github.com/quinndk/ethereum_read@v0.0.0-20181211143958-29c55eec3237/go-ethereum-master_read/trie/encoding.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  // Trie keys are dealt with in three distinct encodings:
    20  //
    21  // KEYBYTES encoding contains the actual key and nothing else. This encoding is the
    22  // input to most API functions.
    23  //
    24  // HEX encoding contains one byte for each nibble of the key and an optional trailing
    25  // 'terminator' byte of value 0x10 which indicates whether or not the node at the key
    26  // contains a value. Hex key encoding is used for nodes loaded in memory because it's
    27  // convenient to access.
    28  //
    29  // COMPACT encoding is defined by the Ethereum Yellow Paper (it's called "hex prefix
    30  // encoding" there) and contains the bytes of the key and a flag. The high nibble of the
    31  // first byte contains the flag; the lowest bit encoding the oddness of the length and
    32  // the second-lowest encoding whether the node at the key is a value node. The low nibble
    33  // of the first byte is zero in the case of an even number of nibbles and the first nibble
    34  // in the case of an odd number. All remaining nibbles (now an even number) fit properly
    35  // into the remaining bytes. Compact encoding is used for nodes stored on disk.
    36  // Hex编码串转化为Compact编码
    37  func hexToCompact(hex []byte) []byte {
    38  	// 如果最后一位是16,terminator为1,否则为0
    39  	terminator := byte(0)
    40  	// 包含terminator的节点为叶子节点
    41  	if hasTerm(hex) {
    42  		terminator = 1
    43  		// 1.0将Hex格式的尾部标记byte去掉
    44  		hex = hex[:len(hex)-1]
    45  	}
    46  	// 定义Compat字节数组
    47  	buf := make([]byte, len(hex)/2+1)
    48  	// 标志位默认
    49  	buf[0] = terminator << 5 // the flag byte
    50  	if len(hex)&1 == 1 {
    51  		// 如果Hex长度为奇数,修改标志位为odd flag
    52  		buf[0] |= 1 << 4 // odd flag
    53  		// 然后把第1个nibble放入buf[0]低四位
    54  		buf[0] |= hex[0] // first nibble is contained in the first byte
    55  		hex = hex[1:]
    56  	}
    57  	// 1.1然后将每2nibble的数据合并到1个byte
    58  	decodeNibbles(hex, buf[1:])
    59  	return buf
    60  }
    61  
    62  // Compact编码转化为Hex编码串
    63  func compactToHex(compact []byte) []byte {
    64  	base := keybytesToHex(compact)
    65  	// delete terminator flag
    66  
    67  	/*这里base[0]有4中情况
    68  	  00000000	扩展节点偶数位
    69  	  00000001	扩展节点奇数位
    70  	  00000010	叶子节点偶数位
    71  	  00000011	叶子节点偶数位
    72  	*/
    73  
    74  	if base[0] < 2 {
    75  		// 如果是扩展节点,去除最后一位
    76  		base = base[:len(base)-1]
    77  	}
    78  	// apply odd flag
    79  	// 如果是偶数位chop=2,否则chop=1
    80  	chop := 2 - base[0]&1
    81  	//去除compact标志位。偶数位去除2个字节,奇数位去除1个字节(因为奇数位的低四位放的是nibble数据)
    82  	return base[chop:]
    83  }
    84  
    85  // 将key字符串进行Hex编码
    86  func keybytesToHex(str []byte) []byte {
    87  	l := len(str)*2 + 1
    88  	//将一个keybyte转化成两个字节
    89  	var nibbles = make([]byte, l)
    90  	for i, b := range str {
    91  		nibbles[i*2] = b / 16
    92  		nibbles[i*2+1] = b % 16
    93  	}
    94  	//末尾加入Hex标志位16 00010000
    95  	nibbles[l-1] = 16
    96  	return nibbles
    97  }
    98  
    99  // hexToKeybytes turns hex nibbles into key bytes.
   100  // This can only be used for keys of even length.
   101  // 将hex编码解码转为key字符串
   102  func hexToKeybytes(hex []byte) []byte {
   103  	if hasTerm(hex) {
   104  		hex = hex[:len(hex)-1]
   105  	}
   106  	if len(hex)&1 != 0 {
   107  		panic("can't convert hex key of odd length")
   108  	}
   109  	key := make([]byte, len(hex)/2)
   110  	decodeNibbles(hex, key)
   111  	return key
   112  }
   113  
   114  func decodeNibbles(nibbles []byte, bytes []byte) {
   115  	for bi, ni := 0, 0; ni < len(nibbles); bi, ni = bi+1, ni+2 {
   116  		bytes[bi] = nibbles[ni]<<4 | nibbles[ni+1]
   117  	}
   118  }
   119  
   120  // prefixLen returns the length of the common prefix of a and b.
   121  func prefixLen(a, b []byte) int {
   122  	var i, length = 0, len(a)
   123  	if len(b) < length {
   124  		length = len(b)
   125  	}
   126  	for ; i < length; i++ {
   127  		if a[i] != b[i] {
   128  			break
   129  		}
   130  	}
   131  	return i
   132  }
   133  
   134  // hasTerm returns whether a hex key has the terminator flag.
   135  // 是否包含Hex格式标识符(末尾byte为16 00010000)
   136  func hasTerm(s []byte) bool {
   137  	return len(s) > 0 && s[len(s)-1] == 16
   138  }