github.com/q45/go@v0.0.0-20151101211701-a4fb8c13db3f/src/runtime/softfloat_arm.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Software floating point interpretaton of ARM 7500 FP instructions. 6 // The interpretation is not bit compatible with the 7500. 7 // It uses true little-endian doubles, while the 7500 used mixed-endian. 8 9 package runtime 10 11 import "unsafe" 12 13 const ( 14 _CPSR = 14 15 _FLAGS_N = 1 << 31 16 _FLAGS_Z = 1 << 30 17 _FLAGS_C = 1 << 29 18 _FLAGS_V = 1 << 28 19 ) 20 21 var fptrace = 0 22 23 func fabort() { 24 throw("unsupported floating point instruction") 25 } 26 27 func fputf(reg uint32, val uint32) { 28 _g_ := getg() 29 _g_.m.freglo[reg] = val 30 } 31 32 func fputd(reg uint32, val uint64) { 33 _g_ := getg() 34 _g_.m.freglo[reg] = uint32(val) 35 _g_.m.freghi[reg] = uint32(val >> 32) 36 } 37 38 func fgetd(reg uint32) uint64 { 39 _g_ := getg() 40 return uint64(_g_.m.freglo[reg]) | uint64(_g_.m.freghi[reg])<<32 41 } 42 43 func fprintregs() { 44 _g_ := getg() 45 for i := range _g_.m.freglo { 46 print("\tf", i, ":\t", hex(_g_.m.freghi[i]), " ", hex(_g_.m.freglo[i]), "\n") 47 } 48 } 49 50 func fstatus(nan bool, cmp int32) uint32 { 51 if nan { 52 return _FLAGS_C | _FLAGS_V 53 } 54 if cmp == 0 { 55 return _FLAGS_Z | _FLAGS_C 56 } 57 if cmp < 0 { 58 return _FLAGS_N 59 } 60 return _FLAGS_C 61 } 62 63 // conditions array record the required CPSR cond field for the 64 // first 5 pairs of conditional execution opcodes 65 // higher 4 bits are must set, lower 4 bits are must clear 66 var conditions = [10 / 2]uint32{ 67 0 / 2: _FLAGS_Z>>24 | 0, // 0: EQ (Z set), 1: NE (Z clear) 68 2 / 2: _FLAGS_C>>24 | 0, // 2: CS/HS (C set), 3: CC/LO (C clear) 69 4 / 2: _FLAGS_N>>24 | 0, // 4: MI (N set), 5: PL (N clear) 70 6 / 2: _FLAGS_V>>24 | 0, // 6: VS (V set), 7: VC (V clear) 71 8 / 2: _FLAGS_C>>24 | 72 _FLAGS_Z>>28, 73 } 74 75 const _FAULT = 0x80000000 // impossible PC offset 76 77 // returns number of words that the fp instruction 78 // is occupying, 0 if next instruction isn't float. 79 func stepflt(pc *uint32, regs *[15]uint32) uint32 { 80 var i, opc, regd, regm, regn, cpsr uint32 81 82 // m is locked in vlop_arm.s, so g.m cannot change during this function call, 83 // so caching it in a local variable is safe. 84 m := getg().m 85 i = *pc 86 87 if fptrace > 0 { 88 print("stepflt ", pc, " ", hex(i), " (cpsr ", hex(regs[_CPSR]>>28), ")\n") 89 } 90 91 opc = i >> 28 92 if opc == 14 { // common case first 93 goto execute 94 } 95 96 cpsr = regs[_CPSR] >> 28 97 switch opc { 98 case 0, 1, 2, 3, 4, 5, 6, 7, 8, 9: 99 if cpsr&(conditions[opc/2]>>4) == conditions[opc/2]>>4 && 100 cpsr&(conditions[opc/2]&0xf) == 0 { 101 if opc&1 != 0 { 102 return 1 103 } 104 } else { 105 if opc&1 == 0 { 106 return 1 107 } 108 } 109 110 case 10, 11: // GE (N == V), LT (N != V) 111 if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) { 112 if opc&1 != 0 { 113 return 1 114 } 115 } else { 116 if opc&1 == 0 { 117 return 1 118 } 119 } 120 121 case 12, 13: // GT (N == V and Z == 0), LE (N != V or Z == 1) 122 if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) && 123 cpsr&(_FLAGS_Z>>28) == 0 { 124 if opc&1 != 0 { 125 return 1 126 } 127 } else { 128 if opc&1 == 0 { 129 return 1 130 } 131 } 132 133 case 14: // AL 134 // ok 135 136 case 15: // shouldn't happen 137 return 0 138 } 139 140 if fptrace > 0 { 141 print("conditional ", hex(opc), " (cpsr ", hex(cpsr), ") pass\n") 142 } 143 i = 0xe<<28 | i&(1<<28-1) 144 145 execute: 146 // special cases 147 if i&0xfffff000 == 0xe59fb000 { 148 // load r11 from pc-relative address. 149 // might be part of a floating point move 150 // (or might not, but no harm in simulating 151 // one instruction too many). 152 addr := (*[1]uint32)(add(unsafe.Pointer(pc), uintptr(i&0xfff+8))) 153 regs[11] = addr[0] 154 155 if fptrace > 0 { 156 print("*** cpu R[11] = *(", addr, ") ", hex(regs[11]), "\n") 157 } 158 return 1 159 } 160 if i == 0xe08fb00b { 161 // add pc to r11 162 // might be part of a PIC floating point move 163 // (or might not, but again no harm done). 164 regs[11] += uint32(uintptr(unsafe.Pointer(pc))) + 8 165 166 if fptrace > 0 { 167 print("*** cpu R[11] += pc ", hex(regs[11]), "\n") 168 } 169 return 1 170 } 171 if i == 0xe08bb00d { 172 // add sp to r11. 173 // might be part of a large stack offset address 174 // (or might not, but again no harm done). 175 regs[11] += regs[13] 176 177 if fptrace > 0 { 178 print("*** cpu R[11] += R[13] ", hex(regs[11]), "\n") 179 } 180 return 1 181 } 182 if i == 0xeef1fa10 { 183 regs[_CPSR] = regs[_CPSR]&0x0fffffff | m.fflag 184 185 if fptrace > 0 { 186 print("*** fpsr R[CPSR] = F[CPSR] ", hex(regs[_CPSR]), "\n") 187 } 188 return 1 189 } 190 if i&0xff000000 == 0xea000000 { 191 // unconditional branch 192 // can happen in the middle of floating point 193 // if the linker decides it is time to lay down 194 // a sequence of instruction stream constants. 195 delta := int32(i&0xffffff) << 8 >> 8 // sign extend 196 197 if fptrace > 0 { 198 print("*** cpu PC += ", hex((delta+2)*4), "\n") 199 } 200 return uint32(delta + 2) 201 } 202 203 // load/store regn is cpureg, regm is 8bit offset 204 regd = i >> 12 & 0xf 205 regn = i >> 16 & 0xf 206 regm = i & 0xff << 2 // PLUS or MINUS ?? 207 208 switch i & 0xfff00f00 { 209 case 0xed900a00: // single load 210 uaddr := uintptr(regs[regn] + regm) 211 if uaddr < 4096 { 212 if fptrace > 0 { 213 print("*** load @", hex(uaddr), " => fault\n") 214 } 215 return _FAULT 216 } 217 addr := (*[1]uint32)(unsafe.Pointer(uaddr)) 218 m.freglo[regd] = addr[0] 219 220 if fptrace > 0 { 221 print("*** load F[", regd, "] = ", hex(m.freglo[regd]), "\n") 222 } 223 return 1 224 225 case 0xed900b00: // double load 226 uaddr := uintptr(regs[regn] + regm) 227 if uaddr < 4096 { 228 if fptrace > 0 { 229 print("*** double load @", hex(uaddr), " => fault\n") 230 } 231 return _FAULT 232 } 233 addr := (*[2]uint32)(unsafe.Pointer(uaddr)) 234 m.freglo[regd] = addr[0] 235 m.freghi[regd] = addr[1] 236 237 if fptrace > 0 { 238 print("*** load D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 239 } 240 return 1 241 242 case 0xed800a00: // single store 243 uaddr := uintptr(regs[regn] + regm) 244 if uaddr < 4096 { 245 if fptrace > 0 { 246 print("*** store @", hex(uaddr), " => fault\n") 247 } 248 return _FAULT 249 } 250 addr := (*[1]uint32)(unsafe.Pointer(uaddr)) 251 addr[0] = m.freglo[regd] 252 253 if fptrace > 0 { 254 print("*** *(", addr, ") = ", hex(addr[0]), "\n") 255 } 256 return 1 257 258 case 0xed800b00: // double store 259 uaddr := uintptr(regs[regn] + regm) 260 if uaddr < 4096 { 261 if fptrace > 0 { 262 print("*** double store @", hex(uaddr), " => fault\n") 263 } 264 return _FAULT 265 } 266 addr := (*[2]uint32)(unsafe.Pointer(uaddr)) 267 addr[0] = m.freglo[regd] 268 addr[1] = m.freghi[regd] 269 270 if fptrace > 0 { 271 print("*** *(", addr, ") = ", hex(addr[1]), "-", hex(addr[0]), "\n") 272 } 273 return 1 274 } 275 276 // regd, regm, regn are 4bit variables 277 regm = i >> 0 & 0xf 278 switch i & 0xfff00ff0 { 279 case 0xf3000110: // veor 280 m.freglo[regd] = m.freglo[regm] ^ m.freglo[regn] 281 m.freghi[regd] = m.freghi[regm] ^ m.freghi[regn] 282 283 if fptrace > 0 { 284 print("*** veor D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 285 } 286 return 1 287 288 case 0xeeb00b00: // D[regd] = const(regn,regm) 289 regn = regn<<4 | regm 290 regm = 0x40000000 291 if regn&0x80 != 0 { 292 regm |= 0x80000000 293 } 294 if regn&0x40 != 0 { 295 regm ^= 0x7fc00000 296 } 297 regm |= regn & 0x3f << 16 298 m.freglo[regd] = 0 299 m.freghi[regd] = regm 300 301 if fptrace > 0 { 302 print("*** immed D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 303 } 304 return 1 305 306 case 0xeeb00a00: // F[regd] = const(regn,regm) 307 regn = regn<<4 | regm 308 regm = 0x40000000 309 if regn&0x80 != 0 { 310 regm |= 0x80000000 311 } 312 if regn&0x40 != 0 { 313 regm ^= 0x7e000000 314 } 315 regm |= regn & 0x3f << 19 316 m.freglo[regd] = regm 317 318 if fptrace > 0 { 319 print("*** immed D[", regd, "] = ", hex(m.freglo[regd]), "\n") 320 } 321 return 1 322 323 case 0xee300b00: // D[regd] = D[regn]+D[regm] 324 fputd(regd, fadd64(fgetd(regn), fgetd(regm))) 325 326 if fptrace > 0 { 327 print("*** add D[", regd, "] = D[", regn, "]+D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 328 } 329 return 1 330 331 case 0xee300a00: // F[regd] = F[regn]+F[regm] 332 m.freglo[regd] = f64to32(fadd64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) 333 334 if fptrace > 0 { 335 print("*** add F[", regd, "] = F[", regn, "]+F[", regm, "] ", hex(m.freglo[regd]), "\n") 336 } 337 return 1 338 339 case 0xee300b40: // D[regd] = D[regn]-D[regm] 340 fputd(regd, fsub64(fgetd(regn), fgetd(regm))) 341 342 if fptrace > 0 { 343 print("*** sub D[", regd, "] = D[", regn, "]-D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 344 } 345 return 1 346 347 case 0xee300a40: // F[regd] = F[regn]-F[regm] 348 m.freglo[regd] = f64to32(fsub64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) 349 350 if fptrace > 0 { 351 print("*** sub F[", regd, "] = F[", regn, "]-F[", regm, "] ", hex(m.freglo[regd]), "\n") 352 } 353 return 1 354 355 case 0xee200b00: // D[regd] = D[regn]*D[regm] 356 fputd(regd, fmul64(fgetd(regn), fgetd(regm))) 357 358 if fptrace > 0 { 359 print("*** mul D[", regd, "] = D[", regn, "]*D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 360 } 361 return 1 362 363 case 0xee200a00: // F[regd] = F[regn]*F[regm] 364 m.freglo[regd] = f64to32(fmul64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) 365 366 if fptrace > 0 { 367 print("*** mul F[", regd, "] = F[", regn, "]*F[", regm, "] ", hex(m.freglo[regd]), "\n") 368 } 369 return 1 370 371 case 0xee800b00: // D[regd] = D[regn]/D[regm] 372 fputd(regd, fdiv64(fgetd(regn), fgetd(regm))) 373 374 if fptrace > 0 { 375 print("*** div D[", regd, "] = D[", regn, "]/D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 376 } 377 return 1 378 379 case 0xee800a00: // F[regd] = F[regn]/F[regm] 380 m.freglo[regd] = f64to32(fdiv64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm]))) 381 382 if fptrace > 0 { 383 print("*** div F[", regd, "] = F[", regn, "]/F[", regm, "] ", hex(m.freglo[regd]), "\n") 384 } 385 return 1 386 387 case 0xee000b10: // S[regn] = R[regd] (MOVW) (regm ignored) 388 m.freglo[regn] = regs[regd] 389 390 if fptrace > 0 { 391 print("*** cpy S[", regn, "] = R[", regd, "] ", hex(m.freglo[regn]), "\n") 392 } 393 return 1 394 395 case 0xee100b10: // R[regd] = S[regn] (MOVW) (regm ignored) 396 regs[regd] = m.freglo[regn] 397 398 if fptrace > 0 { 399 print("*** cpy R[", regd, "] = S[", regn, "] ", hex(regs[regd]), "\n") 400 } 401 return 1 402 } 403 404 // regd, regm are 4bit variables 405 switch i & 0xffff0ff0 { 406 case 0xeeb00a40: // F[regd] = F[regm] (MOVF) 407 m.freglo[regd] = m.freglo[regm] 408 409 if fptrace > 0 { 410 print("*** F[", regd, "] = F[", regm, "] ", hex(m.freglo[regd]), "\n") 411 } 412 return 1 413 414 case 0xeeb00b40: // D[regd] = D[regm] (MOVD) 415 m.freglo[regd] = m.freglo[regm] 416 m.freghi[regd] = m.freghi[regm] 417 418 if fptrace > 0 { 419 print("*** D[", regd, "] = D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 420 } 421 return 1 422 423 case 0xeeb10bc0: // D[regd] = sqrt D[regm] 424 fputd(regd, sqrt(fgetd(regm))) 425 426 if fptrace > 0 { 427 print("*** D[", regd, "] = sqrt D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 428 } 429 return 1 430 431 case 0xeeb00bc0: // D[regd] = abs D[regm] 432 m.freglo[regd] = m.freglo[regm] 433 m.freghi[regd] = m.freghi[regm] & (1<<31 - 1) 434 435 if fptrace > 0 { 436 print("*** D[", regd, "] = abs D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 437 } 438 return 1 439 440 case 0xeeb00ac0: // F[regd] = abs F[regm] 441 m.freglo[regd] = m.freglo[regm] & (1<<31 - 1) 442 443 if fptrace > 0 { 444 print("*** F[", regd, "] = abs F[", regm, "] ", hex(m.freglo[regd]), "\n") 445 } 446 return 1 447 448 case 0xeeb40bc0: // D[regd] :: D[regm] (CMPD) 449 cmp, nan := fcmp64(fgetd(regd), fgetd(regm)) 450 m.fflag = fstatus(nan, cmp) 451 452 if fptrace > 0 { 453 print("*** cmp D[", regd, "]::D[", regm, "] ", hex(m.fflag), "\n") 454 } 455 return 1 456 457 case 0xeeb40ac0: // F[regd] :: F[regm] (CMPF) 458 cmp, nan := fcmp64(f32to64(m.freglo[regd]), f32to64(m.freglo[regm])) 459 m.fflag = fstatus(nan, cmp) 460 461 if fptrace > 0 { 462 print("*** cmp F[", regd, "]::F[", regm, "] ", hex(m.fflag), "\n") 463 } 464 return 1 465 466 case 0xeeb70ac0: // D[regd] = F[regm] (MOVFD) 467 fputd(regd, f32to64(m.freglo[regm])) 468 469 if fptrace > 0 { 470 print("*** f2d D[", regd, "]=F[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 471 } 472 return 1 473 474 case 0xeeb70bc0: // F[regd] = D[regm] (MOVDF) 475 m.freglo[regd] = f64to32(fgetd(regm)) 476 477 if fptrace > 0 { 478 print("*** d2f F[", regd, "]=D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 479 } 480 return 1 481 482 case 0xeebd0ac0: // S[regd] = F[regm] (MOVFW) 483 sval, ok := f64toint(f32to64(m.freglo[regm])) 484 if !ok || int64(int32(sval)) != sval { 485 sval = 0 486 } 487 m.freglo[regd] = uint32(sval) 488 if fptrace > 0 { 489 print("*** fix S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n") 490 } 491 return 1 492 493 case 0xeebc0ac0: // S[regd] = F[regm] (MOVFW.U) 494 sval, ok := f64toint(f32to64(m.freglo[regm])) 495 if !ok || int64(uint32(sval)) != sval { 496 sval = 0 497 } 498 m.freglo[regd] = uint32(sval) 499 500 if fptrace > 0 { 501 print("*** fix unsigned S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n") 502 } 503 return 1 504 505 case 0xeebd0bc0: // S[regd] = D[regm] (MOVDW) 506 sval, ok := f64toint(fgetd(regm)) 507 if !ok || int64(int32(sval)) != sval { 508 sval = 0 509 } 510 m.freglo[regd] = uint32(sval) 511 512 if fptrace > 0 { 513 print("*** fix S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n") 514 } 515 return 1 516 517 case 0xeebc0bc0: // S[regd] = D[regm] (MOVDW.U) 518 sval, ok := f64toint(fgetd(regm)) 519 if !ok || int64(uint32(sval)) != sval { 520 sval = 0 521 } 522 m.freglo[regd] = uint32(sval) 523 524 if fptrace > 0 { 525 print("*** fix unsigned S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n") 526 } 527 return 1 528 529 case 0xeeb80ac0: // D[regd] = S[regm] (MOVWF) 530 cmp := int32(m.freglo[regm]) 531 if cmp < 0 { 532 fputf(regd, f64to32(fintto64(int64(-cmp)))) 533 m.freglo[regd] ^= 0x80000000 534 } else { 535 fputf(regd, f64to32(fintto64(int64(cmp)))) 536 } 537 538 if fptrace > 0 { 539 print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 540 } 541 return 1 542 543 case 0xeeb80a40: // D[regd] = S[regm] (MOVWF.U) 544 fputf(regd, f64to32(fintto64(int64(m.freglo[regm])))) 545 546 if fptrace > 0 { 547 print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 548 } 549 return 1 550 551 case 0xeeb80bc0: // D[regd] = S[regm] (MOVWD) 552 cmp := int32(m.freglo[regm]) 553 if cmp < 0 { 554 fputd(regd, fintto64(int64(-cmp))) 555 m.freghi[regd] ^= 0x80000000 556 } else { 557 fputd(regd, fintto64(int64(cmp))) 558 } 559 560 if fptrace > 0 { 561 print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 562 } 563 return 1 564 565 case 0xeeb80b40: // D[regd] = S[regm] (MOVWD.U) 566 fputd(regd, fintto64(int64(m.freglo[regm]))) 567 568 if fptrace > 0 { 569 print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n") 570 } 571 return 1 572 } 573 574 if i&0xff000000 == 0xee000000 || i&0xff000000 == 0xed000000 { 575 print("stepflt ", pc, " ", hex(i), "\n") 576 fabort() 577 } 578 return 0 579 } 580 581 //go:nosplit 582 func _sfloat2(pc uint32, regs [15]uint32) (newpc uint32) { 583 systemstack(func() { 584 newpc = sfloat2(pc, ®s) 585 }) 586 return 587 } 588 589 func _sfloatpanic() 590 591 func sfloat2(pc uint32, regs *[15]uint32) uint32 { 592 first := true 593 for { 594 skip := stepflt((*uint32)(unsafe.Pointer(uintptr(pc))), regs) 595 if skip == 0 { 596 break 597 } 598 first = false 599 if skip == _FAULT { 600 // Encountered bad address in store/load. 601 // Record signal information and return to assembly 602 // trampoline that fakes the call. 603 const SIGSEGV = 11 604 curg := getg().m.curg 605 curg.sig = SIGSEGV 606 curg.sigcode0 = 0 607 curg.sigcode1 = 0 608 curg.sigpc = uintptr(pc) 609 pc = uint32(funcPC(_sfloatpanic)) 610 break 611 } 612 pc += 4 * uint32(skip) 613 } 614 if first { 615 print("sfloat2 ", pc, " ", hex(*(*uint32)(unsafe.Pointer(uintptr(pc)))), "\n") 616 fabort() // not ok to fail first instruction 617 } 618 return pc 619 }