github.com/quite/nomad@v0.8.6/scheduler/generic_sched.go (about)

     1  package scheduler
     2  
     3  import (
     4  	"fmt"
     5  	"log"
     6  	"time"
     7  
     8  	memdb "github.com/hashicorp/go-memdb"
     9  	"github.com/hashicorp/go-multierror"
    10  	"github.com/hashicorp/nomad/helper/uuid"
    11  	"github.com/hashicorp/nomad/nomad/structs"
    12  )
    13  
    14  const (
    15  	// maxServiceScheduleAttempts is used to limit the number of times
    16  	// we will attempt to schedule if we continue to hit conflicts for services.
    17  	maxServiceScheduleAttempts = 5
    18  
    19  	// maxBatchScheduleAttempts is used to limit the number of times
    20  	// we will attempt to schedule if we continue to hit conflicts for batch.
    21  	maxBatchScheduleAttempts = 2
    22  
    23  	// allocNotNeeded is the status used when a job no longer requires an allocation
    24  	allocNotNeeded = "alloc not needed due to job update"
    25  
    26  	// allocMigrating is the status used when we must migrate an allocation
    27  	allocMigrating = "alloc is being migrated"
    28  
    29  	// allocUpdating is the status used when a job requires an update
    30  	allocUpdating = "alloc is being updated due to job update"
    31  
    32  	// allocLost is the status used when an allocation is lost
    33  	allocLost = "alloc is lost since its node is down"
    34  
    35  	// allocInPlace is the status used when speculating on an in-place update
    36  	allocInPlace = "alloc updating in-place"
    37  
    38  	// allocNodeTainted is the status used when stopping an alloc because it's
    39  	// node is tainted.
    40  	allocNodeTainted = "alloc not needed as node is tainted"
    41  
    42  	// blockedEvalMaxPlanDesc is the description used for blocked evals that are
    43  	// a result of hitting the max number of plan attempts
    44  	blockedEvalMaxPlanDesc = "created due to placement conflicts"
    45  
    46  	// blockedEvalFailedPlacements is the description used for blocked evals
    47  	// that are a result of failing to place all allocations.
    48  	blockedEvalFailedPlacements = "created to place remaining allocations"
    49  
    50  	// reschedulingFollowupEvalDesc is the description used when creating follow
    51  	// up evals for delayed rescheduling
    52  	reschedulingFollowupEvalDesc = "created for delayed rescheduling"
    53  
    54  	// maxPastRescheduleEvents is the maximum number of past reschedule event
    55  	// that we track when unlimited rescheduling is enabled
    56  	maxPastRescheduleEvents = 5
    57  )
    58  
    59  // SetStatusError is used to set the status of the evaluation to the given error
    60  type SetStatusError struct {
    61  	Err        error
    62  	EvalStatus string
    63  }
    64  
    65  func (s *SetStatusError) Error() string {
    66  	return s.Err.Error()
    67  }
    68  
    69  // GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
    70  // designed for long-lived services, and as such spends more time attempting
    71  // to make a high quality placement. This is the primary scheduler for
    72  // most workloads. It also supports a 'batch' mode to optimize for fast decision
    73  // making at the cost of quality.
    74  type GenericScheduler struct {
    75  	logger  *log.Logger
    76  	state   State
    77  	planner Planner
    78  	batch   bool
    79  
    80  	eval       *structs.Evaluation
    81  	job        *structs.Job
    82  	plan       *structs.Plan
    83  	planResult *structs.PlanResult
    84  	ctx        *EvalContext
    85  	stack      *GenericStack
    86  
    87  	followUpEvals []*structs.Evaluation
    88  
    89  	deployment *structs.Deployment
    90  
    91  	blocked        *structs.Evaluation
    92  	failedTGAllocs map[string]*structs.AllocMetric
    93  	queuedAllocs   map[string]int
    94  }
    95  
    96  // NewServiceScheduler is a factory function to instantiate a new service scheduler
    97  func NewServiceScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
    98  	s := &GenericScheduler{
    99  		logger:  logger,
   100  		state:   state,
   101  		planner: planner,
   102  		batch:   false,
   103  	}
   104  	return s
   105  }
   106  
   107  // NewBatchScheduler is a factory function to instantiate a new batch scheduler
   108  func NewBatchScheduler(logger *log.Logger, state State, planner Planner) Scheduler {
   109  	s := &GenericScheduler{
   110  		logger:  logger,
   111  		state:   state,
   112  		planner: planner,
   113  		batch:   true,
   114  	}
   115  	return s
   116  }
   117  
   118  // Process is used to handle a single evaluation
   119  func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
   120  	// Store the evaluation
   121  	s.eval = eval
   122  
   123  	// Verify the evaluation trigger reason is understood
   124  	switch eval.TriggeredBy {
   125  	case structs.EvalTriggerJobRegister, structs.EvalTriggerJobDeregister,
   126  		structs.EvalTriggerNodeDrain, structs.EvalTriggerNodeUpdate,
   127  		structs.EvalTriggerRollingUpdate, structs.EvalTriggerQueuedAllocs,
   128  		structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans,
   129  		structs.EvalTriggerDeploymentWatcher, structs.EvalTriggerRetryFailedAlloc,
   130  		structs.EvalTriggerFailedFollowUp:
   131  	default:
   132  		desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
   133  			eval.TriggeredBy)
   134  		return setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
   135  			s.failedTGAllocs, structs.EvalStatusFailed, desc, s.queuedAllocs,
   136  			s.deployment.GetID())
   137  	}
   138  
   139  	// Retry up to the maxScheduleAttempts and reset if progress is made.
   140  	progress := func() bool { return progressMade(s.planResult) }
   141  	limit := maxServiceScheduleAttempts
   142  	if s.batch {
   143  		limit = maxBatchScheduleAttempts
   144  	}
   145  	if err := retryMax(limit, s.process, progress); err != nil {
   146  		if statusErr, ok := err.(*SetStatusError); ok {
   147  			// Scheduling was tried but made no forward progress so create a
   148  			// blocked eval to retry once resources become available.
   149  			var mErr multierror.Error
   150  			if err := s.createBlockedEval(true); err != nil {
   151  				mErr.Errors = append(mErr.Errors, err)
   152  			}
   153  			if err := setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
   154  				s.failedTGAllocs, statusErr.EvalStatus, err.Error(),
   155  				s.queuedAllocs, s.deployment.GetID()); err != nil {
   156  				mErr.Errors = append(mErr.Errors, err)
   157  			}
   158  			return mErr.ErrorOrNil()
   159  		}
   160  		return err
   161  	}
   162  
   163  	// If the current evaluation is a blocked evaluation and we didn't place
   164  	// everything, do not update the status to complete.
   165  	if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 {
   166  		e := s.ctx.Eligibility()
   167  		newEval := s.eval.Copy()
   168  		newEval.EscapedComputedClass = e.HasEscaped()
   169  		newEval.ClassEligibility = e.GetClasses()
   170  		newEval.QuotaLimitReached = e.QuotaLimitReached()
   171  		return s.planner.ReblockEval(newEval)
   172  	}
   173  
   174  	// Update the status to complete
   175  	return setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
   176  		s.failedTGAllocs, structs.EvalStatusComplete, "", s.queuedAllocs,
   177  		s.deployment.GetID())
   178  }
   179  
   180  // createBlockedEval creates a blocked eval and submits it to the planner. If
   181  // failure is set to true, the eval's trigger reason reflects that.
   182  func (s *GenericScheduler) createBlockedEval(planFailure bool) error {
   183  	e := s.ctx.Eligibility()
   184  	escaped := e.HasEscaped()
   185  
   186  	// Only store the eligible classes if the eval hasn't escaped.
   187  	var classEligibility map[string]bool
   188  	if !escaped {
   189  		classEligibility = e.GetClasses()
   190  	}
   191  
   192  	s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped, e.QuotaLimitReached())
   193  	if planFailure {
   194  		s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans
   195  		s.blocked.StatusDescription = blockedEvalMaxPlanDesc
   196  	} else {
   197  		s.blocked.StatusDescription = blockedEvalFailedPlacements
   198  	}
   199  
   200  	return s.planner.CreateEval(s.blocked)
   201  }
   202  
   203  // process is wrapped in retryMax to iteratively run the handler until we have no
   204  // further work or we've made the maximum number of attempts.
   205  func (s *GenericScheduler) process() (bool, error) {
   206  	// Lookup the Job by ID
   207  	var err error
   208  	ws := memdb.NewWatchSet()
   209  	s.job, err = s.state.JobByID(ws, s.eval.Namespace, s.eval.JobID)
   210  	if err != nil {
   211  		return false, fmt.Errorf("failed to get job %q: %v", s.eval.JobID, err)
   212  	}
   213  
   214  	numTaskGroups := 0
   215  	stopped := s.job.Stopped()
   216  	if !stopped {
   217  		numTaskGroups = len(s.job.TaskGroups)
   218  	}
   219  	s.queuedAllocs = make(map[string]int, numTaskGroups)
   220  	s.followUpEvals = nil
   221  
   222  	// Create a plan
   223  	s.plan = s.eval.MakePlan(s.job)
   224  
   225  	if !s.batch {
   226  		// Get any existing deployment
   227  		s.deployment, err = s.state.LatestDeploymentByJobID(ws, s.eval.Namespace, s.eval.JobID)
   228  		if err != nil {
   229  			return false, fmt.Errorf("failed to get job deployment %q: %v", s.eval.JobID, err)
   230  		}
   231  	}
   232  
   233  	// Reset the failed allocations
   234  	s.failedTGAllocs = nil
   235  
   236  	// Create an evaluation context
   237  	s.ctx = NewEvalContext(s.state, s.plan, s.logger)
   238  
   239  	// Construct the placement stack
   240  	s.stack = NewGenericStack(s.batch, s.ctx)
   241  	if !s.job.Stopped() {
   242  		s.stack.SetJob(s.job)
   243  	}
   244  
   245  	// Compute the target job allocations
   246  	if err := s.computeJobAllocs(); err != nil {
   247  		s.logger.Printf("[ERR] sched: %#v: %v", s.eval, err)
   248  		return false, err
   249  	}
   250  
   251  	// If there are failed allocations, we need to create a blocked evaluation
   252  	// to place the failed allocations when resources become available. If the
   253  	// current evaluation is already a blocked eval, we reuse it.
   254  	if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil {
   255  		if err := s.createBlockedEval(false); err != nil {
   256  			s.logger.Printf("[ERR] sched: %#v failed to make blocked eval: %v", s.eval, err)
   257  			return false, err
   258  		}
   259  		s.logger.Printf("[DEBUG] sched: %#v: failed to place all allocations, blocked eval '%s' created", s.eval, s.blocked.ID)
   260  	}
   261  
   262  	// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
   263  	// anyways to get the annotations.
   264  	if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
   265  		return true, nil
   266  	}
   267  
   268  	// Create follow up evals for any delayed reschedule eligible allocations
   269  	if len(s.followUpEvals) > 0 {
   270  		for _, eval := range s.followUpEvals {
   271  			eval.PreviousEval = s.eval.ID
   272  			// TODO(preetha) this should be batching evals before inserting them
   273  			if err := s.planner.CreateEval(eval); err != nil {
   274  				s.logger.Printf("[ERR] sched: %#v failed to make next eval for rescheduling: %v", s.eval, err)
   275  				return false, err
   276  			}
   277  			s.logger.Printf("[DEBUG] sched: %#v: found reschedulable allocs, next eval '%s' created", s.eval, eval.ID)
   278  		}
   279  	}
   280  
   281  	// Submit the plan and store the results.
   282  	result, newState, err := s.planner.SubmitPlan(s.plan)
   283  	s.planResult = result
   284  	if err != nil {
   285  		return false, err
   286  	}
   287  
   288  	// Decrement the number of allocations pending per task group based on the
   289  	// number of allocations successfully placed
   290  	adjustQueuedAllocations(s.logger, result, s.queuedAllocs)
   291  
   292  	// If we got a state refresh, try again since we have stale data
   293  	if newState != nil {
   294  		s.logger.Printf("[DEBUG] sched: %#v: refresh forced", s.eval)
   295  		s.state = newState
   296  		return false, nil
   297  	}
   298  
   299  	// Try again if the plan was not fully committed, potential conflict
   300  	fullCommit, expected, actual := result.FullCommit(s.plan)
   301  	if !fullCommit {
   302  		s.logger.Printf("[DEBUG] sched: %#v: attempted %d placements, %d placed",
   303  			s.eval, expected, actual)
   304  		if newState == nil {
   305  			return false, fmt.Errorf("missing state refresh after partial commit")
   306  		}
   307  		return false, nil
   308  	}
   309  
   310  	// Success!
   311  	return true, nil
   312  }
   313  
   314  // computeJobAllocs is used to reconcile differences between the job,
   315  // existing allocations and node status to update the allocations.
   316  func (s *GenericScheduler) computeJobAllocs() error {
   317  	// Lookup the allocations by JobID
   318  	ws := memdb.NewWatchSet()
   319  	allocs, err := s.state.AllocsByJob(ws, s.eval.Namespace, s.eval.JobID, true)
   320  	if err != nil {
   321  		return fmt.Errorf("failed to get allocs for job '%s': %v",
   322  			s.eval.JobID, err)
   323  	}
   324  
   325  	// Determine the tainted nodes containing job allocs
   326  	tainted, err := taintedNodes(s.state, allocs)
   327  	if err != nil {
   328  		return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
   329  			s.eval.JobID, err)
   330  	}
   331  
   332  	// Update the allocations which are in pending/running state on tainted
   333  	// nodes to lost
   334  	updateNonTerminalAllocsToLost(s.plan, tainted, allocs)
   335  
   336  	reconciler := NewAllocReconciler(s.ctx.Logger(),
   337  		genericAllocUpdateFn(s.ctx, s.stack, s.eval.ID),
   338  		s.batch, s.eval.JobID, s.job, s.deployment, allocs, tainted, s.eval.ID)
   339  	results := reconciler.Compute()
   340  	s.logger.Printf("[DEBUG] sched: %#v: %#v", s.eval, results)
   341  
   342  	if s.eval.AnnotatePlan {
   343  		s.plan.Annotations = &structs.PlanAnnotations{
   344  			DesiredTGUpdates: results.desiredTGUpdates,
   345  		}
   346  	}
   347  
   348  	// Add the deployment changes to the plan
   349  	s.plan.Deployment = results.deployment
   350  	s.plan.DeploymentUpdates = results.deploymentUpdates
   351  
   352  	// Store all the follow up evaluations from rescheduled allocations
   353  	if len(results.desiredFollowupEvals) > 0 {
   354  		for _, evals := range results.desiredFollowupEvals {
   355  			s.followUpEvals = append(s.followUpEvals, evals...)
   356  		}
   357  	}
   358  
   359  	// Update the stored deployment
   360  	if results.deployment != nil {
   361  		s.deployment = results.deployment
   362  	}
   363  
   364  	// Handle the stop
   365  	for _, stop := range results.stop {
   366  		s.plan.AppendUpdate(stop.alloc, structs.AllocDesiredStatusStop, stop.statusDescription, stop.clientStatus)
   367  	}
   368  
   369  	// Handle the in-place updates
   370  	for _, update := range results.inplaceUpdate {
   371  		if update.DeploymentID != s.deployment.GetID() {
   372  			update.DeploymentID = s.deployment.GetID()
   373  			update.DeploymentStatus = nil
   374  		}
   375  		s.ctx.Plan().AppendAlloc(update)
   376  	}
   377  
   378  	// Handle the annotation updates
   379  	for _, update := range results.attributeUpdates {
   380  		s.ctx.Plan().AppendAlloc(update)
   381  	}
   382  
   383  	// Nothing remaining to do if placement is not required
   384  	if len(results.place)+len(results.destructiveUpdate) == 0 {
   385  		// If the job has been purged we don't have access to the job. Otherwise
   386  		// set the queued allocs to zero. This is true if the job is being
   387  		// stopped as well.
   388  		if s.job != nil {
   389  			for _, tg := range s.job.TaskGroups {
   390  				s.queuedAllocs[tg.Name] = 0
   391  			}
   392  		}
   393  		return nil
   394  	}
   395  
   396  	// Record the number of allocations that needs to be placed per Task Group
   397  	for _, place := range results.place {
   398  		s.queuedAllocs[place.taskGroup.Name] += 1
   399  	}
   400  	for _, destructive := range results.destructiveUpdate {
   401  		s.queuedAllocs[destructive.placeTaskGroup.Name] += 1
   402  	}
   403  
   404  	// Compute the placements
   405  	place := make([]placementResult, 0, len(results.place))
   406  	for _, p := range results.place {
   407  		place = append(place, p)
   408  	}
   409  
   410  	destructive := make([]placementResult, 0, len(results.destructiveUpdate))
   411  	for _, p := range results.destructiveUpdate {
   412  		destructive = append(destructive, p)
   413  	}
   414  	return s.computePlacements(destructive, place)
   415  }
   416  
   417  // computePlacements computes placements for allocations. It is given the set of
   418  // destructive updates to place and the set of new placements to place.
   419  func (s *GenericScheduler) computePlacements(destructive, place []placementResult) error {
   420  	// Get the base nodes
   421  	nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters)
   422  	if err != nil {
   423  		return err
   424  	}
   425  
   426  	var deploymentID string
   427  	if s.deployment != nil && s.deployment.Active() {
   428  		deploymentID = s.deployment.ID
   429  	}
   430  
   431  	// Update the set of placement nodes
   432  	s.stack.SetNodes(nodes)
   433  
   434  	// Capture current time to use as the start time for any rescheduled allocations
   435  	now := time.Now()
   436  
   437  	// Have to handle destructive changes first as we need to discount their
   438  	// resources. To understand this imagine the resources were reduced and the
   439  	// count was scaled up.
   440  	for _, results := range [][]placementResult{destructive, place} {
   441  		for _, missing := range results {
   442  			// Get the task group
   443  			tg := missing.TaskGroup()
   444  
   445  			// Check if this task group has already failed
   446  			if metric, ok := s.failedTGAllocs[tg.Name]; ok {
   447  				metric.CoalescedFailures += 1
   448  				continue
   449  			}
   450  
   451  			// Find the preferred node
   452  			preferredNode, err := s.findPreferredNode(missing)
   453  			if err != nil {
   454  				return err
   455  			}
   456  
   457  			// Check if we should stop the previous allocation upon successful
   458  			// placement of its replacement. This allow atomic placements/stops. We
   459  			// stop the allocation before trying to find a replacement because this
   460  			// frees the resources currently used by the previous allocation.
   461  			stopPrevAlloc, stopPrevAllocDesc := missing.StopPreviousAlloc()
   462  			prevAllocation := missing.PreviousAllocation()
   463  			if stopPrevAlloc {
   464  				s.plan.AppendUpdate(prevAllocation, structs.AllocDesiredStatusStop, stopPrevAllocDesc, "")
   465  			}
   466  
   467  			// Compute penalty nodes for rescheduled allocs
   468  			selectOptions := getSelectOptions(prevAllocation, preferredNode)
   469  			option, _ := s.stack.Select(tg, selectOptions)
   470  
   471  			// Store the available nodes by datacenter
   472  			s.ctx.Metrics().NodesAvailable = byDC
   473  
   474  			// Set fields based on if we found an allocation option
   475  			if option != nil {
   476  				// Create an allocation for this
   477  				alloc := &structs.Allocation{
   478  					ID:            uuid.Generate(),
   479  					Namespace:     s.job.Namespace,
   480  					EvalID:        s.eval.ID,
   481  					Name:          missing.Name(),
   482  					JobID:         s.job.ID,
   483  					TaskGroup:     tg.Name,
   484  					Metrics:       s.ctx.Metrics(),
   485  					NodeID:        option.Node.ID,
   486  					DeploymentID:  deploymentID,
   487  					TaskResources: option.TaskResources,
   488  					DesiredStatus: structs.AllocDesiredStatusRun,
   489  					ClientStatus:  structs.AllocClientStatusPending,
   490  
   491  					SharedResources: &structs.Resources{
   492  						DiskMB: tg.EphemeralDisk.SizeMB,
   493  					},
   494  				}
   495  
   496  				// If the new allocation is replacing an older allocation then we
   497  				// set the record the older allocation id so that they are chained
   498  				if prevAllocation != nil {
   499  					alloc.PreviousAllocation = prevAllocation.ID
   500  					if missing.IsRescheduling() {
   501  						updateRescheduleTracker(alloc, prevAllocation, now)
   502  					}
   503  				}
   504  
   505  				// If we are placing a canary and we found a match, add the canary
   506  				// to the deployment state object and mark it as a canary.
   507  				if missing.Canary() {
   508  					if state, ok := s.deployment.TaskGroups[tg.Name]; ok {
   509  						state.PlacedCanaries = append(state.PlacedCanaries, alloc.ID)
   510  					}
   511  
   512  					alloc.DeploymentStatus = &structs.AllocDeploymentStatus{
   513  						Canary: true,
   514  					}
   515  				}
   516  
   517  				// Track the placement
   518  				s.plan.AppendAlloc(alloc)
   519  
   520  			} else {
   521  				// Lazy initialize the failed map
   522  				if s.failedTGAllocs == nil {
   523  					s.failedTGAllocs = make(map[string]*structs.AllocMetric)
   524  				}
   525  
   526  				// Track the fact that we didn't find a placement
   527  				s.failedTGAllocs[tg.Name] = s.ctx.Metrics()
   528  
   529  				// If we weren't able to find a replacement for the allocation, back
   530  				// out the fact that we asked to stop the allocation.
   531  				if stopPrevAlloc {
   532  					s.plan.PopUpdate(prevAllocation)
   533  				}
   534  			}
   535  
   536  		}
   537  	}
   538  
   539  	return nil
   540  }
   541  
   542  // getSelectOptions sets up preferred nodes and penalty nodes
   543  func getSelectOptions(prevAllocation *structs.Allocation, preferredNode *structs.Node) *SelectOptions {
   544  	selectOptions := &SelectOptions{}
   545  	if prevAllocation != nil {
   546  		penaltyNodes := make(map[string]struct{})
   547  		penaltyNodes[prevAllocation.NodeID] = struct{}{}
   548  		if prevAllocation.RescheduleTracker != nil {
   549  			for _, reschedEvent := range prevAllocation.RescheduleTracker.Events {
   550  				penaltyNodes[reschedEvent.PrevNodeID] = struct{}{}
   551  			}
   552  		}
   553  		selectOptions.PenaltyNodeIDs = penaltyNodes
   554  	}
   555  	if preferredNode != nil {
   556  		selectOptions.PreferredNodes = []*structs.Node{preferredNode}
   557  	}
   558  	return selectOptions
   559  }
   560  
   561  // updateRescheduleTracker carries over previous restart attempts and adds the most recent restart
   562  func updateRescheduleTracker(alloc *structs.Allocation, prev *structs.Allocation, now time.Time) {
   563  	reschedPolicy := prev.ReschedulePolicy()
   564  	var rescheduleEvents []*structs.RescheduleEvent
   565  	if prev.RescheduleTracker != nil {
   566  		var interval time.Duration
   567  		if reschedPolicy != nil {
   568  			interval = reschedPolicy.Interval
   569  		}
   570  		// If attempts is set copy all events in the interval range
   571  		if reschedPolicy.Attempts > 0 {
   572  			for _, reschedEvent := range prev.RescheduleTracker.Events {
   573  				timeDiff := now.UnixNano() - reschedEvent.RescheduleTime
   574  				// Only copy over events that are within restart interval
   575  				// This keeps the list of events small in cases where there's a long chain of old restart events
   576  				if interval > 0 && timeDiff <= interval.Nanoseconds() {
   577  					rescheduleEvents = append(rescheduleEvents, reschedEvent.Copy())
   578  				}
   579  			}
   580  		} else {
   581  			// Only copy the last n if unlimited is set
   582  			start := 0
   583  			if len(prev.RescheduleTracker.Events) > maxPastRescheduleEvents {
   584  				start = len(prev.RescheduleTracker.Events) - maxPastRescheduleEvents
   585  			}
   586  			for i := start; i < len(prev.RescheduleTracker.Events); i++ {
   587  				reschedEvent := prev.RescheduleTracker.Events[i]
   588  				rescheduleEvents = append(rescheduleEvents, reschedEvent.Copy())
   589  			}
   590  		}
   591  	}
   592  	nextDelay := prev.NextDelay()
   593  	rescheduleEvent := structs.NewRescheduleEvent(now.UnixNano(), prev.ID, prev.NodeID, nextDelay)
   594  	rescheduleEvents = append(rescheduleEvents, rescheduleEvent)
   595  	alloc.RescheduleTracker = &structs.RescheduleTracker{Events: rescheduleEvents}
   596  }
   597  
   598  // findPreferredNode finds the preferred node for an allocation
   599  func (s *GenericScheduler) findPreferredNode(place placementResult) (*structs.Node, error) {
   600  	if prev := place.PreviousAllocation(); prev != nil && place.TaskGroup().EphemeralDisk.Sticky == true {
   601  		var preferredNode *structs.Node
   602  		ws := memdb.NewWatchSet()
   603  		preferredNode, err := s.state.NodeByID(ws, prev.NodeID)
   604  		if err != nil {
   605  			return nil, err
   606  		}
   607  
   608  		if preferredNode != nil && preferredNode.Ready() {
   609  			return preferredNode, nil
   610  		}
   611  	}
   612  	return nil, nil
   613  }