github.com/qiniu/dyn@v1.3.0/jsonext/encode.go (about)

     1  // Copyright 2010 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON objects as defined in
     6  // RFC 4627. The mapping between JSON objects and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // http://golang.org/doc/articles/json_and_go.html
    11  package jsonext
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"math"
    18  	"reflect"
    19  	"runtime"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"unicode"
    25  	"unicode/utf8"
    26  )
    27  
    28  // Marshal returns the JSON encoding of v.
    29  //
    30  // Marshal traverses the value v recursively.
    31  // If an encountered value implements the Marshaler interface
    32  // and is not a nil pointer, Marshal calls its MarshalJSON method
    33  // to produce JSON.  The nil pointer exception is not strictly necessary
    34  // but mimics a similar, necessary exception in the behavior of
    35  // UnmarshalJSON.
    36  //
    37  // Otherwise, Marshal uses the following type-dependent default encodings:
    38  //
    39  // Boolean values encode as JSON booleans.
    40  //
    41  // Floating point, integer, and Number values encode as JSON numbers.
    42  //
    43  // String values encode as JSON strings. InvalidUTF8Error will be returned
    44  // if an invalid UTF-8 sequence is encountered.
    45  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    46  // to keep some browsers from misinterpreting JSON output as HTML.
    47  // Ampersand "&" is also escaped to "\u0026" for the same reason.
    48  //
    49  // Array and slice values encode as JSON arrays, except that
    50  // []byte encodes as a base64-encoded string, and a nil slice
    51  // encodes as the null JSON object.
    52  //
    53  // Struct values encode as JSON objects. Each exported struct field
    54  // becomes a member of the object unless
    55  //   - the field's tag is "-", or
    56  //   - the field is empty and its tag specifies the "omitempty" option.
    57  // The empty values are false, 0, any
    58  // nil pointer or interface value, and any array, slice, map, or string of
    59  // length zero. The object's default key string is the struct field name
    60  // but can be specified in the struct field's tag value. The "json" key in
    61  // the struct field's tag value is the key name, followed by an optional comma
    62  // and options. Examples:
    63  //
    64  //   // Field is ignored by this package.
    65  //   Field int `json:"-"`
    66  //
    67  //   // Field appears in JSON as key "myName".
    68  //   Field int `json:"myName"`
    69  //
    70  //   // Field appears in JSON as key "myName" and
    71  //   // the field is omitted from the object if its value is empty,
    72  //   // as defined above.
    73  //   Field int `json:"myName,omitempty"`
    74  //
    75  //   // Field appears in JSON as key "Field" (the default), but
    76  //   // the field is skipped if empty.
    77  //   // Note the leading comma.
    78  //   Field int `json:",omitempty"`
    79  //
    80  // The "string" option signals that a field is stored as JSON inside a
    81  // JSON-encoded string. It applies only to fields of string, floating point,
    82  // or integer types. This extra level of encoding is sometimes used when
    83  // communicating with JavaScript programs:
    84  //
    85  //    Int64String int64 `json:",string"`
    86  //
    87  // The key name will be used if it's a non-empty string consisting of
    88  // only Unicode letters, digits, dollar signs, percent signs, hyphens,
    89  // underscores and slashes.
    90  //
    91  // Anonymous struct fields are usually marshaled as if their inner exported fields
    92  // were fields in the outer struct, subject to the usual Go visibility rules amended
    93  // as described in the next paragraph.
    94  // An anonymous struct field with a name given in its JSON tag is treated as
    95  // having that name, rather than being anonymous.
    96  //
    97  // The Go visibility rules for struct fields are amended for JSON when
    98  // deciding which field to marshal or unmarshal. If there are
    99  // multiple fields at the same level, and that level is the least
   100  // nested (and would therefore be the nesting level selected by the
   101  // usual Go rules), the following extra rules apply:
   102  //
   103  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   104  // even if there are multiple untagged fields that would otherwise conflict.
   105  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   106  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   107  //
   108  // Handling of anonymous struct fields is new in Go 1.1.
   109  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   110  // an anonymous struct field in both current and earlier versions, give the field
   111  // a JSON tag of "-".
   112  //
   113  // Map values encode as JSON objects.
   114  // The map's key type must be string; the object keys are used directly
   115  // as map keys.
   116  //
   117  // Pointer values encode as the value pointed to.
   118  // A nil pointer encodes as the null JSON object.
   119  //
   120  // Interface values encode as the value contained in the interface.
   121  // A nil interface value encodes as the null JSON object.
   122  //
   123  // Channel, complex, and function values cannot be encoded in JSON.
   124  // Attempting to encode such a value causes Marshal to return
   125  // an UnsupportedTypeError.
   126  //
   127  // JSON cannot represent cyclic data structures and Marshal does not
   128  // handle them.  Passing cyclic structures to Marshal will result in
   129  // an infinite recursion.
   130  //
   131  func Marshal(v interface{}) ([]byte, error) {
   132  	e := &encodeState{}
   133  	err := e.marshal(v)
   134  	if err != nil {
   135  		return nil, err
   136  	}
   137  	return e.Bytes(), nil
   138  }
   139  
   140  // MarshalIndent is like Marshal but applies Indent to format the output.
   141  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   142  	b, err := Marshal(v)
   143  	if err != nil {
   144  		return nil, err
   145  	}
   146  	var buf bytes.Buffer
   147  	err = Indent(&buf, b, prefix, indent)
   148  	if err != nil {
   149  		return nil, err
   150  	}
   151  	return buf.Bytes(), nil
   152  }
   153  
   154  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   155  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   156  // so that the JSON will be safe to embed inside HTML <script> tags.
   157  // For historical reasons, web browsers don't honor standard HTML
   158  // escaping within <script> tags, so an alternative JSON encoding must
   159  // be used.
   160  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   161  	// The characters can only appear in string literals,
   162  	// so just scan the string one byte at a time.
   163  	start := 0
   164  	for i, c := range src {
   165  		if c == '<' || c == '>' || c == '&' {
   166  			if start < i {
   167  				dst.Write(src[start:i])
   168  			}
   169  			dst.WriteString(`\u00`)
   170  			dst.WriteByte(hex[c>>4])
   171  			dst.WriteByte(hex[c&0xF])
   172  			start = i + 1
   173  		}
   174  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   175  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   176  			if start < i {
   177  				dst.Write(src[start:i])
   178  			}
   179  			dst.WriteString(`\u202`)
   180  			dst.WriteByte(hex[src[i+2]&0xF])
   181  			start = i + 3
   182  		}
   183  	}
   184  	if start < len(src) {
   185  		dst.Write(src[start:])
   186  	}
   187  }
   188  
   189  // Marshaler is the interface implemented by objects that
   190  // can marshal themselves into valid JSON.
   191  type Marshaler interface {
   192  	MarshalJSON() ([]byte, error)
   193  }
   194  
   195  // An UnsupportedTypeError is returned by Marshal when attempting
   196  // to encode an unsupported value type.
   197  type UnsupportedTypeError struct {
   198  	Type reflect.Type
   199  }
   200  
   201  func (e *UnsupportedTypeError) Error() string {
   202  	return "json: unsupported type: " + e.Type.String()
   203  }
   204  
   205  type UnsupportedValueError struct {
   206  	Value reflect.Value
   207  	Str   string
   208  }
   209  
   210  func (e *UnsupportedValueError) Error() string {
   211  	return "json: unsupported value: " + e.Str
   212  }
   213  
   214  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   215  // attempting to encode a string value with invalid UTF-8 sequences.
   216  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   217  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   218  // This error is no longer generated but is kept for backwards compatibility
   219  // with programs that might mention it.
   220  type InvalidUTF8Error struct {
   221  	S string // the whole string value that caused the error
   222  }
   223  
   224  func (e *InvalidUTF8Error) Error() string {
   225  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   226  }
   227  
   228  type MarshalerError struct {
   229  	Type reflect.Type
   230  	Err  error
   231  }
   232  
   233  func (e *MarshalerError) Error() string {
   234  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   235  }
   236  
   237  var hex = "0123456789abcdef"
   238  
   239  // An encodeState encodes JSON into a bytes.Buffer.
   240  type encodeState struct {
   241  	bytes.Buffer // accumulated output
   242  	scratch      [64]byte
   243  }
   244  
   245  var encodeStatePool sync.Pool
   246  
   247  func newEncodeState() *encodeState {
   248  	if v := encodeStatePool.Get(); v != nil {
   249  		e := v.(*encodeState)
   250  		e.Reset()
   251  		return e
   252  	}
   253  	return new(encodeState)
   254  }
   255  
   256  func (e *encodeState) marshal(v interface{}) (err error) {
   257  	defer func() {
   258  		if r := recover(); r != nil {
   259  			if _, ok := r.(runtime.Error); ok {
   260  				panic(r)
   261  			}
   262  			if s, ok := r.(string); ok {
   263  				panic(s)
   264  			}
   265  			err = r.(error)
   266  		}
   267  	}()
   268  	e.reflectValue(reflect.ValueOf(v))
   269  	return nil
   270  }
   271  
   272  func (e *encodeState) error(err error) {
   273  	panic(err)
   274  }
   275  
   276  var byteSliceType = reflect.TypeOf([]byte(nil))
   277  
   278  func isEmptyValue(v reflect.Value) bool {
   279  	switch v.Kind() {
   280  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   281  		return v.Len() == 0
   282  	case reflect.Bool:
   283  		return !v.Bool()
   284  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   285  		return v.Int() == 0
   286  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   287  		return v.Uint() == 0
   288  	case reflect.Float32, reflect.Float64:
   289  		return v.Float() == 0
   290  	case reflect.Interface, reflect.Ptr:
   291  		return v.IsNil()
   292  	}
   293  	return false
   294  }
   295  
   296  func (e *encodeState) reflectValue(v reflect.Value) {
   297  	valueEncoder(v)(e, v, false)
   298  }
   299  
   300  type encoderFunc func(e *encodeState, v reflect.Value, quoted bool)
   301  
   302  var encoderCache struct {
   303  	sync.RWMutex
   304  	m map[reflect.Type]encoderFunc
   305  }
   306  
   307  func valueEncoder(v reflect.Value) encoderFunc {
   308  	if !v.IsValid() {
   309  		return invalidValueEncoder
   310  	}
   311  	return typeEncoder(v.Type())
   312  }
   313  
   314  func typeEncoder(t reflect.Type) encoderFunc {
   315  	encoderCache.RLock()
   316  	f := encoderCache.m[t]
   317  	encoderCache.RUnlock()
   318  	if f != nil {
   319  		return f
   320  	}
   321  
   322  	// To deal with recursive types, populate the map with an
   323  	// indirect func before we build it. This type waits on the
   324  	// real func (f) to be ready and then calls it.  This indirect
   325  	// func is only used for recursive types.
   326  	encoderCache.Lock()
   327  	if encoderCache.m == nil {
   328  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   329  	}
   330  	var wg sync.WaitGroup
   331  	wg.Add(1)
   332  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
   333  		wg.Wait()
   334  		f(e, v, quoted)
   335  	}
   336  	encoderCache.Unlock()
   337  
   338  	// Compute fields without lock.
   339  	// Might duplicate effort but won't hold other computations back.
   340  	f = newTypeEncoder(t, true)
   341  	wg.Done()
   342  	encoderCache.Lock()
   343  	encoderCache.m[t] = f
   344  	encoderCache.Unlock()
   345  	return f
   346  }
   347  
   348  var (
   349  	marshalerType     = reflect.TypeOf(new(Marshaler)).Elem()
   350  	textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
   351  )
   352  
   353  // newTypeEncoder constructs an encoderFunc for a type.
   354  // The returned encoder only checks CanAddr when allowAddr is true.
   355  func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
   356  	if t.Implements(marshalerType) {
   357  		return marshalerEncoder
   358  	}
   359  	if t.Kind() != reflect.Ptr && allowAddr {
   360  		if reflect.PtrTo(t).Implements(marshalerType) {
   361  			return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
   362  		}
   363  	}
   364  
   365  	if t.Implements(textMarshalerType) {
   366  		return textMarshalerEncoder
   367  	}
   368  	if t.Kind() != reflect.Ptr && allowAddr {
   369  		if reflect.PtrTo(t).Implements(textMarshalerType) {
   370  			return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
   371  		}
   372  	}
   373  
   374  	switch t.Kind() {
   375  	case reflect.Bool:
   376  		return boolEncoder
   377  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   378  		return intEncoder
   379  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   380  		return uintEncoder
   381  	case reflect.Float32:
   382  		return float32Encoder
   383  	case reflect.Float64:
   384  		return float64Encoder
   385  	case reflect.String:
   386  		return stringEncoder
   387  	case reflect.Interface:
   388  		return interfaceEncoder
   389  	case reflect.Struct:
   390  		return newStructEncoder(t)
   391  	case reflect.Map:
   392  		return newMapEncoder(t)
   393  	case reflect.Slice:
   394  		return newSliceEncoder(t)
   395  	case reflect.Array:
   396  		return newArrayEncoder(t)
   397  	case reflect.Ptr:
   398  		return newPtrEncoder(t)
   399  	default:
   400  		return unsupportedTypeEncoder
   401  	}
   402  }
   403  
   404  func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
   405  	e.WriteString("null")
   406  }
   407  
   408  func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   409  	if v.Kind() == reflect.Ptr && v.IsNil() {
   410  		e.WriteString("null")
   411  		return
   412  	}
   413  	m := v.Interface().(Marshaler)
   414  	b, err := m.MarshalJSON()
   415  	if err == nil {
   416  		// copy JSON into buffer, checking validity.
   417  		err = compact(&e.Buffer, b, true)
   418  	}
   419  	if err != nil {
   420  		e.error(&MarshalerError{v.Type(), err})
   421  	}
   422  }
   423  
   424  func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   425  	va := v.Addr()
   426  	if va.IsNil() {
   427  		e.WriteString("null")
   428  		return
   429  	}
   430  	m := va.Interface().(Marshaler)
   431  	b, err := m.MarshalJSON()
   432  	if err == nil {
   433  		// copy JSON into buffer, checking validity.
   434  		err = compact(&e.Buffer, b, true)
   435  	}
   436  	if err != nil {
   437  		e.error(&MarshalerError{v.Type(), err})
   438  	}
   439  }
   440  
   441  func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   442  	if v.Kind() == reflect.Ptr && v.IsNil() {
   443  		e.WriteString("null")
   444  		return
   445  	}
   446  	m := v.Interface().(encoding.TextMarshaler)
   447  	b, err := m.MarshalText()
   448  	if err == nil {
   449  		_, err = e.stringBytes(b)
   450  	}
   451  	if err != nil {
   452  		e.error(&MarshalerError{v.Type(), err})
   453  	}
   454  }
   455  
   456  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   457  	va := v.Addr()
   458  	if va.IsNil() {
   459  		e.WriteString("null")
   460  		return
   461  	}
   462  	m := va.Interface().(encoding.TextMarshaler)
   463  	b, err := m.MarshalText()
   464  	if err == nil {
   465  		_, err = e.stringBytes(b)
   466  	}
   467  	if err != nil {
   468  		e.error(&MarshalerError{v.Type(), err})
   469  	}
   470  }
   471  
   472  func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
   473  	if quoted {
   474  		e.WriteByte('"')
   475  	}
   476  	if v.Bool() {
   477  		e.WriteString("true")
   478  	} else {
   479  		e.WriteString("false")
   480  	}
   481  	if quoted {
   482  		e.WriteByte('"')
   483  	}
   484  }
   485  
   486  func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
   487  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   488  	if quoted {
   489  		e.WriteByte('"')
   490  	}
   491  	e.Write(b)
   492  	if quoted {
   493  		e.WriteByte('"')
   494  	}
   495  }
   496  
   497  func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
   498  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   499  	if quoted {
   500  		e.WriteByte('"')
   501  	}
   502  	e.Write(b)
   503  	if quoted {
   504  		e.WriteByte('"')
   505  	}
   506  }
   507  
   508  type floatEncoder int // number of bits
   509  
   510  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   511  	f := v.Float()
   512  	if math.IsInf(f, 0) || math.IsNaN(f) {
   513  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   514  	}
   515  	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
   516  	if quoted {
   517  		e.WriteByte('"')
   518  	}
   519  	e.Write(b)
   520  	if quoted {
   521  		e.WriteByte('"')
   522  	}
   523  }
   524  
   525  var (
   526  	float32Encoder = (floatEncoder(32)).encode
   527  	float64Encoder = (floatEncoder(64)).encode
   528  )
   529  
   530  func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
   531  	if v.Type() == numberType {
   532  		numStr := v.String()
   533  		if numStr == "" {
   534  			numStr = "0" // Number's zero-val
   535  		}
   536  		e.WriteString(numStr)
   537  		return
   538  	}
   539  	if quoted {
   540  		sb, err := Marshal(v.String())
   541  		if err != nil {
   542  			e.error(err)
   543  		}
   544  		e.string(string(sb))
   545  	} else {
   546  		e.string(v.String())
   547  	}
   548  }
   549  
   550  func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
   551  	if v.IsNil() {
   552  		e.WriteString("null")
   553  		return
   554  	}
   555  	e.reflectValue(v.Elem())
   556  }
   557  
   558  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
   559  	e.error(&UnsupportedTypeError{v.Type()})
   560  }
   561  
   562  type structEncoder struct {
   563  	fields    []field
   564  	fieldEncs []encoderFunc
   565  }
   566  
   567  func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   568  	e.WriteByte('{')
   569  	first := true
   570  	for i, f := range se.fields {
   571  		fv := fieldByIndex(v, f.index)
   572  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   573  			continue
   574  		}
   575  		if first {
   576  			first = false
   577  		} else {
   578  			e.WriteByte(',')
   579  		}
   580  		e.string(f.name)
   581  		e.WriteByte(':')
   582  		se.fieldEncs[i](e, fv, f.quoted)
   583  	}
   584  	e.WriteByte('}')
   585  }
   586  
   587  func newStructEncoder(t reflect.Type) encoderFunc {
   588  	if t == varType {
   589  		return encodeVar
   590  	}
   591  	fields := cachedTypeFields(t)
   592  	se := &structEncoder{
   593  		fields:    fields,
   594  		fieldEncs: make([]encoderFunc, len(fields)),
   595  	}
   596  	for i, f := range fields {
   597  		se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
   598  	}
   599  	return se.encode
   600  }
   601  
   602  type mapEncoder struct {
   603  	elemEnc encoderFunc
   604  }
   605  
   606  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   607  	if v.IsNil() {
   608  		e.WriteString("null")
   609  		return
   610  	}
   611  	e.WriteByte('{')
   612  	var sv stringValues = v.MapKeys()
   613  	sort.Sort(sv)
   614  	for i, k := range sv {
   615  		if i > 0 {
   616  			e.WriteByte(',')
   617  		}
   618  		e.string(k.String())
   619  		e.WriteByte(':')
   620  		me.elemEnc(e, v.MapIndex(k), false)
   621  	}
   622  	e.WriteByte('}')
   623  }
   624  
   625  func newMapEncoder(t reflect.Type) encoderFunc {
   626  	if t.Key().Kind() != reflect.String {
   627  		return unsupportedTypeEncoder
   628  	}
   629  	me := &mapEncoder{typeEncoder(t.Elem())}
   630  	return me.encode
   631  }
   632  
   633  func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
   634  	if v.IsNil() {
   635  		e.WriteString("null")
   636  		return
   637  	}
   638  	s := v.Bytes()
   639  	e.WriteByte('"')
   640  	if len(s) < 1024 {
   641  		// for small buffers, using Encode directly is much faster.
   642  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   643  		base64.StdEncoding.Encode(dst, s)
   644  		e.Write(dst)
   645  	} else {
   646  		// for large buffers, avoid unnecessary extra temporary
   647  		// buffer space.
   648  		enc := base64.NewEncoder(base64.StdEncoding, e)
   649  		enc.Write(s)
   650  		enc.Close()
   651  	}
   652  	e.WriteByte('"')
   653  }
   654  
   655  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   656  type sliceEncoder struct {
   657  	arrayEnc encoderFunc
   658  }
   659  
   660  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   661  	if v.IsNil() {
   662  		e.WriteString("null")
   663  		return
   664  	}
   665  	se.arrayEnc(e, v, false)
   666  }
   667  
   668  func newSliceEncoder(t reflect.Type) encoderFunc {
   669  	// Byte slices get special treatment; arrays don't.
   670  	if t.Elem().Kind() == reflect.Uint8 {
   671  		return encodeByteSlice
   672  	}
   673  	enc := &sliceEncoder{newArrayEncoder(t)}
   674  	return enc.encode
   675  }
   676  
   677  type arrayEncoder struct {
   678  	elemEnc encoderFunc
   679  }
   680  
   681  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   682  	e.WriteByte('[')
   683  	n := v.Len()
   684  	for i := 0; i < n; i++ {
   685  		if i > 0 {
   686  			e.WriteByte(',')
   687  		}
   688  		ae.elemEnc(e, v.Index(i), false)
   689  	}
   690  	e.WriteByte(']')
   691  }
   692  
   693  func newArrayEncoder(t reflect.Type) encoderFunc {
   694  	enc := &arrayEncoder{typeEncoder(t.Elem())}
   695  	return enc.encode
   696  }
   697  
   698  type ptrEncoder struct {
   699  	elemEnc encoderFunc
   700  }
   701  
   702  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   703  	if v.IsNil() {
   704  		e.WriteString("null")
   705  		return
   706  	}
   707  	pe.elemEnc(e, v.Elem(), false)
   708  }
   709  
   710  func newPtrEncoder(t reflect.Type) encoderFunc {
   711  	enc := &ptrEncoder{typeEncoder(t.Elem())}
   712  	return enc.encode
   713  }
   714  
   715  type condAddrEncoder struct {
   716  	canAddrEnc, elseEnc encoderFunc
   717  }
   718  
   719  func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   720  	if v.CanAddr() {
   721  		ce.canAddrEnc(e, v, quoted)
   722  	} else {
   723  		ce.elseEnc(e, v, quoted)
   724  	}
   725  }
   726  
   727  // newCondAddrEncoder returns an encoder that checks whether its value
   728  // CanAddr and delegates to canAddrEnc if so, else to elseEnc.
   729  func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
   730  	enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
   731  	return enc.encode
   732  }
   733  
   734  func isValidTag(s string) bool {
   735  	if s == "" {
   736  		return false
   737  	}
   738  	for _, c := range s {
   739  		switch {
   740  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   741  			// Backslash and quote chars are reserved, but
   742  			// otherwise any punctuation chars are allowed
   743  			// in a tag name.
   744  		default:
   745  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   746  				return false
   747  			}
   748  		}
   749  	}
   750  	return true
   751  }
   752  
   753  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   754  	for _, i := range index {
   755  		if v.Kind() == reflect.Ptr {
   756  			if v.IsNil() {
   757  				return reflect.Value{}
   758  			}
   759  			v = v.Elem()
   760  		}
   761  		v = v.Field(i)
   762  	}
   763  	return v
   764  }
   765  
   766  func typeByIndex(t reflect.Type, index []int) reflect.Type {
   767  	for _, i := range index {
   768  		if t.Kind() == reflect.Ptr {
   769  			t = t.Elem()
   770  		}
   771  		t = t.Field(i).Type
   772  	}
   773  	return t
   774  }
   775  
   776  // stringValues is a slice of reflect.Value holding *reflect.StringValue.
   777  // It implements the methods to sort by string.
   778  type stringValues []reflect.Value
   779  
   780  func (sv stringValues) Len() int           { return len(sv) }
   781  func (sv stringValues) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
   782  func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) }
   783  func (sv stringValues) get(i int) string   { return sv[i].String() }
   784  
   785  // NOTE: keep in sync with stringBytes below.
   786  func (e *encodeState) string(s string) (int, error) {
   787  	len0 := e.Len()
   788  	e.WriteByte('"')
   789  	start := 0
   790  	for i := 0; i < len(s); {
   791  		if b := s[i]; b < utf8.RuneSelf {
   792  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   793  				i++
   794  				continue
   795  			}
   796  			if start < i {
   797  				e.WriteString(s[start:i])
   798  			}
   799  			switch b {
   800  			case '\\', '"':
   801  				e.WriteByte('\\')
   802  				e.WriteByte(b)
   803  			case '\n':
   804  				e.WriteByte('\\')
   805  				e.WriteByte('n')
   806  			case '\r':
   807  				e.WriteByte('\\')
   808  				e.WriteByte('r')
   809  			default:
   810  				// This encodes bytes < 0x20 except for \n and \r,
   811  				// as well as <, > and &. The latter are escaped because they
   812  				// can lead to security holes when user-controlled strings
   813  				// are rendered into JSON and served to some browsers.
   814  				e.WriteString(`\u00`)
   815  				e.WriteByte(hex[b>>4])
   816  				e.WriteByte(hex[b&0xF])
   817  			}
   818  			i++
   819  			start = i
   820  			continue
   821  		}
   822  		c, size := utf8.DecodeRuneInString(s[i:])
   823  		if c == utf8.RuneError && size == 1 {
   824  			if start < i {
   825  				e.WriteString(s[start:i])
   826  			}
   827  			e.WriteString(`\ufffd`)
   828  			i += size
   829  			start = i
   830  			continue
   831  		}
   832  		// U+2028 is LINE SEPARATOR.
   833  		// U+2029 is PARAGRAPH SEPARATOR.
   834  		// They are both technically valid characters in JSON strings,
   835  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   836  		// and can lead to security holes there. It is valid JSON to
   837  		// escape them, so we do so unconditionally.
   838  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   839  		if c == '\u2028' || c == '\u2029' {
   840  			if start < i {
   841  				e.WriteString(s[start:i])
   842  			}
   843  			e.WriteString(`\u202`)
   844  			e.WriteByte(hex[c&0xF])
   845  			i += size
   846  			start = i
   847  			continue
   848  		}
   849  		i += size
   850  	}
   851  	if start < len(s) {
   852  		e.WriteString(s[start:])
   853  	}
   854  	e.WriteByte('"')
   855  	return e.Len() - len0, nil
   856  }
   857  
   858  // NOTE: keep in sync with string above.
   859  func (e *encodeState) stringBytes(s []byte) (int, error) {
   860  	len0 := e.Len()
   861  	e.WriteByte('"')
   862  	start := 0
   863  	for i := 0; i < len(s); {
   864  		if b := s[i]; b < utf8.RuneSelf {
   865  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   866  				i++
   867  				continue
   868  			}
   869  			if start < i {
   870  				e.Write(s[start:i])
   871  			}
   872  			switch b {
   873  			case '\\', '"':
   874  				e.WriteByte('\\')
   875  				e.WriteByte(b)
   876  			case '\n':
   877  				e.WriteByte('\\')
   878  				e.WriteByte('n')
   879  			case '\r':
   880  				e.WriteByte('\\')
   881  				e.WriteByte('r')
   882  			default:
   883  				// This encodes bytes < 0x20 except for \n and \r,
   884  				// as well as < and >. The latter are escaped because they
   885  				// can lead to security holes when user-controlled strings
   886  				// are rendered into JSON and served to some browsers.
   887  				e.WriteString(`\u00`)
   888  				e.WriteByte(hex[b>>4])
   889  				e.WriteByte(hex[b&0xF])
   890  			}
   891  			i++
   892  			start = i
   893  			continue
   894  		}
   895  		c, size := utf8.DecodeRune(s[i:])
   896  		if c == utf8.RuneError && size == 1 {
   897  			if start < i {
   898  				e.Write(s[start:i])
   899  			}
   900  			e.WriteString(`\ufffd`)
   901  			i += size
   902  			start = i
   903  			continue
   904  		}
   905  		// U+2028 is LINE SEPARATOR.
   906  		// U+2029 is PARAGRAPH SEPARATOR.
   907  		// They are both technically valid characters in JSON strings,
   908  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   909  		// and can lead to security holes there. It is valid JSON to
   910  		// escape them, so we do so unconditionally.
   911  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   912  		if c == '\u2028' || c == '\u2029' {
   913  			if start < i {
   914  				e.Write(s[start:i])
   915  			}
   916  			e.WriteString(`\u202`)
   917  			e.WriteByte(hex[c&0xF])
   918  			i += size
   919  			start = i
   920  			continue
   921  		}
   922  		i += size
   923  	}
   924  	if start < len(s) {
   925  		e.Write(s[start:])
   926  	}
   927  	e.WriteByte('"')
   928  	return e.Len() - len0, nil
   929  }
   930  
   931  // A field represents a single field found in a struct.
   932  type field struct {
   933  	name      string
   934  	nameBytes []byte                 // []byte(name)
   935  	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
   936  
   937  	tag       bool
   938  	index     []int
   939  	typ       reflect.Type
   940  	omitEmpty bool
   941  	quoted    bool
   942  }
   943  
   944  func fillField(f field) field {
   945  	f.nameBytes = []byte(f.name)
   946  	f.equalFold = foldFunc(f.nameBytes)
   947  	return f
   948  }
   949  
   950  // byName sorts field by name, breaking ties with depth,
   951  // then breaking ties with "name came from json tag", then
   952  // breaking ties with index sequence.
   953  type byName []field
   954  
   955  func (x byName) Len() int { return len(x) }
   956  
   957  func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   958  
   959  func (x byName) Less(i, j int) bool {
   960  	if x[i].name != x[j].name {
   961  		return x[i].name < x[j].name
   962  	}
   963  	if len(x[i].index) != len(x[j].index) {
   964  		return len(x[i].index) < len(x[j].index)
   965  	}
   966  	if x[i].tag != x[j].tag {
   967  		return x[i].tag
   968  	}
   969  	return byIndex(x).Less(i, j)
   970  }
   971  
   972  // byIndex sorts field by index sequence.
   973  type byIndex []field
   974  
   975  func (x byIndex) Len() int { return len(x) }
   976  
   977  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   978  
   979  func (x byIndex) Less(i, j int) bool {
   980  	for k, xik := range x[i].index {
   981  		if k >= len(x[j].index) {
   982  			return false
   983  		}
   984  		if xik != x[j].index[k] {
   985  			return xik < x[j].index[k]
   986  		}
   987  	}
   988  	return len(x[i].index) < len(x[j].index)
   989  }
   990  
   991  // typeFields returns a list of fields that JSON should recognize for the given type.
   992  // The algorithm is breadth-first search over the set of structs to include - the top struct
   993  // and then any reachable anonymous structs.
   994  func typeFields(t reflect.Type) []field {
   995  	// Anonymous fields to explore at the current level and the next.
   996  	current := []field{}
   997  	next := []field{{typ: t}}
   998  
   999  	// Count of queued names for current level and the next.
  1000  	count := map[reflect.Type]int{}
  1001  	nextCount := map[reflect.Type]int{}
  1002  
  1003  	// Types already visited at an earlier level.
  1004  	visited := map[reflect.Type]bool{}
  1005  
  1006  	// Fields found.
  1007  	var fields []field
  1008  
  1009  	for len(next) > 0 {
  1010  		current, next = next, current[:0]
  1011  		count, nextCount = nextCount, map[reflect.Type]int{}
  1012  
  1013  		for _, f := range current {
  1014  			if visited[f.typ] {
  1015  				continue
  1016  			}
  1017  			visited[f.typ] = true
  1018  
  1019  			// Scan f.typ for fields to include.
  1020  			for i := 0; i < f.typ.NumField(); i++ {
  1021  				sf := f.typ.Field(i)
  1022  				if sf.PkgPath != "" { // unexported
  1023  					continue
  1024  				}
  1025  				tag := sf.Tag.Get("json")
  1026  				if tag == "-" {
  1027  					continue
  1028  				}
  1029  				name, opts := parseTag(tag)
  1030  				if !isValidTag(name) {
  1031  					name = ""
  1032  				}
  1033  				index := make([]int, len(f.index)+1)
  1034  				copy(index, f.index)
  1035  				index[len(f.index)] = i
  1036  
  1037  				ft := sf.Type
  1038  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1039  					// Follow pointer.
  1040  					ft = ft.Elem()
  1041  				}
  1042  
  1043  				// Record found field and index sequence.
  1044  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1045  					tagged := name != ""
  1046  					if name == "" {
  1047  						name = sf.Name
  1048  					}
  1049  					fields = append(fields, fillField(field{
  1050  						name:      name,
  1051  						tag:       tagged,
  1052  						index:     index,
  1053  						typ:       ft,
  1054  						omitEmpty: opts.Contains("omitempty"),
  1055  						quoted:    opts.Contains("string"),
  1056  					}))
  1057  					if count[f.typ] > 1 {
  1058  						// If there were multiple instances, add a second,
  1059  						// so that the annihilation code will see a duplicate.
  1060  						// It only cares about the distinction between 1 or 2,
  1061  						// so don't bother generating any more copies.
  1062  						fields = append(fields, fields[len(fields)-1])
  1063  					}
  1064  					continue
  1065  				}
  1066  
  1067  				// Record new anonymous struct to explore in next round.
  1068  				nextCount[ft]++
  1069  				if nextCount[ft] == 1 {
  1070  					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
  1071  				}
  1072  			}
  1073  		}
  1074  	}
  1075  
  1076  	sort.Sort(byName(fields))
  1077  
  1078  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1079  	// except that fields with JSON tags are promoted.
  1080  
  1081  	// The fields are sorted in primary order of name, secondary order
  1082  	// of field index length. Loop over names; for each name, delete
  1083  	// hidden fields by choosing the one dominant field that survives.
  1084  	out := fields[:0]
  1085  	for advance, i := 0, 0; i < len(fields); i += advance {
  1086  		// One iteration per name.
  1087  		// Find the sequence of fields with the name of this first field.
  1088  		fi := fields[i]
  1089  		name := fi.name
  1090  		for advance = 1; i+advance < len(fields); advance++ {
  1091  			fj := fields[i+advance]
  1092  			if fj.name != name {
  1093  				break
  1094  			}
  1095  		}
  1096  		if advance == 1 { // Only one field with this name
  1097  			out = append(out, fi)
  1098  			continue
  1099  		}
  1100  		dominant, ok := dominantField(fields[i : i+advance])
  1101  		if ok {
  1102  			out = append(out, dominant)
  1103  		}
  1104  	}
  1105  
  1106  	fields = out
  1107  	sort.Sort(byIndex(fields))
  1108  
  1109  	return fields
  1110  }
  1111  
  1112  // dominantField looks through the fields, all of which are known to
  1113  // have the same name, to find the single field that dominates the
  1114  // others using Go's embedding rules, modified by the presence of
  1115  // JSON tags. If there are multiple top-level fields, the boolean
  1116  // will be false: This condition is an error in Go and we skip all
  1117  // the fields.
  1118  func dominantField(fields []field) (field, bool) {
  1119  	// The fields are sorted in increasing index-length order. The winner
  1120  	// must therefore be one with the shortest index length. Drop all
  1121  	// longer entries, which is easy: just truncate the slice.
  1122  	length := len(fields[0].index)
  1123  	tagged := -1 // Index of first tagged field.
  1124  	for i, f := range fields {
  1125  		if len(f.index) > length {
  1126  			fields = fields[:i]
  1127  			break
  1128  		}
  1129  		if f.tag {
  1130  			if tagged >= 0 {
  1131  				// Multiple tagged fields at the same level: conflict.
  1132  				// Return no field.
  1133  				return field{}, false
  1134  			}
  1135  			tagged = i
  1136  		}
  1137  	}
  1138  	if tagged >= 0 {
  1139  		return fields[tagged], true
  1140  	}
  1141  	// All remaining fields have the same length. If there's more than one,
  1142  	// we have a conflict (two fields named "X" at the same level) and we
  1143  	// return no field.
  1144  	if len(fields) > 1 {
  1145  		return field{}, false
  1146  	}
  1147  	return fields[0], true
  1148  }
  1149  
  1150  var fieldCache struct {
  1151  	sync.RWMutex
  1152  	m map[reflect.Type][]field
  1153  }
  1154  
  1155  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1156  func cachedTypeFields(t reflect.Type) []field {
  1157  	fieldCache.RLock()
  1158  	f := fieldCache.m[t]
  1159  	fieldCache.RUnlock()
  1160  	if f != nil {
  1161  		return f
  1162  	}
  1163  
  1164  	// Compute fields without lock.
  1165  	// Might duplicate effort but won't hold other computations back.
  1166  	f = typeFields(t)
  1167  	if f == nil {
  1168  		f = []field{}
  1169  	}
  1170  
  1171  	fieldCache.Lock()
  1172  	if fieldCache.m == nil {
  1173  		fieldCache.m = map[reflect.Type][]field{}
  1174  	}
  1175  	fieldCache.m[t] = f
  1176  	fieldCache.Unlock()
  1177  	return f
  1178  }