 } 2749 2750 // dounlockOSThread is called by UnlockOSThread and unlockOSThread below 2751 // after they update m->locked. Do not allow preemption during this call, 2752 // or else the m might be in different in this function than in the caller. 2753 //go:nosplit 2754 func dounlockOSThread() { 2755 _g_ := getg() 2756 if _g_.m.locked != 0 { 2757 return 2758 } 2759 _g_.m.lockedg = nil 2760 _g_.lockedm = nil 2761 } 2762 2763 //go:nosplit 2764 2765 // UnlockOSThread unwires the calling goroutine from its fixed operating system thread. 2766 // If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op. 2767 func UnlockOSThread() { 2768 getg().m.locked &^= _LockExternal 2769 dounlockOSThread() 2770 } 2771 2772 //go:nosplit 2773 func unlockOSThread() { 2774 _g_ := getg() 2775 if _g_.m.locked < _LockInternal { 2776 systemstack(badunlockosthread) 2777 } 2778 _g_.m.locked -= _LockInternal 2779 dounlockOSThread() 2780 } 2781 2782 func badunlockosthread() { 2783 throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") 2784 } 2785 2786 func gcount() int32 { 2787 n := int32(allglen) - sched.ngfree 2788 for i := 0; ; i++ { 2789 _p_ := allp[i] 2790 if _p_ == nil { 2791 break 2792 } 2793 n -= _p_.gfreecnt 2794 } 2795 2796 // All these variables can be changed concurrently, so the result can be inconsistent. 2797 // But at least the current goroutine is running. 2798 if n < 1 { 2799 n = 1 2800 } 2801 return n 2802 } 2803 2804 func mcount() int32 { 2805 return sched.mcount 2806 } 2807 2808 var prof struct { 2809 lock uint32 2810 hz int32 2811 } 2812 2813 func _System() { _System() } 2814 func _ExternalCode() { _ExternalCode() } 2815 func _GC() { _GC() } 2816 2817 // Called if we receive a SIGPROF signal. 2818 func sigprof(pc, sp, lr uintptr, gp *g, mp *m) { 2819 if prof.hz == 0 { 2820 return 2821 } 2822 2823 // Profiling runs concurrently with GC, so it must not allocate. 2824 mp.mallocing++ 2825 2826 // Coordinate with stack barrier insertion in scanstack. 2827 for !cas(&gp.stackLock, 0, 1) { 2828 osyield() 2829 } 2830 2831 // Define that a "user g" is a user-created goroutine, and a "system g" 2832 // is one that is m->g0 or m->gsignal. 2833 // 2834 // We might be interrupted for profiling halfway through a 2835 // goroutine switch. The switch involves updating three (or four) values: 2836 // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, 2837 // because once it gets updated the new g is running. 2838 // 2839 // When switching from a user g to a system g, LR is not considered live, 2840 // so the update only affects g, SP, and PC. Since PC must be last, there 2841 // the possible partial transitions in ordinary execution are (1) g alone is updated, 2842 // (2) both g and SP are updated, and (3) SP alone is updated. 2843 // If SP or g alone is updated, we can detect the partial transition by checking 2844 // whether the SP is within g's stack bounds. (We could also require that SP 2845 // be changed only after g, but the stack bounds check is needed by other 2846 // cases, so there is no need to impose an additional requirement.) 2847 // 2848 // There is one exceptional transition to a system g, not in ordinary execution. 2849 // When a signal arrives, the operating system starts the signal handler running 2850 // with an updated PC and SP. The g is updated last, at the beginning of the 2851 // handler. There are two reasons this is okay. First, until g is updated the 2852 // g and SP do not match, so the stack bounds check detects the partial transition. 2853 // Second, signal handlers currently run with signals disabled, so a profiling 2854 // signal cannot arrive during the handler. 2855 // 2856 // When switching from a system g to a user g, there are three possibilities. 2857 // 2858 // First, it may be that the g switch has no PC update, because the SP 2859 // either corresponds to a user g throughout (as in asmcgocall) 2860 // or because it has been arranged to look like a user g frame 2861 // (as in cgocallback_gofunc). In this case, since the entire 2862 // transition is a g+SP update, a partial transition updating just one of 2863 // those will be detected by the stack bounds check. 2864 // 2865 // Second, when returning from a signal handler, the PC and SP updates 2866 // are performed by the operating system in an atomic update, so the g 2867 // update must be done before them. The stack bounds check detects 2868 // the partial transition here, and (again) signal handlers run with signals 2869 // disabled, so a profiling signal cannot arrive then anyway. 2870 // 2871 // Third, the common case: it may be that the switch updates g, SP, and PC 2872 // separately. If the PC is within any of the functions that does this, 2873 // we don't ask for a traceback. C.F. the function setsSP for more about this. 2874 // 2875 // There is another apparently viable approach, recorded here in case 2876 // the "PC within setsSP function" check turns out not to be usable. 2877 // It would be possible to delay the update of either g or SP until immediately 2878 // before the PC update instruction. Then, because of the stack bounds check, 2879 // the only problematic interrupt point is just before that PC update instruction, 2880 // and the sigprof handler can detect that instruction and simulate stepping past 2881 // it in order to reach a consistent state. On ARM, the update of g must be made 2882 // in two places (in R10 and also in a TLS slot), so the delayed update would 2883 // need to be the SP update. The sigprof handler must read the instruction at 2884 // the current PC and if it was the known instruction (for example, JMP BX or 2885 // MOV R2, PC), use that other register in place of the PC value. 2886 // The biggest drawback to this solution is that it requires that we can tell 2887 // whether it's safe to read from the memory pointed at by PC. 2888 // In a correct program, we can test PC == nil and otherwise read, 2889 // but if a profiling signal happens at the instant that a program executes 2890 // a bad jump (before the program manages to handle the resulting fault) 2891 // the profiling handler could fault trying to read nonexistent memory. 2892 // 2893 // To recap, there are no constraints on the assembly being used for the 2894 // transition. We simply require that g and SP match and that the PC is not 2895 // in gogo. 2896 traceback := true 2897 if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) { 2898 traceback = false 2899 } 2900 var stk [maxCPUProfStack]uintptr 2901 n := 0 2902 if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 { 2903 // Cgo, we can't unwind and symbolize arbitrary C code, 2904 // so instead collect Go stack that leads to the cgo call. 2905 // This is especially important on windows, since all syscalls are cgo calls. 2906 n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0) 2907 } else if traceback { 2908 n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack) 2909 } 2910 if !traceback || n <= 0 { 2911 // Normal traceback is impossible or has failed. 2912 // See if it falls into several common cases. 2913 n = 0 2914 if GOOS == "windows" && n == 0 && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 { 2915 // Libcall, i.e. runtime syscall on windows. 2916 // Collect Go stack that leads to the call. 2917 n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0) 2918 } 2919 if n == 0 { 2920 // If all of the above has failed, account it against abstract "System" or "GC". 2921 n = 2 2922 // "ExternalCode" is better than "etext". 2923 if pc > firstmoduledata.etext { 2924 pc = funcPC(_ExternalCode) + _PCQuantum 2925 } 2926 stk[0] = pc 2927 if mp.preemptoff != "" || mp.helpgc != 0 { 2928 stk[1] = funcPC(_GC) + _PCQuantum 2929 } else { 2930 stk[1] = funcPC(_System) + _PCQuantum 2931 } 2932 } 2933 } 2934 atomicstore(&gp.stackLock, 0) 2935 2936 if prof.hz != 0 { 2937 // Simple cas-lock to coordinate with setcpuprofilerate. 2938 for !cas(&prof.lock, 0, 1) { 2939 osyield() 2940 } 2941 if prof.hz != 0 { 2942 cpuprof.add(stk[:n]) 2943 } 2944 atomicstore(&prof.lock, 0) 2945 } 2946 mp.mallocing-- 2947 } 2948 2949 // Reports whether a function will set the SP 2950 // to an absolute value. Important that 2951 // we don't traceback when these are at the bottom 2952 // of the stack since we can't be sure that we will 2953 // find the caller. 2954 // 2955 // If the function is not on the bottom of the stack 2956 // we assume that it will have set it up so that traceback will be consistent, 2957 // either by being a traceback terminating function 2958 // or putting one on the stack at the right offset. 2959 func setsSP(pc uintptr) bool { 2960 f := findfunc(pc) 2961 if f == nil { 2962 // couldn't find the function for this PC, 2963 // so assume the worst and stop traceback 2964 return true 2965 } 2966 switch f.entry { 2967 case gogoPC, systemstackPC, mcallPC, morestackPC: 2968 return true 2969 } 2970 return false 2971 } 2972 2973 // Arrange to call fn with a traceback hz times a second. 2974 func setcpuprofilerate_m(hz int32) { 2975 // Force sane arguments. 2976 if hz < 0 { 2977 hz = 0 2978 } 2979 2980 // Disable preemption, otherwise we can be rescheduled to another thread 2981 // that has profiling enabled. 2982 _g_ := getg() 2983 _g_.m.locks++ 2984 2985 // Stop profiler on this thread so that it is safe to lock prof. 2986 // if a profiling signal came in while we had prof locked, 2987 // it would deadlock. 2988 resetcpuprofiler(0) 2989 2990 for !cas(&prof.lock, 0, 1) { 2991 osyield() 2992 } 2993 prof.hz = hz 2994 atomicstore(&prof.lock, 0) 2995 2996 lock(&sched.lock) 2997 sched.profilehz = hz 2998 unlock(&sched.lock) 2999 3000 if hz != 0 { 3001 resetcpuprofiler(hz) 3002 } 3003 3004 _g_.m.locks-- 3005 } 3006 3007 // Change number of processors. The world is stopped, sched is locked. 3008 // gcworkbufs are not being modified by either the GC or 3009 // the write barrier code. 3010 // Returns list of Ps with local work, they need to be scheduled by the caller. 3011 func procresize(nprocs int32) *p { 3012 old := gomaxprocs 3013 if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs { 3014 throw("procresize: invalid arg") 3015 } 3016 if trace.enabled { 3017 traceGomaxprocs(nprocs) 3018 } 3019 3020 // update statistics 3021 now := nanotime() 3022 if sched.procresizetime != 0 { 3023 sched.totaltime += int64(old) * (now - sched.procresizetime) 3024 } 3025 sched.procresizetime = now 3026 3027 // initialize new P's 3028 for i := int32(0); i < nprocs; i++ { 3029 pp := allp[i] 3030 if pp == nil { 3031 pp = new(p) 3032 pp.id = i 3033 pp.status = _Pgcstop 3034 pp.sudogcache = pp.sudogbuf[:0] 3035 for i := range pp.deferpool { 3036 pp.deferpool[i] = pp.deferpoolbuf[i][:0] 3037 } 3038 atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) 3039 } 3040 if pp.mcache == nil { 3041 if old == 0 && i == 0 { 3042 if getg().m.mcache == nil { 3043 throw("missing mcache?") 3044 } 3045 pp.mcache = getg().m.mcache // bootstrap 3046 } else { 3047 pp.mcache = allocmcache() 3048 } 3049 } 3050 } 3051 3052 // free unused P's 3053 for i := nprocs; i < old; i++ { 3054 p := allp[i] 3055 if trace.enabled { 3056 if p == getg().m.p.ptr() { 3057 // moving to p[0], pretend that we were descheduled 3058 // and then scheduled again to keep the trace sane. 3059 traceGoSched() 3060 traceProcStop(p) 3061 } 3062 } 3063 // move all runnable goroutines to the global queue 3064 for p.runqhead != p.runqtail { 3065 // pop from tail of local queue 3066 p.runqtail-- 3067 gp := p.runq[p.runqtail%uint32(len(p.runq))] 3068 // push onto head of global queue 3069 globrunqputhead(gp) 3070 } 3071 if p.runnext != 0 { 3072 globrunqputhead(p.runnext.ptr()) 3073 p.runnext = 0 3074 } 3075 // if there's a background worker, make it runnable and put 3076 // it on the global queue so it can clean itself up 3077 if p.gcBgMarkWorker != nil { 3078 casgstatus(p.gcBgMarkWorker, _Gwaiting, _Grunnable) 3079 if trace.enabled { 3080 traceGoUnpark(p.gcBgMarkWorker, 0) 3081 } 3082 globrunqput(p.gcBgMarkWorker) 3083 p.gcBgMarkWorker = nil 3084 } 3085 for i := range p.sudogbuf { 3086 p.sudogbuf[i] = nil 3087 } 3088 p.sudogcache = p.sudogbuf[:0] 3089 for i := range p.deferpool { 3090 for j := range p.deferpoolbuf[i] { 3091 p.deferpoolbuf[i][j] = nil 3092 } 3093 p.deferpool[i] = p.deferpoolbuf[i][:0] 3094 } 3095 freemcache(p.mcache) 3096 p.mcache = nil 3097 gfpurge(p) 3098 traceProcFree(p) 3099 p.status = _Pdead 3100 // can't free P itself because it can be referenced by an M in syscall 3101 } 3102 3103 _g_ := getg() 3104 if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs { 3105 // continue to use the current P 3106 _g_.m.p.ptr().status = _Prunning 3107 } else { 3108 // release the current P and acquire allp[0] 3109 if _g_.m.p != 0 { 3110 _g_.m.p.ptr().m = 0 3111 } 3112 _g_.m.p = 0 3113 _g_.m.mcache = nil 3114 p := allp[0] 3115 p.m = 0 3116 p.status = _Pidle 3117 acquirep(p) 3118 if trace.enabled { 3119 traceGoStart() 3120 } 3121 } 3122 var runnablePs *p 3123 for i := nprocs - 1; i >= 0; i-- { 3124 p := allp[i] 3125 if _g_.m.p.ptr() == p { 3126 continue 3127 } 3128 p.status = _Pidle 3129 if runqempty(p) { 3130 pidleput(p) 3131 } else { 3132 p.m.set(mget()) 3133 p.link.set(runnablePs) 3134 runnablePs = p 3135 } 3136 } 3137 var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 3138 atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) 3139 return runnablePs 3140 } 3141 3142 // Associate p and the current m. 3143 func acquirep(_p_ *p) { 3144 acquirep1(_p_) 3145 3146 // have p; write barriers now allowed 3147 _g_ := getg() 3148 _g_.m.mcache = _p_.mcache 3149 3150 if trace.enabled { 3151 traceProcStart() 3152 } 3153 } 3154 3155 // May run during STW, so write barriers are not allowed. 3156 //go:nowritebarrier 3157 func acquirep1(_p_ *p) { 3158 _g_ := getg() 3159 3160 if _g_.m.p != 0 || _g_.m.mcache != nil { 3161 throw("acquirep: already in go") 3162 } 3163 if _p_.m != 0 || _p_.status != _Pidle { 3164 id := int32(0) 3165 if _p_.m != 0 { 3166 id = _p_.m.ptr().id 3167 } 3168 print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") 3169 throw("acquirep: invalid p state") 3170 } 3171 _g_.m.p.set(_p_) 3172 _p_.m.set(_g_.m) 3173 _p_.status = _Prunning 3174 } 3175 3176 // Disassociate p and the current m. 3177 func releasep() *p { 3178 _g_ := getg() 3179 3180 if _g_.m.p == 0 || _g_.m.mcache == nil { 3181 throw("releasep: invalid arg") 3182 } 3183 _p_ := _g_.m.p.ptr() 3184 if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning { 3185 print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n") 3186 throw("releasep: invalid p state") 3187 } 3188 if trace.enabled { 3189 traceProcStop(_g_.m.p.ptr()) 3190 } 3191 _g_.m.p = 0 3192 _g_.m.mcache = nil 3193 _p_.m = 0 3194 _p_.status = _Pidle 3195 return _p_ 3196 } 3197 3198 func incidlelocked(v int32) { 3199 lock(&sched.lock) 3200 sched.nmidlelocked += v 3201 if v > 0 { 3202 checkdead() 3203 } 3204 unlock(&sched.lock) 3205 } 3206 3207 // Check for deadlock situation. 3208 // The check is based on number of running M's, if 0 -> deadlock. 3209 func checkdead() { 3210 // For -buildmode=c-shared or -buildmode=c-archive it's OK if 3211 // there are no running goroutines. The calling program is 3212 // assumed to be running. 3213 if islibrary || isarchive { 3214 return 3215 } 3216 3217 // If we are dying because of a signal caught on an already idle thread, 3218 // freezetheworld will cause all running threads to block. 3219 // And runtime will essentially enter into deadlock state, 3220 // except that there is a thread that will call exit soon. 3221 if panicking > 0 { 3222 return 3223 } 3224 3225 // -1 for sysmon 3226 run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1 3227 if run > 0 { 3228 return 3229 } 3230 if run < 0 { 3231 print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n") 3232 throw("checkdead: inconsistent counts") 3233 } 3234 3235 grunning := 0 3236 lock(&allglock) 3237 for i := 0; i < len(allgs); i++ { 3238 gp := allgs[i] 3239 if isSystemGoroutine(gp) { 3240 continue 3241 } 3242 s := readgstatus(gp) 3243 switch s &^ _Gscan { 3244 case _Gwaiting: 3245 grunning++ 3246 case _Grunnable, 3247 _Grunning, 3248 _Gsyscall: 3249 unlock(&allglock) 3250 print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") 3251 throw("checkdead: runnable g") 3252 } 3253 } 3254 unlock(&allglock) 3255 if grunning == 0 { // possible if main goroutine calls runtime·Goexit() 3256 throw("no goroutines (main called runtime.Goexit) - deadlock!") 3257 } 3258 3259 // Maybe jump time forward for playground. 3260 gp := timejump() 3261 if gp != nil { 3262 casgstatus(gp, _Gwaiting, _Grunnable) 3263 globrunqput(gp) 3264 _p_ := pidleget() 3265 if _p_ == nil { 3266 throw("checkdead: no p for timer") 3267 } 3268 mp := mget() 3269 if mp == nil { 3270 newm(nil, _p_) 3271 } else { 3272 mp.nextp.set(_p_) 3273 notewakeup(&mp.park) 3274 } 3275 return 3276 } 3277 3278 getg().m.throwing = -1 // do not dump full stacks 3279 throw("all goroutines are asleep - deadlock!") 3280 } 3281 3282 // forcegcperiod is the maximum time in nanoseconds between garbage 3283 // collections. If we go this long without a garbage collection, one 3284 // is forced to run. 3285 // 3286 // This is a variable for testing purposes. It normally doesn't change. 3287 var forcegcperiod int64 = 2 * 60 * 1e9 3288 3289 func sysmon() { 3290 // If a heap span goes unused for 5 minutes after a garbage collection, 3291 // we hand it back to the operating system. 3292 scavengelimit := int64(5 * 60 * 1e9) 3293 3294 if debug.scavenge > 0 { 3295 // Scavenge-a-lot for testing. 3296 forcegcperiod = 10 * 1e6 3297 scavengelimit = 20 * 1e6 3298 } 3299 3300 lastscavenge := nanotime() 3301 nscavenge := 0 3302 3303 lasttrace := int64(0) 3304 idle := 0 // how many cycles in succession we had not wokeup somebody 3305 delay := uint32(0) 3306 for { 3307 if idle == 0 { // start with 20us sleep... 3308 delay = 20 3309 } else if idle > 50 { // start doubling the sleep after 1ms... 3310 delay *= 2 3311 } 3312 if delay > 10*1000 { // up to 10ms 3313 delay = 10 * 1000 3314 } 3315 usleep(delay) 3316 if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic 3317 lock(&sched.lock) 3318 if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) { 3319 atomicstore(&sched.sysmonwait, 1) 3320 unlock(&sched.lock) 3321 // Make wake-up period small enough 3322 // for the sampling to be correct. 3323 maxsleep := forcegcperiod / 2 3324 if scavengelimit < forcegcperiod { 3325 maxsleep = scavengelimit / 2 3326 } 3327 notetsleep(&sched.sysmonnote, maxsleep) 3328 lock(&sched.lock) 3329 atomicstore(&sched.sysmonwait, 0) 3330 noteclear(&sched.sysmonnote) 3331 idle = 0 3332 delay = 20 3333 } 3334 unlock(&sched.lock) 3335 } 3336 // poll network if not polled for more than 10ms 3337 lastpoll := int64(atomicload64(&sched.lastpoll)) 3338 now := nanotime() 3339 unixnow := unixnanotime() 3340 if lastpoll != 0 && lastpoll+10*1000*1000 < now { 3341 cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) 3342 gp := netpoll(false) // non-blocking - returns list of goroutines 3343 if gp != nil { 3344 // Need to decrement number of idle locked M's 3345 // (pretending that one more is running) before injectglist. 3346 // Otherwise it can lead to the following situation: 3347 // injectglist grabs all P's but before it starts M's to run the P's, 3348 // another M returns from syscall, finishes running its G, 3349 // observes that there is no work to do and no other running M's 3350 // and reports deadlock. 3351 incidlelocked(-1) 3352 injectglist(gp) 3353 incidlelocked(1) 3354 } 3355 } 3356 // retake P's blocked in syscalls 3357 // and preempt long running G's 3358 if retake(now) != 0 { 3359 idle = 0 3360 } else { 3361 idle++ 3362 } 3363 // check if we need to force a GC 3364 lastgc := int64(atomicload64(&memstats.last_gc)) 3365 if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 && atomicloaduint(&bggc.working) == 0 { 3366 lock(&forcegc.lock) 3367 forcegc.idle = 0 3368 forcegc.g.schedlink = 0 3369 injectglist(forcegc.g) 3370 unlock(&forcegc.lock) 3371 } 3372 // scavenge heap once in a while 3373 if lastscavenge+scavengelimit/2 < now { 3374 mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit)) 3375 lastscavenge = now 3376 nscavenge++ 3377 } 3378 if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now { 3379 lasttrace = now 3380 schedtrace(debug.scheddetail > 0) 3381 } 3382 } 3383 } 3384 3385 var pdesc [_MaxGomaxprocs]struct { 3386 schedtick uint32 3387 schedwhen int64 3388 syscalltick uint32 3389 syscallwhen int64 3390 } 3391 3392 // forcePreemptNS is the time slice given to a G before it is 3393 // preempted. 3394 const forcePreemptNS = 10 * 1000 * 1000 // 10ms 3395 3396 func retake(now int64) uint32 { 3397 n := 0 3398 for i := int32(0); i < gomaxprocs; i++ { 3399 _p_ := allp[i] 3400 if _p_ == nil { 3401 continue 3402 } 3403 pd := &pdesc[i] 3404 s := _p_.status 3405 if s == _Psyscall { 3406 // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). 3407 t := int64(_p_.syscalltick) 3408 if int64(pd.syscalltick) != t { 3409 pd.syscalltick = uint32(t) 3410 pd.syscallwhen = now 3411 continue 3412 } 3413 // On the one hand we don't want to retake Ps if there is no other work to do, 3414 // but on the other hand we want to retake them eventually 3415 // because they can prevent the sysmon thread from deep sleep. 3416 if runqempty(_p_) && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { 3417 continue 3418 } 3419 // Need to decrement number of idle locked M's 3420 // (pretending that one more is running) before the CAS. 3421 // Otherwise the M from which we retake can exit the syscall, 3422 // increment nmidle and report deadlock. 3423 incidlelocked(-1) 3424 if cas(&_p_.status, s, _Pidle) { 3425 if trace.enabled { 3426 traceGoSysBlock(_p_) 3427 traceProcStop(_p_) 3428 } 3429 n++ 3430 _p_.syscalltick++ 3431 handoffp(_p_) 3432 } 3433 incidlelocked(1) 3434 } else if s == _Prunning { 3435 // Preempt G if it's running for too long. 3436 t := int64(_p_.schedtick) 3437 if int64(pd.schedtick) != t { 3438 pd.schedtick = uint32(t) 3439 pd.schedwhen = now 3440 continue 3441 } 3442 if pd.schedwhen+forcePreemptNS > now { 3443 continue 3444 } 3445 preemptone(_p_) 3446 } 3447 } 3448 return uint32(n) 3449 } 3450 3451 // Tell all goroutines that they have been preempted and they should stop. 3452 // This function is purely best-effort. It can fail to inform a goroutine if a 3453 // processor just started running it. 3454 // No locks need to be held. 3455 // Returns true if preemption request was issued to at least one goroutine. 3456 func preemptall() bool { 3457 res := false 3458 for i := int32(0); i < gomaxprocs; i++ { 3459 _p_ := allp[i] 3460 if _p_ == nil || _p_.status != _Prunning { 3461 continue 3462 } 3463 if preemptone(_p_) { 3464 res = true 3465 } 3466 } 3467 return res 3468 } 3469 3470 // Tell the goroutine running on processor P to stop. 3471 // This function is purely best-effort. It can incorrectly fail to inform the 3472 // goroutine. It can send inform the wrong goroutine. Even if it informs the 3473 // correct goroutine, that goroutine might ignore the request if it is 3474 // simultaneously executing newstack. 3475 // No lock needs to be held. 3476 // Returns true if preemption request was issued. 3477 // The actual preemption will happen at some point in the future 3478 // and will be indicated by the gp->status no longer being 3479 // Grunning 3480 func preemptone(_p_ *p) bool { 3481 mp := _p_.m.ptr() 3482 if mp == nil || mp == getg().m { 3483 return false 3484 } 3485 gp := mp.curg 3486 if gp == nil || gp == mp.g0 { 3487 return false 3488 } 3489 3490 gp.preempt = true 3491 3492 // Every call in a go routine checks for stack overflow by 3493 // comparing the current stack pointer to gp->stackguard0. 3494 // Setting gp->stackguard0 to StackPreempt folds 3495 // preemption into the normal stack overflow check. 3496 gp.stackguard0 = stackPreempt 3497 return true 3498 } 3499 3500 var starttime int64 3501 3502 func schedtrace(detailed bool) { 3503 now := nanotime() 3504 if starttime == 0 { 3505 starttime = now 3506 } 3507 3508 lock(&sched.lock) 3509 print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) 3510 if detailed { 3511 print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") 3512 } 3513 // We must be careful while reading data from P's, M's and G's. 3514 // Even if we hold schedlock, most data can be changed concurrently. 3515 // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. 3516 for i := int32(0); i < gomaxprocs; i++ { 3517 _p_ := allp[i] 3518 if _p_ == nil { 3519 continue 3520 } 3521 mp := _p_.m.ptr() 3522 h := atomicload(&_p_.runqhead) 3523 t := atomicload(&_p_.runqtail) 3524 if detailed { 3525 id := int32(-1) 3526 if mp != nil { 3527 id = mp.id 3528 } 3529 print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n") 3530 } else { 3531 // In non-detailed mode format lengths of per-P run queues as: 3532 // [len1 len2 len3 len4] 3533 print(" ") 3534 if i == 0 { 3535 print("[") 3536 } 3537 print(t - h) 3538 if i == gomaxprocs-1 { 3539 print("]\n") 3540 } 3541 } 3542 } 3543 3544 if !detailed { 3545 unlock(&sched.lock) 3546 return 3547 } 3548 3549 for mp := allm; mp != nil; mp = mp.alllink { 3550 _p_ := mp.p.ptr() 3551 gp := mp.curg 3552 lockedg := mp.lockedg 3553 id1 := int32(-1) 3554 if _p_ != nil { 3555 id1 = _p_.id 3556 } 3557 id2 := int64(-1) 3558 if gp != nil { 3559 id2 = gp.goid 3560 } 3561 id3 := int64(-1) 3562 if lockedg != nil { 3563 id3 = lockedg.goid 3564 } 3565 print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n") 3566 } 3567 3568 lock(&allglock) 3569 for gi := 0; gi < len(allgs); gi++ { 3570 gp := allgs[gi] 3571 mp := gp.m 3572 lockedm := gp.lockedm 3573 id1 := int32(-1) 3574 if mp != nil { 3575 id1 = mp.id 3576 } 3577 id2 := int32(-1) 3578 if lockedm != nil { 3579 id2 = lockedm.id 3580 } 3581 print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n") 3582 } 3583 unlock(&allglock) 3584 unlock(&sched.lock) 3585 } 3586 3587 // Put mp on midle list. 3588 // Sched must be locked. 3589 // May run during STW, so write barriers are not allowed. 3590 //go:nowritebarrier 3591 func mput(mp *m) { 3592 mp.schedlink = sched.midle 3593 sched.midle.set(mp) 3594 sched.nmidle++ 3595 checkdead() 3596 } 3597 3598 // Try to get an m from midle list. 3599 // Sched must be locked. 3600 // May run during STW, so write barriers are not allowed. 3601 //go:nowritebarrier 3602 func mget() *m { 3603 mp := sched.midle.ptr() 3604 if mp != nil { 3605 sched.midle = mp.schedlink 3606 sched.nmidle-- 3607 } 3608 return mp 3609 } 3610 3611 // Put gp on the global runnable queue. 3612 // Sched must be locked. 3613 // May run during STW, so write barriers are not allowed. 3614 //go:nowritebarrier 3615 func globrunqput(gp *g) { 3616 gp.schedlink = 0 3617 if sched.runqtail != 0 { 3618 sched.runqtail.ptr().schedlink.set(gp) 3619 } else { 3620 sched.runqhead.set(gp) 3621 } 3622 sched.runqtail.set(gp) 3623 sched.runqsize++ 3624 } 3625 3626 // Put gp at the head of the global runnable queue. 3627 // Sched must be locked. 3628 // May run during STW, so write barriers are not allowed. 3629 //go:nowritebarrier 3630 func globrunqputhead(gp *g) { 3631 gp.schedlink = sched.runqhead 3632 sched.runqhead.set(gp) 3633 if sched.runqtail == 0 { 3634 sched.runqtail.set(gp) 3635 } 3636 sched.runqsize++ 3637 } 3638 3639 // Put a batch of runnable goroutines on the global runnable queue. 3640 // Sched must be locked. 3641 func globrunqputbatch(ghead *g, gtail *g, n int32) { 3642 gtail.schedlink = 0 3643 if sched.runqtail != 0 { 3644 sched.runqtail.ptr().schedlink.set(ghead) 3645 } else { 3646 sched.runqhead.set(ghead) 3647 } 3648 sched.runqtail.set(gtail) 3649 sched.runqsize += n 3650 } 3651 3652 // Try get a batch of G's from the global runnable queue. 3653 // Sched must be locked. 3654 func globrunqget(_p_ *p, max int32) *g { 3655 if sched.runqsize == 0 { 3656 return nil 3657 } 3658 3659 n := sched.runqsize/gomaxprocs + 1 3660 if n > sched.runqsize { 3661 n = sched.runqsize 3662 } 3663 if max > 0 && n > max { 3664 n = max 3665 } 3666 if n > int32(len(_p_.runq))/2 { 3667 n = int32(len(_p_.runq)) / 2 3668 } 3669 3670 sched.runqsize -= n 3671 if sched.runqsize == 0 { 3672 sched.runqtail = 0 3673 } 3674 3675 gp := sched.runqhead.ptr() 3676 sched.runqhead = gp.schedlink 3677 n-- 3678 for ; n > 0; n-- { 3679 gp1 := sched.runqhead.ptr() 3680 sched.runqhead = gp1.schedlink 3681 runqput(_p_, gp1, false) 3682 } 3683 return gp 3684 } 3685 3686 // Put p to on _Pidle list. 3687 // Sched must be locked. 3688 // May run during STW, so write barriers are not allowed. 3689 //go:nowritebarrier 3690 func pidleput(_p_ *p) { 3691 if !runqempty(_p_) { 3692 throw("pidleput: P has non-empty run queue") 3693 } 3694 _p_.link = sched.pidle 3695 sched.pidle.set(_p_) 3696 xadd(&sched.npidle, 1) // TODO: fast atomic 3697 } 3698 3699 // Try get a p from _Pidle list. 3700 // Sched must be locked. 3701 // May run during STW, so write barriers are not allowed. 3702 //go:nowritebarrier 3703 func pidleget() *p { 3704 _p_ := sched.pidle.ptr() 3705 if _p_ != nil { 3706 sched.pidle = _p_.link 3707 xadd(&sched.npidle, -1) // TODO: fast atomic 3708 } 3709 return _p_ 3710 } 3711 3712 // runqempty returns true if _p_ has no Gs on its local run queue. 3713 // Note that this test is generally racy. 3714 func runqempty(_p_ *p) bool { 3715 return _p_.runqhead == _p_.runqtail && _p_.runnext == 0 3716 } 3717 3718 // To shake out latent assumptions about scheduling order, 3719 // we introduce some randomness into scheduling decisions 3720 // when running with the race detector. 3721 // The need for this was made obvious by changing the 3722 // (deterministic) scheduling order in Go 1.5 and breaking 3723 // many poorly-written tests. 3724 // With the randomness here, as long as the tests pass 3725 // consistently with -race, they shouldn't have latent scheduling 3726 // assumptions. 3727 const randomizeScheduler = raceenabled 3728 3729 // runqput tries to put g on the local runnable queue. 3730 // If next if false, runqput adds g to the tail of the runnable queue. 3731 // If next is true, runqput puts g in the _p_.runnext slot. 3732 // If the run queue is full, runnext puts g on the global queue. 3733 // Executed only by the owner P. 3734 func runqput(_p_ *p, gp *g, next bool) { 3735 if randomizeScheduler && next && fastrand1()%2 == 0 { 3736 next = false 3737 } 3738 3739 if next { 3740 retryNext: 3741 oldnext := _p_.runnext 3742 if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) { 3743 goto retryNext 3744 } 3745 if oldnext == 0 { 3746 return 3747 } 3748 // Kick the old runnext out to the regular run queue. 3749 gp = oldnext.ptr() 3750 } 3751 3752 retry: 3753 h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers 3754 t := _p_.runqtail 3755 if t-h < uint32(len(_p_.runq)) { 3756 _p_.runq[t%uint32(len(_p_.runq))] = gp 3757 atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption 3758 return 3759 } 3760 if runqputslow(_p_, gp, h, t) { 3761 return 3762 } 3763 // the queue is not full, now the put above must suceed 3764 goto retry 3765 } 3766 3767 // Put g and a batch of work from local runnable queue on global queue. 3768 // Executed only by the owner P. 3769 func runqputslow(_p_ *p, gp *g, h, t uint32) bool { 3770 var batch [len(_p_.runq)/2 + 1]*g 3771 3772 // First, grab a batch from local queue. 3773 n := t - h 3774 n = n / 2 3775 if n != uint32(len(_p_.runq)/2) { 3776 throw("runqputslow: queue is not full") 3777 } 3778 for i := uint32(0); i < n; i++ { 3779 batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))] 3780 } 3781 if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume 3782 return false 3783 } 3784 batch[n] = gp 3785 3786 if randomizeScheduler { 3787 for i := uint32(1); i <= n; i++ { 3788 j := fastrand1() % (i + 1) 3789 batch[i], batch[j] = batch[j], batch[i] 3790 } 3791 } 3792 3793 // Link the goroutines. 3794 for i := uint32(0); i < n; i++ { 3795 batch[i].schedlink.set(batch[i+1]) 3796 } 3797 3798 // Now put the batch on global queue. 3799 lock(&sched.lock) 3800 globrunqputbatch(batch[0], batch[n], int32(n+1)) 3801 unlock(&sched.lock) 3802 return true 3803 } 3804 3805 // Get g from local runnable queue. 3806 // If inheritTime is true, gp should inherit the remaining time in the 3807 // current time slice. Otherwise, it should start a new time slice. 3808 // Executed only by the owner P. 3809 func runqget(_p_ *p) (gp *g, inheritTime bool) { 3810 // If there's a runnext, it's the next G to run. 3811 for { 3812 next := _p_.runnext 3813 if next == 0 { 3814 break 3815 } 3816 if _p_.runnext.cas(next, 0) { 3817 return next.ptr(), true 3818 } 3819 } 3820 3821 for { 3822 h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers 3823 t := _p_.runqtail 3824 if t == h { 3825 return nil, false 3826 } 3827 gp := _p_.runq[h%uint32(len(_p_.runq))] 3828 if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume 3829 return gp, false 3830 } 3831 } 3832 } 3833 3834 // Grabs a batch of goroutines from _p_'s runnable queue into batch. 3835 // Batch is a ring buffer starting at batchHead. 3836 // Returns number of grabbed goroutines. 3837 // Can be executed by any P. 3838 func runqgrab(_p_ *p, batch *[256]*g, batchHead uint32, stealRunNextG bool) uint32 { 3839 for { 3840 h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers 3841 t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer 3842 n := t - h 3843 n = n - n/2 3844 if n == 0 { 3845 if stealRunNextG { 3846 // Try to steal from _p_.runnext. 3847 if next := _p_.runnext; next != 0 { 3848 // Sleep to ensure that _p_ isn't about to run the g we 3849 // are about to steal. 3850 // The important use case here is when the g running on _p_ 3851 // ready()s another g and then almost immediately blocks. 3852 // Instead of stealing runnext in this window, back off 3853 // to give _p_ a chance to schedule runnext. This will avoid 3854 // thrashing gs between different Ps. 3855 usleep(100) 3856 if !_p_.runnext.cas(next, 0) { 3857 continue 3858 } 3859 batch[batchHead%uint32(len(batch))] = next.ptr() 3860 return 1 3861 } 3862 } 3863 return 0 3864 } 3865 if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t 3866 continue 3867 } 3868 for i := uint32(0); i < n; i++ { 3869 g := _p_.runq[(h+i)%uint32(len(_p_.runq))] 3870 batch[(batchHead+i)%uint32(len(batch))] = g 3871 } 3872 if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume 3873 return n 3874 } 3875 } 3876 } 3877 3878 // Steal half of elements from local runnable queue of p2 3879 // and put onto local runnable queue of p. 3880 // Returns one of the stolen elements (or nil if failed). 3881 func runqsteal(_p_, p2 *p, stealRunNextG bool) *g { 3882 t := _p_.runqtail 3883 n := runqgrab(p2, &_p_.runq, t, stealRunNextG) 3884 if n == 0 { 3885 return nil 3886 } 3887 n-- 3888 gp := _p_.runq[(t+n)%uint32(len(_p_.runq))] 3889 if n == 0 { 3890 return gp 3891 } 3892 h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers 3893 if t-h+n >= uint32(len(_p_.runq)) { 3894 throw("runqsteal: runq overflow") 3895 } 3896 atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption 3897 return gp 3898 } 3899 3900 func testSchedLocalQueue() { 3901 _p_ := new(p) 3902 gs := make([]g, len(_p_.runq)) 3903 for i := 0; i < len(_p_.runq); i++ { 3904 if g, _ := runqget(_p_); g != nil { 3905 throw("runq is not empty initially") 3906 } 3907 for j := 0; j < i; j++ { 3908 runqput(_p_, &gs[i], false) 3909 } 3910 for j := 0; j < i; j++ { 3911 if g, _ := runqget(_p_); g != &gs[i] { 3912 print("bad element at iter ", i, "/", j, "\n") 3913 throw("bad element") 3914 } 3915 } 3916 if g, _ := runqget(_p_); g != nil { 3917 throw("runq is not empty afterwards") 3918 } 3919 } 3920 } 3921 3922 func testSchedLocalQueueSteal() { 3923 p1 := new(p) 3924 p2 := new(p) 3925 gs := make([]g, len(p1.runq)) 3926 for i := 0; i < len(p1.runq); i++ { 3927 for j := 0; j < i; j++ { 3928 gs[j].sig = 0 3929 runqput(p1, &gs[j], false) 3930 } 3931 gp := runqsteal(p2, p1, true) 3932 s := 0 3933 if gp != nil { 3934 s++ 3935 gp.sig++ 3936 } 3937 for { 3938 gp, _ = runqget(p2) 3939 if gp == nil { 3940 break 3941 } 3942 s++ 3943 gp.sig++ 3944 } 3945 for { 3946 gp, _ = runqget(p1) 3947 if gp == nil { 3948 break 3949 } 3950 gp.sig++ 3951 } 3952 for j := 0; j < i; j++ { 3953 if gs[j].sig != 1 { 3954 print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n") 3955 throw("bad element") 3956 } 3957 } 3958 if s != i/2 && s != i/2+1 { 3959 print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n") 3960 throw("bad steal") 3961 } 3962 } 3963 } 3964 3965 //go:linkname setMaxThreads runtime/debug.setMaxThreads 3966 func setMaxThreads(in int) (out int) { 3967 lock(&sched.lock) 3968 out = int(sched.maxmcount) 3969 sched.maxmcount = int32(in) 3970 checkmcount() 3971 unlock(&sched.lock) 3972 return 3973 } 3974 3975 func haveexperiment(name string) bool { 3976 x := goexperiment 3977 for x != "" { 3978 xname := "" 3979 i := index(x, ",") 3980 if i < 0 { 3981 xname, x = x, "" 3982 } else { 3983 xname, x = x[:i], x[i+1:] 3984 } 3985 if xname == name { 3986 return true 3987 } 3988 } 3989 return false 3990 } 3991 3992 //go:nosplit 3993 func procPin() int { 3994 _g_ := getg() 3995 mp := _g_.m 3996 3997 mp.locks++ 3998 return int(mp.p.ptr().id) 3999 } 4000 4001 //go:nosplit 4002 func procUnpin() { 4003 _g_ := getg() 4004 _g_.m.locks-- 4005 } 4006 4007 //go:linkname sync_runtime_procPin sync.runtime_procPin 4008 //go:nosplit 4009 func sync_runtime_procPin() int { 4010 return procPin() 4011 } 4012 4013 //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin 4014 //go:nosplit 4015 func sync_runtime_procUnpin() { 4016 procUnpin() 4017 } 4018 4019 //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin 4020 //go:nosplit 4021 func sync_atomic_runtime_procPin() int { 4022 return procPin() 4023 } 4024 4025 //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin 4026 //go:nosplit 4027 func sync_atomic_runtime_procUnpin() { 4028 procUnpin() 4029 } 4030 4031 // Active spinning for sync.Mutex. 4032 //go:linkname sync_runtime_canSpin sync.runtime_canSpin 4033 //go:nosplit 4034 func sync_runtime_canSpin(i int) bool { 4035 // sync.Mutex is cooperative, so we are conservative with spinning. 4036 // Spin only few times and only if running on a multicore machine and 4037 // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. 4038 // As opposed to runtime mutex we don't do passive spinning here, 4039 // because there can be work on global runq on on other Ps. 4040 if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { 4041 return false 4042 } 4043 if p := getg().m.p.ptr(); !runqempty(p) { 4044 return false 4045 } 4046 return true 4047 } 4048 4049 //go:linkname sync_runtime_doSpin sync.runtime_doSpin 4050 //go:nosplit 4051 func sync_runtime_doSpin() { 4052 procyield(active_spin_cnt) 4053 }