github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/runtime/softfloat_arm.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Software floating point interpretaton of ARM 7500 FP instructions.
     6  // The interpretation is not bit compatible with the 7500.
     7  // It uses true little-endian doubles, while the 7500 used mixed-endian.
     8  
     9  package runtime
    10  
    11  import "unsafe"
    12  
    13  const (
    14  	_CPSR    = 14
    15  	_FLAGS_N = 1 << 31
    16  	_FLAGS_Z = 1 << 30
    17  	_FLAGS_C = 1 << 29
    18  	_FLAGS_V = 1 << 28
    19  )
    20  
    21  var fptrace = 0
    22  
    23  func fabort() {
    24  	throw("unsupported floating point instruction")
    25  }
    26  
    27  func fputf(reg uint32, val uint32) {
    28  	_g_ := getg()
    29  	_g_.m.freglo[reg] = val
    30  }
    31  
    32  func fputd(reg uint32, val uint64) {
    33  	_g_ := getg()
    34  	_g_.m.freglo[reg] = uint32(val)
    35  	_g_.m.freghi[reg] = uint32(val >> 32)
    36  }
    37  
    38  func fgetd(reg uint32) uint64 {
    39  	_g_ := getg()
    40  	return uint64(_g_.m.freglo[reg]) | uint64(_g_.m.freghi[reg])<<32
    41  }
    42  
    43  func fprintregs() {
    44  	_g_ := getg()
    45  	for i := range _g_.m.freglo {
    46  		print("\tf", i, ":\t", hex(_g_.m.freghi[i]), " ", hex(_g_.m.freglo[i]), "\n")
    47  	}
    48  }
    49  
    50  func fstatus(nan bool, cmp int32) uint32 {
    51  	if nan {
    52  		return _FLAGS_C | _FLAGS_V
    53  	}
    54  	if cmp == 0 {
    55  		return _FLAGS_Z | _FLAGS_C
    56  	}
    57  	if cmp < 0 {
    58  		return _FLAGS_N
    59  	}
    60  	return _FLAGS_C
    61  }
    62  
    63  // conditions array record the required CPSR cond field for the
    64  // first 5 pairs of conditional execution opcodes
    65  // higher 4 bits are must set, lower 4 bits are must clear
    66  var conditions = [10 / 2]uint32{
    67  	0 / 2: _FLAGS_Z>>24 | 0, // 0: EQ (Z set), 1: NE (Z clear)
    68  	2 / 2: _FLAGS_C>>24 | 0, // 2: CS/HS (C set), 3: CC/LO (C clear)
    69  	4 / 2: _FLAGS_N>>24 | 0, // 4: MI (N set), 5: PL (N clear)
    70  	6 / 2: _FLAGS_V>>24 | 0, // 6: VS (V set), 7: VC (V clear)
    71  	8 / 2: _FLAGS_C>>24 |
    72  		_FLAGS_Z>>28,
    73  }
    74  
    75  const _FAULT = 0x80000000 // impossible PC offset
    76  
    77  // returns number of words that the fp instruction
    78  // is occupying, 0 if next instruction isn't float.
    79  func stepflt(pc *uint32, regs *[15]uint32) uint32 {
    80  	var i, opc, regd, regm, regn, cpsr uint32
    81  
    82  	// m is locked in vlop_arm.s, so g.m cannot change during this function call,
    83  	// so caching it in a local variable is safe.
    84  	m := getg().m
    85  	i = *pc
    86  
    87  	if fptrace > 0 {
    88  		print("stepflt ", pc, " ", hex(i), " (cpsr ", hex(regs[_CPSR]>>28), ")\n")
    89  	}
    90  
    91  	opc = i >> 28
    92  	if opc == 14 { // common case first
    93  		goto execute
    94  	}
    95  
    96  	cpsr = regs[_CPSR] >> 28
    97  	switch opc {
    98  	case 0, 1, 2, 3, 4, 5, 6, 7, 8, 9:
    99  		if cpsr&(conditions[opc/2]>>4) == conditions[opc/2]>>4 &&
   100  			cpsr&(conditions[opc/2]&0xf) == 0 {
   101  			if opc&1 != 0 {
   102  				return 1
   103  			}
   104  		} else {
   105  			if opc&1 == 0 {
   106  				return 1
   107  			}
   108  		}
   109  
   110  	case 10, 11: // GE (N == V), LT (N != V)
   111  		if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) {
   112  			if opc&1 != 0 {
   113  				return 1
   114  			}
   115  		} else {
   116  			if opc&1 == 0 {
   117  				return 1
   118  			}
   119  		}
   120  
   121  	case 12, 13: // GT (N == V and Z == 0), LE (N != V or Z == 1)
   122  		if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) &&
   123  			cpsr&(_FLAGS_Z>>28) == 0 {
   124  			if opc&1 != 0 {
   125  				return 1
   126  			}
   127  		} else {
   128  			if opc&1 == 0 {
   129  				return 1
   130  			}
   131  		}
   132  
   133  	case 14: // AL
   134  		// ok
   135  
   136  	case 15: // shouldn't happen
   137  		return 0
   138  	}
   139  
   140  	if fptrace > 0 {
   141  		print("conditional ", hex(opc), " (cpsr ", hex(cpsr), ") pass\n")
   142  	}
   143  	i = 0xe<<28 | i&(1<<28-1)
   144  
   145  execute:
   146  	// special cases
   147  	if i&0xfffff000 == 0xe59fb000 {
   148  		// load r11 from pc-relative address.
   149  		// might be part of a floating point move
   150  		// (or might not, but no harm in simulating
   151  		// one instruction too many).
   152  		addr := (*[1]uint32)(add(unsafe.Pointer(pc), uintptr(i&0xfff+8)))
   153  		regs[11] = addr[0]
   154  
   155  		if fptrace > 0 {
   156  			print("*** cpu R[11] = *(", addr, ") ", hex(regs[11]), "\n")
   157  		}
   158  		return 1
   159  	}
   160  	if i == 0xe08fb00b {
   161  		// add pc to r11
   162  		// might be part of a PIC floating point move
   163  		// (or might not, but again no harm done).
   164  		regs[11] += uint32(uintptr(unsafe.Pointer(pc))) + 8
   165  
   166  		if fptrace > 0 {
   167  			print("*** cpu R[11] += pc ", hex(regs[11]), "\n")
   168  		}
   169  		return 1
   170  	}
   171  	if i == 0xe08bb00d {
   172  		// add sp to r11.
   173  		// might be part of a large stack offset address
   174  		// (or might not, but again no harm done).
   175  		regs[11] += regs[13]
   176  
   177  		if fptrace > 0 {
   178  			print("*** cpu R[11] += R[13] ", hex(regs[11]), "\n")
   179  		}
   180  		return 1
   181  	}
   182  	if i == 0xeef1fa10 {
   183  		regs[_CPSR] = regs[_CPSR]&0x0fffffff | m.fflag
   184  
   185  		if fptrace > 0 {
   186  			print("*** fpsr R[CPSR] = F[CPSR] ", hex(regs[_CPSR]), "\n")
   187  		}
   188  		return 1
   189  	}
   190  	if i&0xff000000 == 0xea000000 {
   191  		// unconditional branch
   192  		// can happen in the middle of floating point
   193  		// if the linker decides it is time to lay down
   194  		// a sequence of instruction stream constants.
   195  		delta := int32(i&0xffffff) << 8 >> 8 // sign extend
   196  
   197  		if fptrace > 0 {
   198  			print("*** cpu PC += ", hex((delta+2)*4), "\n")
   199  		}
   200  		return uint32(delta + 2)
   201  	}
   202  
   203  	// load/store regn is cpureg, regm is 8bit offset
   204  	regd = i >> 12 & 0xf
   205  	regn = i >> 16 & 0xf
   206  	regm = i & 0xff << 2 // PLUS or MINUS ??
   207  
   208  	switch i & 0xfff00f00 {
   209  	case 0xed900a00: // single load
   210  		uaddr := uintptr(regs[regn] + regm)
   211  		if uaddr < 4096 {
   212  			if fptrace > 0 {
   213  				print("*** load @", hex(uaddr), " => fault\n")
   214  			}
   215  			return _FAULT
   216  		}
   217  		addr := (*[1]uint32)(unsafe.Pointer(uaddr))
   218  		m.freglo[regd] = addr[0]
   219  
   220  		if fptrace > 0 {
   221  			print("*** load F[", regd, "] = ", hex(m.freglo[regd]), "\n")
   222  		}
   223  		return 1
   224  
   225  	case 0xed900b00: // double load
   226  		uaddr := uintptr(regs[regn] + regm)
   227  		if uaddr < 4096 {
   228  			if fptrace > 0 {
   229  				print("*** double load @", hex(uaddr), " => fault\n")
   230  			}
   231  			return _FAULT
   232  		}
   233  		addr := (*[2]uint32)(unsafe.Pointer(uaddr))
   234  		m.freglo[regd] = addr[0]
   235  		m.freghi[regd] = addr[1]
   236  
   237  		if fptrace > 0 {
   238  			print("*** load D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   239  		}
   240  		return 1
   241  
   242  	case 0xed800a00: // single store
   243  		uaddr := uintptr(regs[regn] + regm)
   244  		if uaddr < 4096 {
   245  			if fptrace > 0 {
   246  				print("*** store @", hex(uaddr), " => fault\n")
   247  			}
   248  			return _FAULT
   249  		}
   250  		addr := (*[1]uint32)(unsafe.Pointer(uaddr))
   251  		addr[0] = m.freglo[regd]
   252  
   253  		if fptrace > 0 {
   254  			print("*** *(", addr, ") = ", hex(addr[0]), "\n")
   255  		}
   256  		return 1
   257  
   258  	case 0xed800b00: // double store
   259  		uaddr := uintptr(regs[regn] + regm)
   260  		if uaddr < 4096 {
   261  			if fptrace > 0 {
   262  				print("*** double store @", hex(uaddr), " => fault\n")
   263  			}
   264  			return _FAULT
   265  		}
   266  		addr := (*[2]uint32)(unsafe.Pointer(uaddr))
   267  		addr[0] = m.freglo[regd]
   268  		addr[1] = m.freghi[regd]
   269  
   270  		if fptrace > 0 {
   271  			print("*** *(", addr, ") = ", hex(addr[1]), "-", hex(addr[0]), "\n")
   272  		}
   273  		return 1
   274  	}
   275  
   276  	// regd, regm, regn are 4bit variables
   277  	regm = i >> 0 & 0xf
   278  	switch i & 0xfff00ff0 {
   279  	case 0xf3000110: // veor
   280  		m.freglo[regd] = m.freglo[regm] ^ m.freglo[regn]
   281  		m.freghi[regd] = m.freghi[regm] ^ m.freghi[regn]
   282  
   283  		if fptrace > 0 {
   284  			print("*** veor D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   285  		}
   286  		return 1
   287  
   288  	case 0xeeb00b00: // D[regd] = const(regn,regm)
   289  		regn = regn<<4 | regm
   290  		regm = 0x40000000
   291  		if regn&0x80 != 0 {
   292  			regm |= 0x80000000
   293  		}
   294  		if regn&0x40 != 0 {
   295  			regm ^= 0x7fc00000
   296  		}
   297  		regm |= regn & 0x3f << 16
   298  		m.freglo[regd] = 0
   299  		m.freghi[regd] = regm
   300  
   301  		if fptrace > 0 {
   302  			print("*** immed D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   303  		}
   304  		return 1
   305  
   306  	case 0xeeb00a00: // F[regd] = const(regn,regm)
   307  		regn = regn<<4 | regm
   308  		regm = 0x40000000
   309  		if regn&0x80 != 0 {
   310  			regm |= 0x80000000
   311  		}
   312  		if regn&0x40 != 0 {
   313  			regm ^= 0x7e000000
   314  		}
   315  		regm |= regn & 0x3f << 19
   316  		m.freglo[regd] = regm
   317  
   318  		if fptrace > 0 {
   319  			print("*** immed D[", regd, "] = ", hex(m.freglo[regd]), "\n")
   320  		}
   321  		return 1
   322  
   323  	case 0xee300b00: // D[regd] = D[regn]+D[regm]
   324  		fputd(regd, fadd64(fgetd(regn), fgetd(regm)))
   325  
   326  		if fptrace > 0 {
   327  			print("*** add D[", regd, "] = D[", regn, "]+D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   328  		}
   329  		return 1
   330  
   331  	case 0xee300a00: // F[regd] = F[regn]+F[regm]
   332  		m.freglo[regd] = f64to32(fadd64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   333  
   334  		if fptrace > 0 {
   335  			print("*** add F[", regd, "] = F[", regn, "]+F[", regm, "] ", hex(m.freglo[regd]), "\n")
   336  		}
   337  		return 1
   338  
   339  	case 0xee300b40: // D[regd] = D[regn]-D[regm]
   340  		fputd(regd, fsub64(fgetd(regn), fgetd(regm)))
   341  
   342  		if fptrace > 0 {
   343  			print("*** sub D[", regd, "] = D[", regn, "]-D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   344  		}
   345  		return 1
   346  
   347  	case 0xee300a40: // F[regd] = F[regn]-F[regm]
   348  		m.freglo[regd] = f64to32(fsub64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   349  
   350  		if fptrace > 0 {
   351  			print("*** sub F[", regd, "] = F[", regn, "]-F[", regm, "] ", hex(m.freglo[regd]), "\n")
   352  		}
   353  		return 1
   354  
   355  	case 0xee200b00: // D[regd] = D[regn]*D[regm]
   356  		fputd(regd, fmul64(fgetd(regn), fgetd(regm)))
   357  
   358  		if fptrace > 0 {
   359  			print("*** mul D[", regd, "] = D[", regn, "]*D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   360  		}
   361  		return 1
   362  
   363  	case 0xee200a00: // F[regd] = F[regn]*F[regm]
   364  		m.freglo[regd] = f64to32(fmul64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   365  
   366  		if fptrace > 0 {
   367  			print("*** mul F[", regd, "] = F[", regn, "]*F[", regm, "] ", hex(m.freglo[regd]), "\n")
   368  		}
   369  		return 1
   370  
   371  	case 0xee800b00: // D[regd] = D[regn]/D[regm]
   372  		fputd(regd, fdiv64(fgetd(regn), fgetd(regm)))
   373  
   374  		if fptrace > 0 {
   375  			print("*** div D[", regd, "] = D[", regn, "]/D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   376  		}
   377  		return 1
   378  
   379  	case 0xee800a00: // F[regd] = F[regn]/F[regm]
   380  		m.freglo[regd] = f64to32(fdiv64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   381  
   382  		if fptrace > 0 {
   383  			print("*** div F[", regd, "] = F[", regn, "]/F[", regm, "] ", hex(m.freglo[regd]), "\n")
   384  		}
   385  		return 1
   386  
   387  	case 0xee000b10: // S[regn] = R[regd] (MOVW) (regm ignored)
   388  		m.freglo[regn] = regs[regd]
   389  
   390  		if fptrace > 0 {
   391  			print("*** cpy S[", regn, "] = R[", regd, "] ", hex(m.freglo[regn]), "\n")
   392  		}
   393  		return 1
   394  
   395  	case 0xee100b10: // R[regd] = S[regn] (MOVW) (regm ignored)
   396  		regs[regd] = m.freglo[regn]
   397  
   398  		if fptrace > 0 {
   399  			print("*** cpy R[", regd, "] = S[", regn, "] ", hex(regs[regd]), "\n")
   400  		}
   401  		return 1
   402  	}
   403  
   404  	// regd, regm are 4bit variables
   405  	switch i & 0xffff0ff0 {
   406  	case 0xeeb00a40: // F[regd] = F[regm] (MOVF)
   407  		m.freglo[regd] = m.freglo[regm]
   408  
   409  		if fptrace > 0 {
   410  			print("*** F[", regd, "] = F[", regm, "] ", hex(m.freglo[regd]), "\n")
   411  		}
   412  		return 1
   413  
   414  	case 0xeeb00b40: // D[regd] = D[regm] (MOVD)
   415  		m.freglo[regd] = m.freglo[regm]
   416  		m.freghi[regd] = m.freghi[regm]
   417  
   418  		if fptrace > 0 {
   419  			print("*** D[", regd, "] = D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   420  		}
   421  		return 1
   422  
   423  	case 0xeeb10bc0: // D[regd] = sqrt D[regm]
   424  		fputd(regd, sqrt(fgetd(regm)))
   425  
   426  		if fptrace > 0 {
   427  			print("*** D[", regd, "] = sqrt D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   428  		}
   429  		return 1
   430  
   431  	case 0xeeb00bc0: // D[regd] = abs D[regm]
   432  		m.freglo[regd] = m.freglo[regm]
   433  		m.freghi[regd] = m.freghi[regm] & (1<<31 - 1)
   434  
   435  		if fptrace > 0 {
   436  			print("*** D[", regd, "] = abs D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   437  		}
   438  		return 1
   439  
   440  	case 0xeeb00ac0: // F[regd] = abs F[regm]
   441  		m.freglo[regd] = m.freglo[regm] & (1<<31 - 1)
   442  
   443  		if fptrace > 0 {
   444  			print("*** F[", regd, "] = abs F[", regm, "] ", hex(m.freglo[regd]), "\n")
   445  		}
   446  		return 1
   447  
   448  	case 0xeeb40bc0: // D[regd] :: D[regm] (CMPD)
   449  		cmp, nan := fcmp64(fgetd(regd), fgetd(regm))
   450  		m.fflag = fstatus(nan, cmp)
   451  
   452  		if fptrace > 0 {
   453  			print("*** cmp D[", regd, "]::D[", regm, "] ", hex(m.fflag), "\n")
   454  		}
   455  		return 1
   456  
   457  	case 0xeeb40ac0: // F[regd] :: F[regm] (CMPF)
   458  		cmp, nan := fcmp64(f32to64(m.freglo[regd]), f32to64(m.freglo[regm]))
   459  		m.fflag = fstatus(nan, cmp)
   460  
   461  		if fptrace > 0 {
   462  			print("*** cmp F[", regd, "]::F[", regm, "] ", hex(m.fflag), "\n")
   463  		}
   464  		return 1
   465  
   466  	case 0xeeb70ac0: // D[regd] = F[regm] (MOVFD)
   467  		fputd(regd, f32to64(m.freglo[regm]))
   468  
   469  		if fptrace > 0 {
   470  			print("*** f2d D[", regd, "]=F[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   471  		}
   472  		return 1
   473  
   474  	case 0xeeb70bc0: // F[regd] = D[regm] (MOVDF)
   475  		m.freglo[regd] = f64to32(fgetd(regm))
   476  
   477  		if fptrace > 0 {
   478  			print("*** d2f F[", regd, "]=D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   479  		}
   480  		return 1
   481  
   482  	case 0xeebd0ac0: // S[regd] = F[regm] (MOVFW)
   483  		sval, ok := f64toint(f32to64(m.freglo[regm]))
   484  		if !ok || int64(int32(sval)) != sval {
   485  			sval = 0
   486  		}
   487  		m.freglo[regd] = uint32(sval)
   488  		if fptrace > 0 {
   489  			print("*** fix S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n")
   490  		}
   491  		return 1
   492  
   493  	case 0xeebc0ac0: // S[regd] = F[regm] (MOVFW.U)
   494  		sval, ok := f64toint(f32to64(m.freglo[regm]))
   495  		if !ok || int64(uint32(sval)) != sval {
   496  			sval = 0
   497  		}
   498  		m.freglo[regd] = uint32(sval)
   499  
   500  		if fptrace > 0 {
   501  			print("*** fix unsigned S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n")
   502  		}
   503  		return 1
   504  
   505  	case 0xeebd0bc0: // S[regd] = D[regm] (MOVDW)
   506  		sval, ok := f64toint(fgetd(regm))
   507  		if !ok || int64(int32(sval)) != sval {
   508  			sval = 0
   509  		}
   510  		m.freglo[regd] = uint32(sval)
   511  
   512  		if fptrace > 0 {
   513  			print("*** fix S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n")
   514  		}
   515  		return 1
   516  
   517  	case 0xeebc0bc0: // S[regd] = D[regm] (MOVDW.U)
   518  		sval, ok := f64toint(fgetd(regm))
   519  		if !ok || int64(uint32(sval)) != sval {
   520  			sval = 0
   521  		}
   522  		m.freglo[regd] = uint32(sval)
   523  
   524  		if fptrace > 0 {
   525  			print("*** fix unsigned S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n")
   526  		}
   527  		return 1
   528  
   529  	case 0xeeb80ac0: // D[regd] = S[regm] (MOVWF)
   530  		cmp := int32(m.freglo[regm])
   531  		if cmp < 0 {
   532  			fputf(regd, f64to32(fintto64(int64(-cmp))))
   533  			m.freglo[regd] ^= 0x80000000
   534  		} else {
   535  			fputf(regd, f64to32(fintto64(int64(cmp))))
   536  		}
   537  
   538  		if fptrace > 0 {
   539  			print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   540  		}
   541  		return 1
   542  
   543  	case 0xeeb80a40: // D[regd] = S[regm] (MOVWF.U)
   544  		fputf(regd, f64to32(fintto64(int64(m.freglo[regm]))))
   545  
   546  		if fptrace > 0 {
   547  			print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   548  		}
   549  		return 1
   550  
   551  	case 0xeeb80bc0: // D[regd] = S[regm] (MOVWD)
   552  		cmp := int32(m.freglo[regm])
   553  		if cmp < 0 {
   554  			fputd(regd, fintto64(int64(-cmp)))
   555  			m.freghi[regd] ^= 0x80000000
   556  		} else {
   557  			fputd(regd, fintto64(int64(cmp)))
   558  		}
   559  
   560  		if fptrace > 0 {
   561  			print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   562  		}
   563  		return 1
   564  
   565  	case 0xeeb80b40: // D[regd] = S[regm] (MOVWD.U)
   566  		fputd(regd, fintto64(int64(m.freglo[regm])))
   567  
   568  		if fptrace > 0 {
   569  			print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   570  		}
   571  		return 1
   572  	}
   573  
   574  	if i&0xff000000 == 0xee000000 || i&0xff000000 == 0xed000000 {
   575  		print("stepflt ", pc, " ", hex(i), "\n")
   576  		fabort()
   577  	}
   578  	return 0
   579  }
   580  
   581  //go:nosplit
   582  func _sfloat2(pc uint32, regs [15]uint32) (newpc uint32) {
   583  	systemstack(func() {
   584  		newpc = sfloat2(pc, &regs)
   585  	})
   586  	return
   587  }
   588  
   589  func _sfloatpanic()
   590  
   591  func sfloat2(pc uint32, regs *[15]uint32) uint32 {
   592  	first := true
   593  	for {
   594  		skip := stepflt((*uint32)(unsafe.Pointer(uintptr(pc))), regs)
   595  		if skip == 0 {
   596  			break
   597  		}
   598  		first = false
   599  		if skip == _FAULT {
   600  			// Encountered bad address in store/load.
   601  			// Record signal information and return to assembly
   602  			// trampoline that fakes the call.
   603  			const SIGSEGV = 11
   604  			curg := getg().m.curg
   605  			curg.sig = SIGSEGV
   606  			curg.sigcode0 = 0
   607  			curg.sigcode1 = 0
   608  			curg.sigpc = uintptr(pc)
   609  			pc = uint32(funcPC(_sfloatpanic))
   610  			break
   611  		}
   612  		pc += 4 * uint32(skip)
   613  	}
   614  	if first {
   615  		print("sfloat2 ", pc, " ", hex(*(*uint32)(unsafe.Pointer(uintptr(pc)))), "\n")
   616  		fabort() // not ok to fail first instruction
   617  	}
   618  	return pc
   619  }