github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of February 9, 2017",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies. The existing implementations use a traditional
    20  compile/link model to generate executable binaries.
    21  </p>
    22  
    23  <p>
    24  The grammar is compact and regular, allowing for easy analysis by
    25  automatic tools such as integrated development environments.
    26  </p>
    27  
    28  <h2 id="Notation">Notation</h2>
    29  <p>
    30  The syntax is specified using Extended Backus-Naur Form (EBNF):
    31  </p>
    32  
    33  <pre class="grammar">
    34  Production  = production_name "=" [ Expression ] "." .
    35  Expression  = Alternative { "|" Alternative } .
    36  Alternative = Term { Term } .
    37  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    38  Group       = "(" Expression ")" .
    39  Option      = "[" Expression "]" .
    40  Repetition  = "{" Expression "}" .
    41  </pre>
    42  
    43  <p>
    44  Productions are expressions constructed from terms and the following
    45  operators, in increasing precedence:
    46  </p>
    47  <pre class="grammar">
    48  |   alternation
    49  ()  grouping
    50  []  option (0 or 1 times)
    51  {}  repetition (0 to n times)
    52  </pre>
    53  
    54  <p>
    55  Lower-case production names are used to identify lexical tokens.
    56  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    57  double quotes <code>""</code> or back quotes <code>``</code>.
    58  </p>
    59  
    60  <p>
    61  The form <code>a … b</code> represents the set of characters from
    62  <code>a</code> through <code>b</code> as alternatives. The horizontal
    63  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    64  enumerations or code snippets that are not further specified. The character <code>…</code>
    65  (as opposed to the three characters <code>...</code>) is not a token of the Go
    66  language.
    67  </p>
    68  
    69  <h2 id="Source_code_representation">Source code representation</h2>
    70  
    71  <p>
    72  Source code is Unicode text encoded in
    73  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    74  canonicalized, so a single accented code point is distinct from the
    75  same character constructed from combining an accent and a letter;
    76  those are treated as two code points.  For simplicity, this document
    77  will use the unqualified term <i>character</i> to refer to a Unicode code point
    78  in the source text.
    79  </p>
    80  <p>
    81  Each code point is distinct; for instance, upper and lower case letters
    82  are different characters.
    83  </p>
    84  <p>
    85  Implementation restriction: For compatibility with other tools, a
    86  compiler may disallow the NUL character (U+0000) in the source text.
    87  </p>
    88  <p>
    89  Implementation restriction: For compatibility with other tools, a
    90  compiler may ignore a UTF-8-encoded byte order mark
    91  (U+FEFF) if it is the first Unicode code point in the source text.
    92  A byte order mark may be disallowed anywhere else in the source.
    93  </p>
    94  
    95  <h3 id="Characters">Characters</h3>
    96  
    97  <p>
    98  The following terms are used to denote specific Unicode character classes:
    99  </p>
   100  <pre class="ebnf">
   101  newline        = /* the Unicode code point U+000A */ .
   102  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   103  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   104  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   105  </pre>
   106  
   107  <p>
   108  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   109  Section 4.5 "General Category" defines a set of character categories.
   110  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   111  as Unicode letters, and those in the Number category Nd as Unicode digits.
   112  </p>
   113  
   114  <h3 id="Letters_and_digits">Letters and digits</h3>
   115  
   116  <p>
   117  The underscore character <code>_</code> (U+005F) is considered a letter.
   118  </p>
   119  <pre class="ebnf">
   120  letter        = unicode_letter | "_" .
   121  decimal_digit = "0" … "9" .
   122  octal_digit   = "0" … "7" .
   123  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   124  </pre>
   125  
   126  <h2 id="Lexical_elements">Lexical elements</h2>
   127  
   128  <h3 id="Comments">Comments</h3>
   129  
   130  <p>
   131  Comments serve as program documentation. There are two forms:
   132  </p>
   133  
   134  <ol>
   135  <li>
   136  <i>Line comments</i> start with the character sequence <code>//</code>
   137  and stop at the end of the line.
   138  </li>
   139  <li>
   140  <i>General comments</i> start with the character sequence <code>/*</code>
   141  and stop with the first subsequent character sequence <code>*/</code>.
   142  </li>
   143  </ol>
   144  
   145  <p>
   146  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   147  <a href="#String_literals">string literal</a>, or inside a comment.
   148  A general comment containing no newlines acts like a space.
   149  Any other comment acts like a newline.
   150  </p>
   151  
   152  <h3 id="Tokens">Tokens</h3>
   153  
   154  <p>
   155  Tokens form the vocabulary of the Go language.
   156  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   157  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   158  spaces (U+0020), horizontal tabs (U+0009),
   159  carriage returns (U+000D), and newlines (U+000A),
   160  is ignored except as it separates tokens
   161  that would otherwise combine into a single token. Also, a newline or end of file
   162  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   163  While breaking the input into tokens,
   164  the next token is the longest sequence of characters that form a
   165  valid token.
   166  </p>
   167  
   168  <h3 id="Semicolons">Semicolons</h3>
   169  
   170  <p>
   171  The formal grammar uses semicolons <code>";"</code> as terminators in
   172  a number of productions. Go programs may omit most of these semicolons
   173  using the following two rules:
   174  </p>
   175  
   176  <ol>
   177  <li>
   178  When the input is broken into tokens, a semicolon is automatically inserted
   179  into the token stream immediately after a line's final token if that token is
   180  <ul>
   181  	<li>an
   182  	    <a href="#Identifiers">identifier</a>
   183  	</li>
   184  
   185  	<li>an
   186  	    <a href="#Integer_literals">integer</a>,
   187  	    <a href="#Floating-point_literals">floating-point</a>,
   188  	    <a href="#Imaginary_literals">imaginary</a>,
   189  	    <a href="#Rune_literals">rune</a>, or
   190  	    <a href="#String_literals">string</a> literal
   191  	</li>
   192  
   193  	<li>one of the <a href="#Keywords">keywords</a>
   194  	    <code>break</code>,
   195  	    <code>continue</code>,
   196  	    <code>fallthrough</code>, or
   197  	    <code>return</code>
   198  	</li>
   199  
   200  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   201  	    <code>++</code>,
   202  	    <code>--</code>,
   203  	    <code>)</code>,
   204  	    <code>]</code>, or
   205  	    <code>}</code>
   206  	</li>
   207  </ul>
   208  </li>
   209  
   210  <li>
   211  To allow complex statements to occupy a single line, a semicolon
   212  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   213  </li>
   214  </ol>
   215  
   216  <p>
   217  To reflect idiomatic use, code examples in this document elide semicolons
   218  using these rules.
   219  </p>
   220  
   221  
   222  <h3 id="Identifiers">Identifiers</h3>
   223  
   224  <p>
   225  Identifiers name program entities such as variables and types.
   226  An identifier is a sequence of one or more letters and digits.
   227  The first character in an identifier must be a letter.
   228  </p>
   229  <pre class="ebnf">
   230  identifier = letter { letter | unicode_digit } .
   231  </pre>
   232  <pre>
   233  a
   234  _x9
   235  ThisVariableIsExported
   236  αβ
   237  </pre>
   238  
   239  <p>
   240  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   241  </p>
   242  
   243  
   244  <h3 id="Keywords">Keywords</h3>
   245  
   246  <p>
   247  The following keywords are reserved and may not be used as identifiers.
   248  </p>
   249  <pre class="grammar">
   250  break        default      func         interface    select
   251  case         defer        go           map          struct
   252  chan         else         goto         package      switch
   253  const        fallthrough  if           range        type
   254  continue     for          import       return       var
   255  </pre>
   256  
   257  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   258  
   259  <p>
   260  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   261  </p>
   262  <pre class="grammar">
   263  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   264  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   265  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   266  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   267  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   268       &amp;^          &amp;^=
   269  </pre>
   270  
   271  <h3 id="Integer_literals">Integer literals</h3>
   272  
   273  <p>
   274  An integer literal is a sequence of digits representing an
   275  <a href="#Constants">integer constant</a>.
   276  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   277  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   278  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   279  </p>
   280  <pre class="ebnf">
   281  int_lit     = decimal_lit | octal_lit | hex_lit .
   282  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   283  octal_lit   = "0" { octal_digit } .
   284  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   285  </pre>
   286  
   287  <pre>
   288  42
   289  0600
   290  0xBadFace
   291  170141183460469231731687303715884105727
   292  </pre>
   293  
   294  <h3 id="Floating-point_literals">Floating-point literals</h3>
   295  <p>
   296  A floating-point literal is a decimal representation of a
   297  <a href="#Constants">floating-point constant</a>.
   298  It has an integer part, a decimal point, a fractional part,
   299  and an exponent part.  The integer and fractional part comprise
   300  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   301  followed by an optionally signed decimal exponent.  One of the
   302  integer part or the fractional part may be elided; one of the decimal
   303  point or the exponent may be elided.
   304  </p>
   305  <pre class="ebnf">
   306  float_lit = decimals "." [ decimals ] [ exponent ] |
   307              decimals exponent |
   308              "." decimals [ exponent ] .
   309  decimals  = decimal_digit { decimal_digit } .
   310  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   311  </pre>
   312  
   313  <pre>
   314  0.
   315  72.40
   316  072.40  // == 72.40
   317  2.71828
   318  1.e+0
   319  6.67428e-11
   320  1E6
   321  .25
   322  .12345E+5
   323  </pre>
   324  
   325  <h3 id="Imaginary_literals">Imaginary literals</h3>
   326  <p>
   327  An imaginary literal is a decimal representation of the imaginary part of a
   328  <a href="#Constants">complex constant</a>.
   329  It consists of a
   330  <a href="#Floating-point_literals">floating-point literal</a>
   331  or decimal integer followed
   332  by the lower-case letter <code>i</code>.
   333  </p>
   334  <pre class="ebnf">
   335  imaginary_lit = (decimals | float_lit) "i" .
   336  </pre>
   337  
   338  <pre>
   339  0i
   340  011i  // == 11i
   341  0.i
   342  2.71828i
   343  1.e+0i
   344  6.67428e-11i
   345  1E6i
   346  .25i
   347  .12345E+5i
   348  </pre>
   349  
   350  
   351  <h3 id="Rune_literals">Rune literals</h3>
   352  
   353  <p>
   354  A rune literal represents a <a href="#Constants">rune constant</a>,
   355  an integer value identifying a Unicode code point.
   356  A rune literal is expressed as one or more characters enclosed in single quotes,
   357  as in <code>'x'</code> or <code>'\n'</code>.
   358  Within the quotes, any character may appear except newline and unescaped single
   359  quote. A single quoted character represents the Unicode value
   360  of the character itself,
   361  while multi-character sequences beginning with a backslash encode
   362  values in various formats.
   363  </p>
   364  <p>
   365  The simplest form represents the single character within the quotes;
   366  since Go source text is Unicode characters encoded in UTF-8, multiple
   367  UTF-8-encoded bytes may represent a single integer value.  For
   368  instance, the literal <code>'a'</code> holds a single byte representing
   369  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   370  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   371  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   372  </p>
   373  <p>
   374  Several backslash escapes allow arbitrary values to be encoded as
   375  ASCII text.  There are four ways to represent the integer value
   376  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   377  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   378  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   379  plain backslash <code>\</code> followed by exactly three octal digits.
   380  In each case the value of the literal is the value represented by
   381  the digits in the corresponding base.
   382  </p>
   383  <p>
   384  Although these representations all result in an integer, they have
   385  different valid ranges.  Octal escapes must represent a value between
   386  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   387  by construction. The escapes <code>\u</code> and <code>\U</code>
   388  represent Unicode code points so within them some values are illegal,
   389  in particular those above <code>0x10FFFF</code> and surrogate halves.
   390  </p>
   391  <p>
   392  After a backslash, certain single-character escapes represent special values:
   393  </p>
   394  <pre class="grammar">
   395  \a   U+0007 alert or bell
   396  \b   U+0008 backspace
   397  \f   U+000C form feed
   398  \n   U+000A line feed or newline
   399  \r   U+000D carriage return
   400  \t   U+0009 horizontal tab
   401  \v   U+000b vertical tab
   402  \\   U+005c backslash
   403  \'   U+0027 single quote  (valid escape only within rune literals)
   404  \"   U+0022 double quote  (valid escape only within string literals)
   405  </pre>
   406  <p>
   407  All other sequences starting with a backslash are illegal inside rune literals.
   408  </p>
   409  <pre class="ebnf">
   410  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   411  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   412  byte_value       = octal_byte_value | hex_byte_value .
   413  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   414  hex_byte_value   = `\` "x" hex_digit hex_digit .
   415  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   416  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   417                             hex_digit hex_digit hex_digit hex_digit .
   418  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   419  </pre>
   420  
   421  <pre>
   422  'a'
   423  'ä'
   424  '本'
   425  '\t'
   426  '\000'
   427  '\007'
   428  '\377'
   429  '\x07'
   430  '\xff'
   431  '\u12e4'
   432  '\U00101234'
   433  '\''         // rune literal containing single quote character
   434  'aa'         // illegal: too many characters
   435  '\xa'        // illegal: too few hexadecimal digits
   436  '\0'         // illegal: too few octal digits
   437  '\uDFFF'     // illegal: surrogate half
   438  '\U00110000' // illegal: invalid Unicode code point
   439  </pre>
   440  
   441  
   442  <h3 id="String_literals">String literals</h3>
   443  
   444  <p>
   445  A string literal represents a <a href="#Constants">string constant</a>
   446  obtained from concatenating a sequence of characters. There are two forms:
   447  raw string literals and interpreted string literals.
   448  </p>
   449  <p>
   450  Raw string literals are character sequences between back quotes, as in
   451  <code>`foo`</code>.  Within the quotes, any character may appear except
   452  back quote. The value of a raw string literal is the
   453  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   454  between the quotes;
   455  in particular, backslashes have no special meaning and the string may
   456  contain newlines.
   457  Carriage return characters ('\r') inside raw string literals
   458  are discarded from the raw string value.
   459  </p>
   460  <p>
   461  Interpreted string literals are character sequences between double
   462  quotes, as in <code>&quot;bar&quot;</code>.
   463  Within the quotes, any character may appear except newline and unescaped double quote.
   464  The text between the quotes forms the
   465  value of the literal, with backslash escapes interpreted as they
   466  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   467  <code>\"</code> is legal), with the same restrictions.
   468  The three-digit octal (<code>\</code><i>nnn</i>)
   469  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   470  <i>bytes</i> of the resulting string; all other escapes represent
   471  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   472  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   473  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   474  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   475  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   476  U+00FF.
   477  </p>
   478  
   479  <pre class="ebnf">
   480  string_lit             = raw_string_lit | interpreted_string_lit .
   481  raw_string_lit         = "`" { unicode_char | newline } "`" .
   482  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   483  </pre>
   484  
   485  <pre>
   486  `abc`                // same as "abc"
   487  `\n
   488  \n`                  // same as "\\n\n\\n"
   489  "\n"
   490  "\""                 // same as `"`
   491  "Hello, world!\n"
   492  "日本語"
   493  "\u65e5本\U00008a9e"
   494  "\xff\u00FF"
   495  "\uD800"             // illegal: surrogate half
   496  "\U00110000"         // illegal: invalid Unicode code point
   497  </pre>
   498  
   499  <p>
   500  These examples all represent the same string:
   501  </p>
   502  
   503  <pre>
   504  "日本語"                                 // UTF-8 input text
   505  `日本語`                                 // UTF-8 input text as a raw literal
   506  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   507  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   508  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   509  </pre>
   510  
   511  <p>
   512  If the source code represents a character as two code points, such as
   513  a combining form involving an accent and a letter, the result will be
   514  an error if placed in a rune literal (it is not a single code
   515  point), and will appear as two code points if placed in a string
   516  literal.
   517  </p>
   518  
   519  
   520  <h2 id="Constants">Constants</h2>
   521  
   522  <p>There are <i>boolean constants</i>,
   523  <i>rune constants</i>,
   524  <i>integer constants</i>,
   525  <i>floating-point constants</i>, <i>complex constants</i>,
   526  and <i>string constants</i>. Rune, integer, floating-point,
   527  and complex constants are
   528  collectively called <i>numeric constants</i>.
   529  </p>
   530  
   531  <p>
   532  A constant value is represented by a
   533  <a href="#Rune_literals">rune</a>,
   534  <a href="#Integer_literals">integer</a>,
   535  <a href="#Floating-point_literals">floating-point</a>,
   536  <a href="#Imaginary_literals">imaginary</a>,
   537  or
   538  <a href="#String_literals">string</a> literal,
   539  an identifier denoting a constant,
   540  a <a href="#Constant_expressions">constant expression</a>,
   541  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   542  the result value of some built-in functions such as
   543  <code>unsafe.Sizeof</code> applied to any value,
   544  <code>cap</code> or <code>len</code> applied to
   545  <a href="#Length_and_capacity">some expressions</a>,
   546  <code>real</code> and <code>imag</code> applied to a complex constant
   547  and <code>complex</code> applied to numeric constants.
   548  The boolean truth values are represented by the predeclared constants
   549  <code>true</code> and <code>false</code>. The predeclared identifier
   550  <a href="#Iota">iota</a> denotes an integer constant.
   551  </p>
   552  
   553  <p>
   554  In general, complex constants are a form of
   555  <a href="#Constant_expressions">constant expression</a>
   556  and are discussed in that section.
   557  </p>
   558  
   559  <p>
   560  Numeric constants represent exact values of arbitrary precision and do not overflow.
   561  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   562  and not-a-number values.
   563  </p>
   564  
   565  <p>
   566  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   567  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   568  and certain <a href="#Constant_expressions">constant expressions</a>
   569  containing only untyped constant operands are untyped.
   570  </p>
   571  
   572  <p>
   573  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   574  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   575  <a href="#Variable_declarations">variable declaration</a> or an
   576  <a href="#Assignments">assignment</a> or as an
   577  operand in an <a href="#Expressions">expression</a>.
   578  It is an error if the constant value
   579  cannot be represented as a value of the respective type.
   580  For instance, <code>3.0</code> can be given any integer or any
   581  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   582  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   583  not <code>int32</code> or <code>string</code>.
   584  </p>
   585  
   586  <p>
   587  An untyped constant has a <i>default type</i> which is the type to which the
   588  constant is implicitly converted in contexts where a typed value is required,
   589  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   590  such as <code>i := 0</code> where there is no explicit type.
   591  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   592  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   593  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   594  complex, or string constant.
   595  </p>
   596  
   597  <p>
   598  Implementation restriction: Although numeric constants have arbitrary
   599  precision in the language, a compiler may implement them using an
   600  internal representation with limited precision.  That said, every
   601  implementation must:
   602  </p>
   603  <ul>
   604  	<li>Represent integer constants with at least 256 bits.</li>
   605  
   606  	<li>Represent floating-point constants, including the parts of
   607  	    a complex constant, with a mantissa of at least 256 bits
   608  	    and a signed binary exponent of at least 16 bits.</li>
   609  
   610  	<li>Give an error if unable to represent an integer constant
   611  	    precisely.</li>
   612  
   613  	<li>Give an error if unable to represent a floating-point or
   614  	    complex constant due to overflow.</li>
   615  
   616  	<li>Round to the nearest representable constant if unable to
   617  	    represent a floating-point or complex constant due to limits
   618  	    on precision.</li>
   619  </ul>
   620  <p>
   621  These requirements apply both to literal constants and to the result
   622  of evaluating <a href="#Constant_expressions">constant
   623  expressions</a>.
   624  </p>
   625  
   626  <h2 id="Variables">Variables</h2>
   627  
   628  <p>
   629  A variable is a storage location for holding a <i>value</i>.
   630  The set of permissible values is determined by the
   631  variable's <i><a href="#Types">type</a></i>.
   632  </p>
   633  
   634  <p>
   635  A <a href="#Variable_declarations">variable declaration</a>
   636  or, for function parameters and results, the signature
   637  of a <a href="#Function_declarations">function declaration</a>
   638  or <a href="#Function_literals">function literal</a> reserves
   639  storage for a named variable.
   640  
   641  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   642  or taking the address of a <a href="#Composite_literals">composite literal</a>
   643  allocates storage for a variable at run time.
   644  Such an anonymous variable is referred to via a (possibly implicit)
   645  <a href="#Address_operators">pointer indirection</a>.
   646  </p>
   647  
   648  <p>
   649  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   650  and <a href="#Struct_types">struct</a> types have elements and fields that may
   651  be <a href="#Address_operators">addressed</a> individually. Each such element
   652  acts like a variable.
   653  </p>
   654  
   655  <p>
   656  The <i>static type</i> (or just <i>type</i>) of a variable is the
   657  type given in its declaration, the type provided in the
   658  <code>new</code> call or composite literal, or the type of
   659  an element of a structured variable.
   660  Variables of interface type also have a distinct <i>dynamic type</i>,
   661  which is the concrete type of the value assigned to the variable at run time
   662  (unless the value is the predeclared identifier <code>nil</code>,
   663  which has no type).
   664  The dynamic type may vary during execution but values stored in interface
   665  variables are always <a href="#Assignability">assignable</a>
   666  to the static type of the variable.
   667  </p>
   668  
   669  <pre>
   670  var x interface{}  // x is nil and has static type interface{}
   671  var v *T           // v has value nil, static type *T
   672  x = 42             // x has value 42 and dynamic type int
   673  x = v              // x has value (*T)(nil) and dynamic type *T
   674  </pre>
   675  
   676  <p>
   677  A variable's value is retrieved by referring to the variable in an
   678  <a href="#Expressions">expression</a>; it is the most recent value
   679  <a href="#Assignments">assigned</a> to the variable.
   680  If a variable has not yet been assigned a value, its value is the
   681  <a href="#The_zero_value">zero value</a> for its type.
   682  </p>
   683  
   684  
   685  <h2 id="Types">Types</h2>
   686  
   687  <p>
   688  A type determines a set of values together with operations and methods specific
   689  to those values. A type may be denoted by a <i>type name</i>, if it has one,
   690  or specified using a <i>type literal</i>, which composes a type from existing types.
   691  </p>
   692  
   693  <pre class="ebnf">
   694  Type      = TypeName | TypeLit | "(" Type ")" .
   695  TypeName  = identifier | QualifiedIdent .
   696  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   697  	    SliceType | MapType | ChannelType .
   698  </pre>
   699  
   700  <p>
   701  Named instances of the boolean, numeric, and string types are
   702  <a href="#Predeclared_identifiers">predeclared</a>.
   703  Other named types are introduced with <a href="#Type_declarations">type declarations</a>.
   704  <i>Composite types</i>&mdash;array, struct, pointer, function,
   705  interface, slice, map, and channel types&mdash;may be constructed using
   706  type literals.
   707  </p>
   708  
   709  <p>
   710  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   711  is one of the predeclared boolean, numeric, or string types, or a type literal,
   712  the corresponding underlying
   713  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   714  is the underlying type of the type to which <code>T</code> refers in its
   715  <a href="#Type_declarations">type declaration</a>.
   716  </p>
   717  
   718  <pre>
   719  type (
   720  	A1 = string
   721  	A2 = A1
   722  )
   723  
   724  type (
   725  	B1 string
   726  	B2 B1
   727  	B3 []B1
   728  	B4 B3
   729  )
   730  </pre>
   731  
   732  <p>
   733  The underlying type of <code>string</code>, <code>A1</code>, <code>A2</code>, <code>B1</code>,
   734  and <code>B2</code> is <code>string</code>.
   735  The underlying type of <code>[]B1</code>, <code>B3</code>, and <code>B4</code> is <code>[]B1</code>.
   736  </p>
   737  
   738  <h3 id="Method_sets">Method sets</h3>
   739  <p>
   740  A type may have a <i>method set</i> associated with it.
   741  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   742  The method set of any other type <code>T</code> consists of all
   743  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   744  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   745  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   746  (that is, it also contains the method set of <code>T</code>).
   747  Further rules apply to structs containing embedded fields, as described
   748  in the section on <a href="#Struct_types">struct types</a>.
   749  Any other type has an empty method set.
   750  In a method set, each method must have a
   751  <a href="#Uniqueness_of_identifiers">unique</a>
   752  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   753  </p>
   754  
   755  <p>
   756  The method set of a type determines the interfaces that the
   757  type <a href="#Interface_types">implements</a>
   758  and the methods that can be <a href="#Calls">called</a>
   759  using a receiver of that type.
   760  </p>
   761  
   762  <h3 id="Boolean_types">Boolean types</h3>
   763  
   764  <p>
   765  A <i>boolean type</i> represents the set of Boolean truth values
   766  denoted by the predeclared constants <code>true</code>
   767  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   768  </p>
   769  
   770  <h3 id="Numeric_types">Numeric types</h3>
   771  
   772  <p>
   773  A <i>numeric type</i> represents sets of integer or floating-point values.
   774  The predeclared architecture-independent numeric types are:
   775  </p>
   776  
   777  <pre class="grammar">
   778  uint8       the set of all unsigned  8-bit integers (0 to 255)
   779  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   780  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   781  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   782  
   783  int8        the set of all signed  8-bit integers (-128 to 127)
   784  int16       the set of all signed 16-bit integers (-32768 to 32767)
   785  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   786  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   787  
   788  float32     the set of all IEEE-754 32-bit floating-point numbers
   789  float64     the set of all IEEE-754 64-bit floating-point numbers
   790  
   791  complex64   the set of all complex numbers with float32 real and imaginary parts
   792  complex128  the set of all complex numbers with float64 real and imaginary parts
   793  
   794  byte        alias for uint8
   795  rune        alias for int32
   796  </pre>
   797  
   798  <p>
   799  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   800  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   801  </p>
   802  
   803  <p>
   804  There is also a set of predeclared numeric types with implementation-specific sizes:
   805  </p>
   806  
   807  <pre class="grammar">
   808  uint     either 32 or 64 bits
   809  int      same size as uint
   810  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   811  </pre>
   812  
   813  <p>
   814  To avoid portability issues all numeric types are distinct except
   815  <code>byte</code>, which is an alias for <code>uint8</code>, and
   816  <code>rune</code>, which is an alias for <code>int32</code>.
   817  Conversions
   818  are required when different numeric types are mixed in an expression
   819  or assignment. For instance, <code>int32</code> and <code>int</code>
   820  are not the same type even though they may have the same size on a
   821  particular architecture.
   822  
   823  
   824  <h3 id="String_types">String types</h3>
   825  
   826  <p>
   827  A <i>string type</i> represents the set of string values.
   828  A string value is a (possibly empty) sequence of bytes.
   829  Strings are immutable: once created,
   830  it is impossible to change the contents of a string.
   831  The predeclared string type is <code>string</code>.
   832  </p>
   833  
   834  <p>
   835  The length of a string <code>s</code> (its size in bytes) can be discovered using
   836  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   837  The length is a compile-time constant if the string is a constant.
   838  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   839  0 through <code>len(s)-1</code>.
   840  It is illegal to take the address of such an element; if
   841  <code>s[i]</code> is the <code>i</code>'th byte of a
   842  string, <code>&amp;s[i]</code> is invalid.
   843  </p>
   844  
   845  
   846  <h3 id="Array_types">Array types</h3>
   847  
   848  <p>
   849  An array is a numbered sequence of elements of a single
   850  type, called the element type.
   851  The number of elements is called the length and is never
   852  negative.
   853  </p>
   854  
   855  <pre class="ebnf">
   856  ArrayType   = "[" ArrayLength "]" ElementType .
   857  ArrayLength = Expression .
   858  ElementType = Type .
   859  </pre>
   860  
   861  <p>
   862  The length is part of the array's type; it must evaluate to a
   863  non-negative <a href="#Constants">constant</a> representable by a value
   864  of type <code>int</code>.
   865  The length of array <code>a</code> can be discovered
   866  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   867  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   868  0 through <code>len(a)-1</code>.
   869  Array types are always one-dimensional but may be composed to form
   870  multi-dimensional types.
   871  </p>
   872  
   873  <pre>
   874  [32]byte
   875  [2*N] struct { x, y int32 }
   876  [1000]*float64
   877  [3][5]int
   878  [2][2][2]float64  // same as [2]([2]([2]float64))
   879  </pre>
   880  
   881  <h3 id="Slice_types">Slice types</h3>
   882  
   883  <p>
   884  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   885  provides access to a numbered sequence of elements from that array.
   886  A slice type denotes the set of all slices of arrays of its element type.
   887  The value of an uninitialized slice is <code>nil</code>.
   888  </p>
   889  
   890  <pre class="ebnf">
   891  SliceType = "[" "]" ElementType .
   892  </pre>
   893  
   894  <p>
   895  Like arrays, slices are indexable and have a length.  The length of a
   896  slice <code>s</code> can be discovered by the built-in function
   897  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   898  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   899  0 through <code>len(s)-1</code>.  The slice index of a
   900  given element may be less than the index of the same element in the
   901  underlying array.
   902  </p>
   903  <p>
   904  A slice, once initialized, is always associated with an underlying
   905  array that holds its elements.  A slice therefore shares storage
   906  with its array and with other slices of the same array; by contrast,
   907  distinct arrays always represent distinct storage.
   908  </p>
   909  <p>
   910  The array underlying a slice may extend past the end of the slice.
   911  The <i>capacity</i> is a measure of that extent: it is the sum of
   912  the length of the slice and the length of the array beyond the slice;
   913  a slice of length up to that capacity can be created by
   914  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   915  The capacity of a slice <code>a</code> can be discovered using the
   916  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   917  </p>
   918  
   919  <p>
   920  A new, initialized slice value for a given element type <code>T</code> is
   921  made using the built-in function
   922  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   923  which takes a slice type
   924  and parameters specifying the length and optionally the capacity.
   925  A slice created with <code>make</code> always allocates a new, hidden array
   926  to which the returned slice value refers. That is, executing
   927  </p>
   928  
   929  <pre>
   930  make([]T, length, capacity)
   931  </pre>
   932  
   933  <p>
   934  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   935  it, so these two expressions are equivalent:
   936  </p>
   937  
   938  <pre>
   939  make([]int, 50, 100)
   940  new([100]int)[0:50]
   941  </pre>
   942  
   943  <p>
   944  Like arrays, slices are always one-dimensional but may be composed to construct
   945  higher-dimensional objects.
   946  With arrays of arrays, the inner arrays are, by construction, always the same length;
   947  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   948  Moreover, the inner slices must be initialized individually.
   949  </p>
   950  
   951  <h3 id="Struct_types">Struct types</h3>
   952  
   953  <p>
   954  A struct is a sequence of named elements, called fields, each of which has a
   955  name and a type. Field names may be specified explicitly (IdentifierList) or
   956  implicitly (EmbeddedField).
   957  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   958  be <a href="#Uniqueness_of_identifiers">unique</a>.
   959  </p>
   960  
   961  <pre class="ebnf">
   962  StructType    = "struct" "{" { FieldDecl ";" } "}" .
   963  FieldDecl     = (IdentifierList Type | EmbeddedField) [ Tag ] .
   964  EmbeddedField = [ "*" ] TypeName .
   965  Tag           = string_lit .
   966  </pre>
   967  
   968  <pre>
   969  // An empty struct.
   970  struct {}
   971  
   972  // A struct with 6 fields.
   973  struct {
   974  	x, y int
   975  	u float32
   976  	_ float32  // padding
   977  	A *[]int
   978  	F func()
   979  }
   980  </pre>
   981  
   982  <p>
   983  A field declared with a type but no explicit field name is called an <i>embedded field</i>.
   984  An embedded field must be specified as
   985  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   986  and <code>T</code> itself may not be
   987  a pointer type. The unqualified type name acts as the field name.
   988  </p>
   989  
   990  <pre>
   991  // A struct with four embedded fields of types T1, *T2, P.T3 and *P.T4
   992  struct {
   993  	T1        // field name is T1
   994  	*T2       // field name is T2
   995  	P.T3      // field name is T3
   996  	*P.T4     // field name is T4
   997  	x, y int  // field names are x and y
   998  }
   999  </pre>
  1000  
  1001  <p>
  1002  The following declaration is illegal because field names must be unique
  1003  in a struct type:
  1004  </p>
  1005  
  1006  <pre>
  1007  struct {
  1008  	T     // conflicts with embedded field *T and *P.T
  1009  	*T    // conflicts with embedded field T and *P.T
  1010  	*P.T  // conflicts with embedded field T and *T
  1011  }
  1012  </pre>
  1013  
  1014  <p>
  1015  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1016  embedded field in a struct <code>x</code> is called <i>promoted</i> if
  1017  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1018  that field or method <code>f</code>.
  1019  </p>
  1020  
  1021  <p>
  1022  Promoted fields act like ordinary fields
  1023  of a struct except that they cannot be used as field names in
  1024  <a href="#Composite_literals">composite literals</a> of the struct.
  1025  </p>
  1026  
  1027  <p>
  1028  Given a struct type <code>S</code> and a type named <code>T</code>,
  1029  promoted methods are included in the method set of the struct as follows:
  1030  </p>
  1031  <ul>
  1032  	<li>
  1033  	If <code>S</code> contains an embedded field <code>T</code>,
  1034  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1035  	and <code>*S</code> both include promoted methods with receiver
  1036  	<code>T</code>. The method set of <code>*S</code> also
  1037  	includes promoted methods with receiver <code>*T</code>.
  1038  	</li>
  1039  
  1040  	<li>
  1041  	If <code>S</code> contains an embedded field <code>*T</code>,
  1042  	the method sets of <code>S</code> and <code>*S</code> both
  1043  	include promoted methods with receiver <code>T</code> or
  1044  	<code>*T</code>.
  1045  	</li>
  1046  </ul>
  1047  
  1048  <p>
  1049  A field declaration may be followed by an optional string literal <i>tag</i>,
  1050  which becomes an attribute for all the fields in the corresponding
  1051  field declaration. An empty tag string is equivalent to an absent tag.
  1052  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1053  and take part in <a href="#Type_identity">type identity</a> for structs
  1054  but are otherwise ignored.
  1055  </p>
  1056  
  1057  <pre>
  1058  struct {
  1059  	x, y float64 ""  // an empty tag string is like an absent tag
  1060  	name string  "any string is permitted as a tag"
  1061  	_    [4]byte "ceci n'est pas un champ de structure"
  1062  }
  1063  
  1064  // A struct corresponding to a TimeStamp protocol buffer.
  1065  // The tag strings define the protocol buffer field numbers;
  1066  // they follow the convention outlined by the reflect package.
  1067  struct {
  1068  	microsec  uint64 `protobuf:"1"`
  1069  	serverIP6 uint64 `protobuf:"2"`
  1070  }
  1071  </pre>
  1072  
  1073  <h3 id="Pointer_types">Pointer types</h3>
  1074  
  1075  <p>
  1076  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1077  type, called the <i>base type</i> of the pointer.
  1078  The value of an uninitialized pointer is <code>nil</code>.
  1079  </p>
  1080  
  1081  <pre class="ebnf">
  1082  PointerType = "*" BaseType .
  1083  BaseType    = Type .
  1084  </pre>
  1085  
  1086  <pre>
  1087  *Point
  1088  *[4]int
  1089  </pre>
  1090  
  1091  <h3 id="Function_types">Function types</h3>
  1092  
  1093  <p>
  1094  A function type denotes the set of all functions with the same parameter
  1095  and result types. The value of an uninitialized variable of function type
  1096  is <code>nil</code>.
  1097  </p>
  1098  
  1099  <pre class="ebnf">
  1100  FunctionType   = "func" Signature .
  1101  Signature      = Parameters [ Result ] .
  1102  Result         = Parameters | Type .
  1103  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1104  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1105  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1106  </pre>
  1107  
  1108  <p>
  1109  Within a list of parameters or results, the names (IdentifierList)
  1110  must either all be present or all be absent. If present, each name
  1111  stands for one item (parameter or result) of the specified type and
  1112  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1113  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1114  If absent, each type stands for one item of that type.
  1115  Parameter and result
  1116  lists are always parenthesized except that if there is exactly
  1117  one unnamed result it may be written as an unparenthesized type.
  1118  </p>
  1119  
  1120  <p>
  1121  The final incoming parameter in a function signature may have
  1122  a type prefixed with <code>...</code>.
  1123  A function with such a parameter is called <i>variadic</i> and
  1124  may be invoked with zero or more arguments for that parameter.
  1125  </p>
  1126  
  1127  <pre>
  1128  func()
  1129  func(x int) int
  1130  func(a, _ int, z float32) bool
  1131  func(a, b int, z float32) (bool)
  1132  func(prefix string, values ...int)
  1133  func(a, b int, z float64, opt ...interface{}) (success bool)
  1134  func(int, int, float64) (float64, *[]int)
  1135  func(n int) func(p *T)
  1136  </pre>
  1137  
  1138  
  1139  <h3 id="Interface_types">Interface types</h3>
  1140  
  1141  <p>
  1142  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1143  A variable of interface type can store a value of any type with a method set
  1144  that is any superset of the interface. Such a type is said to
  1145  <i>implement the interface</i>.
  1146  The value of an uninitialized variable of interface type is <code>nil</code>.
  1147  </p>
  1148  
  1149  <pre class="ebnf">
  1150  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1151  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1152  MethodName         = identifier .
  1153  InterfaceTypeName  = TypeName .
  1154  </pre>
  1155  
  1156  <p>
  1157  As with all method sets, in an interface type, each method must have a
  1158  <a href="#Uniqueness_of_identifiers">unique</a>
  1159  non-<a href="#Blank_identifier">blank</a> name.
  1160  </p>
  1161  
  1162  <pre>
  1163  // A simple File interface
  1164  interface {
  1165  	Read(b Buffer) bool
  1166  	Write(b Buffer) bool
  1167  	Close()
  1168  }
  1169  </pre>
  1170  
  1171  <p>
  1172  More than one type may implement an interface.
  1173  For instance, if two types <code>S1</code> and <code>S2</code>
  1174  have the method set
  1175  </p>
  1176  
  1177  <pre>
  1178  func (p T) Read(b Buffer) bool { return … }
  1179  func (p T) Write(b Buffer) bool { return … }
  1180  func (p T) Close() { … }
  1181  </pre>
  1182  
  1183  <p>
  1184  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1185  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1186  <code>S2</code>, regardless of what other methods
  1187  <code>S1</code> and <code>S2</code> may have or share.
  1188  </p>
  1189  
  1190  <p>
  1191  A type implements any interface comprising any subset of its methods
  1192  and may therefore implement several distinct interfaces. For
  1193  instance, all types implement the <i>empty interface</i>:
  1194  </p>
  1195  
  1196  <pre>
  1197  interface{}
  1198  </pre>
  1199  
  1200  <p>
  1201  Similarly, consider this interface specification,
  1202  which appears within a <a href="#Type_declarations">type declaration</a>
  1203  to define an interface called <code>Locker</code>:
  1204  </p>
  1205  
  1206  <pre>
  1207  type Locker interface {
  1208  	Lock()
  1209  	Unlock()
  1210  }
  1211  </pre>
  1212  
  1213  <p>
  1214  If <code>S1</code> and <code>S2</code> also implement
  1215  </p>
  1216  
  1217  <pre>
  1218  func (p T) Lock() { … }
  1219  func (p T) Unlock() { … }
  1220  </pre>
  1221  
  1222  <p>
  1223  they implement the <code>Locker</code> interface as well
  1224  as the <code>File</code> interface.
  1225  </p>
  1226  
  1227  <p>
  1228  An interface <code>T</code> may use a (possibly qualified) interface type
  1229  name <code>E</code> in place of a method specification. This is called
  1230  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1231  all (exported and non-exported) methods of <code>E</code> to the interface
  1232  <code>T</code>.
  1233  </p>
  1234  
  1235  <pre>
  1236  type ReadWriter interface {
  1237  	Read(b Buffer) bool
  1238  	Write(b Buffer) bool
  1239  }
  1240  
  1241  type File interface {
  1242  	ReadWriter  // same as adding the methods of ReadWriter
  1243  	Locker      // same as adding the methods of Locker
  1244  	Close()
  1245  }
  1246  
  1247  type LockedFile interface {
  1248  	Locker
  1249  	File        // illegal: Lock, Unlock not unique
  1250  	Lock()      // illegal: Lock not unique
  1251  }
  1252  </pre>
  1253  
  1254  <p>
  1255  An interface type <code>T</code> may not embed itself
  1256  or any interface type that embeds <code>T</code>, recursively.
  1257  </p>
  1258  
  1259  <pre>
  1260  // illegal: Bad cannot embed itself
  1261  type Bad interface {
  1262  	Bad
  1263  }
  1264  
  1265  // illegal: Bad1 cannot embed itself using Bad2
  1266  type Bad1 interface {
  1267  	Bad2
  1268  }
  1269  type Bad2 interface {
  1270  	Bad1
  1271  }
  1272  </pre>
  1273  
  1274  <h3 id="Map_types">Map types</h3>
  1275  
  1276  <p>
  1277  A map is an unordered group of elements of one type, called the
  1278  element type, indexed by a set of unique <i>keys</i> of another type,
  1279  called the key type.
  1280  The value of an uninitialized map is <code>nil</code>.
  1281  </p>
  1282  
  1283  <pre class="ebnf">
  1284  MapType     = "map" "[" KeyType "]" ElementType .
  1285  KeyType     = Type .
  1286  </pre>
  1287  
  1288  <p>
  1289  The <a href="#Comparison_operators">comparison operators</a>
  1290  <code>==</code> and <code>!=</code> must be fully defined
  1291  for operands of the key type; thus the key type must not be a function, map, or
  1292  slice.
  1293  If the key type is an interface type, these
  1294  comparison operators must be defined for the dynamic key values;
  1295  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1296  
  1297  </p>
  1298  
  1299  <pre>
  1300  map[string]int
  1301  map[*T]struct{ x, y float64 }
  1302  map[string]interface{}
  1303  </pre>
  1304  
  1305  <p>
  1306  The number of map elements is called its length.
  1307  For a map <code>m</code>, it can be discovered using the
  1308  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1309  and may change during execution. Elements may be added during execution
  1310  using <a href="#Assignments">assignments</a> and retrieved with
  1311  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1312  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1313  </p>
  1314  <p>
  1315  A new, empty map value is made using the built-in
  1316  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1317  which takes the map type and an optional capacity hint as arguments:
  1318  </p>
  1319  
  1320  <pre>
  1321  make(map[string]int)
  1322  make(map[string]int, 100)
  1323  </pre>
  1324  
  1325  <p>
  1326  The initial capacity does not bound its size:
  1327  maps grow to accommodate the number of items
  1328  stored in them, with the exception of <code>nil</code> maps.
  1329  A <code>nil</code> map is equivalent to an empty map except that no elements
  1330  may be added.
  1331  
  1332  <h3 id="Channel_types">Channel types</h3>
  1333  
  1334  <p>
  1335  A channel provides a mechanism for
  1336  <a href="#Go_statements">concurrently executing functions</a>
  1337  to communicate by
  1338  <a href="#Send_statements">sending</a> and
  1339  <a href="#Receive_operator">receiving</a>
  1340  values of a specified element type.
  1341  The value of an uninitialized channel is <code>nil</code>.
  1342  </p>
  1343  
  1344  <pre class="ebnf">
  1345  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1346  </pre>
  1347  
  1348  <p>
  1349  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1350  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1351  <i>bidirectional</i>.
  1352  A channel may be constrained only to send or only to receive by
  1353  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1354  </p>
  1355  
  1356  <pre>
  1357  chan T          // can be used to send and receive values of type T
  1358  chan&lt;- float64  // can only be used to send float64s
  1359  &lt;-chan int      // can only be used to receive ints
  1360  </pre>
  1361  
  1362  <p>
  1363  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1364  possible:
  1365  </p>
  1366  
  1367  <pre>
  1368  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1369  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1370  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1371  chan (&lt;-chan int)
  1372  </pre>
  1373  
  1374  <p>
  1375  A new, initialized channel
  1376  value can be made using the built-in function
  1377  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1378  which takes the channel type and an optional <i>capacity</i> as arguments:
  1379  </p>
  1380  
  1381  <pre>
  1382  make(chan int, 100)
  1383  </pre>
  1384  
  1385  <p>
  1386  The capacity, in number of elements, sets the size of the buffer in the channel.
  1387  If the capacity is zero or absent, the channel is unbuffered and communication
  1388  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1389  is buffered and communication succeeds without blocking if the buffer
  1390  is not full (sends) or not empty (receives).
  1391  A <code>nil</code> channel is never ready for communication.
  1392  </p>
  1393  
  1394  <p>
  1395  A channel may be closed with the built-in function
  1396  <a href="#Close"><code>close</code></a>.
  1397  The multi-valued assignment form of the
  1398  <a href="#Receive_operator">receive operator</a>
  1399  reports whether a received value was sent before
  1400  the channel was closed.
  1401  </p>
  1402  
  1403  <p>
  1404  A single channel may be used in
  1405  <a href="#Send_statements">send statements</a>,
  1406  <a href="#Receive_operator">receive operations</a>,
  1407  and calls to the built-in functions
  1408  <a href="#Length_and_capacity"><code>cap</code></a> and
  1409  <a href="#Length_and_capacity"><code>len</code></a>
  1410  by any number of goroutines without further synchronization.
  1411  Channels act as first-in-first-out queues.
  1412  For example, if one goroutine sends values on a channel
  1413  and a second goroutine receives them, the values are
  1414  received in the order sent.
  1415  </p>
  1416  
  1417  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1418  
  1419  <h3 id="Type_identity">Type identity</h3>
  1420  
  1421  <p>
  1422  Two types are either <i>identical</i> or <i>different</i>.
  1423  </p>
  1424  
  1425  <p>
  1426  A <a href="#Type_definitions">defined type</a> is always different from any other type.
  1427  Otherwise, two types are identical if their <a href="#Types">underlying</a> type literals are
  1428  structurally equivalent; that is, they have the same literal structure and corresponding
  1429  components have identical types. In detail:
  1430  </p>
  1431  
  1432  <ul>
  1433  	<li>Two array types are identical if they have identical element types and
  1434  	    the same array length.</li>
  1435  
  1436  	<li>Two slice types are identical if they have identical element types.</li>
  1437  
  1438  	<li>Two struct types are identical if they have the same sequence of fields,
  1439  	    and if corresponding fields have the same names, and identical types,
  1440  	    and identical tags.
  1441  	    <a href="#Exported_identifiers">Non-exported</a> field names from different
  1442  	    packages are always different.</li>
  1443  
  1444  	<li>Two pointer types are identical if they have identical base types.</li>
  1445  
  1446  	<li>Two function types are identical if they have the same number of parameters
  1447  	    and result values, corresponding parameter and result types are
  1448  	    identical, and either both functions are variadic or neither is.
  1449  	    Parameter and result names are not required to match.</li>
  1450  
  1451  	<li>Two interface types are identical if they have the same set of methods
  1452  	    with the same names and identical function types.
  1453  	    <a href="#Exported_identifiers">Non-exported</a> method names from different
  1454  	    packages are always different. The order of the methods is irrelevant.</li>
  1455  
  1456  	<li>Two map types are identical if they have identical key and value types.</li>
  1457  
  1458  	<li>Two channel types are identical if they have identical value types and
  1459  	    the same direction.</li>
  1460  </ul>
  1461  
  1462  <p>
  1463  Given the declarations
  1464  </p>
  1465  
  1466  <pre>
  1467  type (
  1468  	A0 = []string
  1469  	A1 = A0
  1470  	A2 = struct{ a, b int }
  1471  	A3 = int
  1472  	A4 = func(A3, float64) *A0
  1473  	A5 = func(x int, _ float64) *[]string
  1474  )
  1475  
  1476  type (
  1477  	B0 A0
  1478  	B1 []string
  1479  	B2 struct{ a, b int }
  1480  	B3 struct{ a, c int }
  1481  	B4 func(int, float64) *B0
  1482  	B5 func(x int, y float64) *A1
  1483  )
  1484  
  1485  type	C0 = B0
  1486  </pre>
  1487  
  1488  <p>
  1489  these types are identical:
  1490  </p>
  1491  
  1492  <pre>
  1493  A0, A1, and []string
  1494  A2 and struct{ a, b int }
  1495  A3 and int
  1496  A4, func(int, float64) *[]string, and A5
  1497  
  1498  B0, B0, and C0
  1499  []int and []int
  1500  struct{ a, b *T5 } and struct{ a, b *T5 }
  1501  func(x int, y float64) *[]string, func(int, float64) (result *[]string), and A5
  1502  </pre>
  1503  
  1504  <p>
  1505  <code>B0</code> and <code>B1</code> are different because they are new types
  1506  created by distinct <a href="#Type_definitions">type definitions</a>;
  1507  <code>func(int, float64) *B0</code> and <code>func(x int, y float64) *[]string</code>
  1508  are different because <code>B0</code> is different from <code>[]string</code>.
  1509  </p>
  1510  
  1511  
  1512  <h3 id="Assignability">Assignability</h3>
  1513  
  1514  <p>
  1515  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1516  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1517  </p>
  1518  
  1519  <ul>
  1520  <li>
  1521  <code>x</code>'s type is identical to <code>T</code>.
  1522  </li>
  1523  <li>
  1524  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1525  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1526  or <code>T</code> is not a <a href="#Type_definitions">defined</a> type.
  1527  </li>
  1528  <li>
  1529  <code>T</code> is an interface type and
  1530  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1531  </li>
  1532  <li>
  1533  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1534  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1535  and at least one of <code>V</code> or <code>T</code> is not a defined type.
  1536  </li>
  1537  <li>
  1538  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1539  is a pointer, function, slice, map, channel, or interface type.
  1540  </li>
  1541  <li>
  1542  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1543  by a value of type <code>T</code>.
  1544  </li>
  1545  </ul>
  1546  
  1547  
  1548  <h2 id="Blocks">Blocks</h2>
  1549  
  1550  <p>
  1551  A <i>block</i> is a possibly empty sequence of declarations and statements
  1552  within matching brace brackets.
  1553  </p>
  1554  
  1555  <pre class="ebnf">
  1556  Block = "{" StatementList "}" .
  1557  StatementList = { Statement ";" } .
  1558  </pre>
  1559  
  1560  <p>
  1561  In addition to explicit blocks in the source code, there are implicit blocks:
  1562  </p>
  1563  
  1564  <ol>
  1565  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1566  
  1567  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1568  	    Go source text for that package.</li>
  1569  
  1570  	<li>Each file has a <i>file block</i> containing all Go source text
  1571  	    in that file.</li>
  1572  
  1573  	<li>Each <a href="#If_statements">"if"</a>,
  1574  	    <a href="#For_statements">"for"</a>, and
  1575  	    <a href="#Switch_statements">"switch"</a>
  1576  	    statement is considered to be in its own implicit block.</li>
  1577  
  1578  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1579  	    or <a href="#Select_statements">"select"</a> statement
  1580  	    acts as an implicit block.</li>
  1581  </ol>
  1582  
  1583  <p>
  1584  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1585  </p>
  1586  
  1587  
  1588  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1589  
  1590  <p>
  1591  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1592  <a href="#Constant_declarations">constant</a>,
  1593  <a href="#Type_declarations">type</a>,
  1594  <a href="#Variable_declarations">variable</a>,
  1595  <a href="#Function_declarations">function</a>,
  1596  <a href="#Labeled_statements">label</a>, or
  1597  <a href="#Import_declarations">package</a>.
  1598  Every identifier in a program must be declared.
  1599  No identifier may be declared twice in the same block, and
  1600  no identifier may be declared in both the file and package block.
  1601  </p>
  1602  
  1603  <p>
  1604  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1605  in a declaration, but it does not introduce a binding and thus is not declared.
  1606  In the package block, the identifier <code>init</code> may only be used for
  1607  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1608  and like the blank identifier it does not introduce a new binding.
  1609  </p>
  1610  
  1611  <pre class="ebnf">
  1612  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1613  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1614  </pre>
  1615  
  1616  <p>
  1617  The <i>scope</i> of a declared identifier is the extent of source text in which
  1618  the identifier denotes the specified constant, type, variable, function, label, or package.
  1619  </p>
  1620  
  1621  <p>
  1622  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1623  </p>
  1624  
  1625  <ol>
  1626  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1627  
  1628  	<li>The scope of an identifier denoting a constant, type, variable,
  1629  	    or function (but not method) declared at top level (outside any
  1630  	    function) is the package block.</li>
  1631  
  1632  	<li>The scope of the package name of an imported package is the file block
  1633  	    of the file containing the import declaration.</li>
  1634  
  1635  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1636  	    or result variable is the function body.</li>
  1637  
  1638  	<li>The scope of a constant or variable identifier declared
  1639  	    inside a function begins at the end of the ConstSpec or VarSpec
  1640  	    (ShortVarDecl for short variable declarations)
  1641  	    and ends at the end of the innermost containing block.</li>
  1642  
  1643  	<li>The scope of a type identifier declared inside a function
  1644  	    begins at the identifier in the TypeSpec
  1645  	    and ends at the end of the innermost containing block.</li>
  1646  </ol>
  1647  
  1648  <p>
  1649  An identifier declared in a block may be redeclared in an inner block.
  1650  While the identifier of the inner declaration is in scope, it denotes
  1651  the entity declared by the inner declaration.
  1652  </p>
  1653  
  1654  <p>
  1655  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1656  does not appear in any scope. Its purpose is to identify the files belonging
  1657  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1658  declarations.
  1659  </p>
  1660  
  1661  
  1662  <h3 id="Label_scopes">Label scopes</h3>
  1663  
  1664  <p>
  1665  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1666  used in the <a href="#Break_statements">"break"</a>,
  1667  <a href="#Continue_statements">"continue"</a>, and
  1668  <a href="#Goto_statements">"goto"</a> statements.
  1669  It is illegal to define a label that is never used.
  1670  In contrast to other identifiers, labels are not block scoped and do
  1671  not conflict with identifiers that are not labels. The scope of a label
  1672  is the body of the function in which it is declared and excludes
  1673  the body of any nested function.
  1674  </p>
  1675  
  1676  
  1677  <h3 id="Blank_identifier">Blank identifier</h3>
  1678  
  1679  <p>
  1680  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1681  It serves as an anonymous placeholder instead of a regular (non-blank)
  1682  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1683  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1684  </p>
  1685  
  1686  
  1687  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1688  
  1689  <p>
  1690  The following identifiers are implicitly declared in the
  1691  <a href="#Blocks">universe block</a>:
  1692  </p>
  1693  <pre class="grammar">
  1694  Types:
  1695  	bool byte complex64 complex128 error float32 float64
  1696  	int int8 int16 int32 int64 rune string
  1697  	uint uint8 uint16 uint32 uint64 uintptr
  1698  
  1699  Constants:
  1700  	true false iota
  1701  
  1702  Zero value:
  1703  	nil
  1704  
  1705  Functions:
  1706  	append cap close complex copy delete imag len
  1707  	make new panic print println real recover
  1708  </pre>
  1709  
  1710  
  1711  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1712  
  1713  <p>
  1714  An identifier may be <i>exported</i> to permit access to it from another package.
  1715  An identifier is exported if both:
  1716  </p>
  1717  <ol>
  1718  	<li>the first character of the identifier's name is a Unicode upper case
  1719  	letter (Unicode class "Lu"); and</li>
  1720  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1721  	or it is a <a href="#Struct_types">field name</a> or
  1722  	<a href="#MethodName">method name</a>.</li>
  1723  </ol>
  1724  <p>
  1725  All other identifiers are not exported.
  1726  </p>
  1727  
  1728  
  1729  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1730  
  1731  <p>
  1732  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1733  <i>different</i> from every other in the set.
  1734  Two identifiers are different if they are spelled differently, or if they
  1735  appear in different <a href="#Packages">packages</a> and are not
  1736  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1737  </p>
  1738  
  1739  <h3 id="Constant_declarations">Constant declarations</h3>
  1740  
  1741  <p>
  1742  A constant declaration binds a list of identifiers (the names of
  1743  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1744  The number of identifiers must be equal
  1745  to the number of expressions, and the <i>n</i>th identifier on
  1746  the left is bound to the value of the <i>n</i>th expression on the
  1747  right.
  1748  </p>
  1749  
  1750  <pre class="ebnf">
  1751  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1752  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1753  
  1754  IdentifierList = identifier { "," identifier } .
  1755  ExpressionList = Expression { "," Expression } .
  1756  </pre>
  1757  
  1758  <p>
  1759  If the type is present, all constants take the type specified, and
  1760  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1761  If the type is omitted, the constants take the
  1762  individual types of the corresponding expressions.
  1763  If the expression values are untyped <a href="#Constants">constants</a>,
  1764  the declared constants remain untyped and the constant identifiers
  1765  denote the constant values. For instance, if the expression is a
  1766  floating-point literal, the constant identifier denotes a floating-point
  1767  constant, even if the literal's fractional part is zero.
  1768  </p>
  1769  
  1770  <pre>
  1771  const Pi float64 = 3.14159265358979323846
  1772  const zero = 0.0         // untyped floating-point constant
  1773  const (
  1774  	size int64 = 1024
  1775  	eof        = -1  // untyped integer constant
  1776  )
  1777  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1778  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1779  </pre>
  1780  
  1781  <p>
  1782  Within a parenthesized <code>const</code> declaration list the
  1783  expression list may be omitted from any but the first declaration.
  1784  Such an empty list is equivalent to the textual substitution of the
  1785  first preceding non-empty expression list and its type if any.
  1786  Omitting the list of expressions is therefore equivalent to
  1787  repeating the previous list.  The number of identifiers must be equal
  1788  to the number of expressions in the previous list.
  1789  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1790  this mechanism permits light-weight declaration of sequential values:
  1791  </p>
  1792  
  1793  <pre>
  1794  const (
  1795  	Sunday = iota
  1796  	Monday
  1797  	Tuesday
  1798  	Wednesday
  1799  	Thursday
  1800  	Friday
  1801  	Partyday
  1802  	numberOfDays  // this constant is not exported
  1803  )
  1804  </pre>
  1805  
  1806  
  1807  <h3 id="Iota">Iota</h3>
  1808  
  1809  <p>
  1810  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1811  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1812  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1813  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1814  It can be used to construct a set of related constants:
  1815  </p>
  1816  
  1817  <pre>
  1818  const ( // iota is reset to 0
  1819  	c0 = iota  // c0 == 0
  1820  	c1 = iota  // c1 == 1
  1821  	c2 = iota  // c2 == 2
  1822  )
  1823  
  1824  const ( // iota is reset to 0
  1825  	a = 1 &lt;&lt; iota  // a == 1
  1826  	b = 1 &lt;&lt; iota  // b == 2
  1827  	c = 3          // c == 3  (iota is not used but still incremented)
  1828  	d = 1 &lt;&lt; iota  // d == 8
  1829  )
  1830  
  1831  const ( // iota is reset to 0
  1832  	u         = iota * 42  // u == 0     (untyped integer constant)
  1833  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1834  	w         = iota * 42  // w == 84    (untyped integer constant)
  1835  )
  1836  
  1837  const x = iota  // x == 0  (iota has been reset)
  1838  const y = iota  // y == 0  (iota has been reset)
  1839  </pre>
  1840  
  1841  <p>
  1842  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1843  it is only incremented after each ConstSpec:
  1844  </p>
  1845  
  1846  <pre>
  1847  const (
  1848  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1849  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1850  	_, _                                  // skips iota == 2
  1851  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1852  )
  1853  </pre>
  1854  
  1855  <p>
  1856  This last example exploits the implicit repetition of the
  1857  last non-empty expression list.
  1858  </p>
  1859  
  1860  
  1861  <h3 id="Type_declarations">Type declarations</h3>
  1862  
  1863  <p>
  1864  A type declaration binds an identifier, the <i>type name</i>, to a <a href="#Types">type</a>.
  1865  Type declarations come in two forms: alias declarations and type definitions.
  1866  <p>
  1867  
  1868  <pre class="ebnf">
  1869  TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1870  TypeSpec = AliasDecl | TypeDef .
  1871  </pre>
  1872  
  1873  <h4 id="Alias_declarations">Alias declarations</h4>
  1874  
  1875  <p>
  1876  An alias declaration binds an identifier to the given type.
  1877  </p>
  1878  
  1879  <pre class="ebnf">
  1880  AliasDecl = identifier "=" Type .
  1881  </pre>
  1882  
  1883  <p>
  1884  Within the <a href="#Declarations_and_scope">scope</a> of
  1885  the identifier, it serves as an <i>alias</i> for the type.
  1886  </p>
  1887  
  1888  <pre>
  1889  type (
  1890  	nodeList = []*Node  // nodeList and []*Node are identical types
  1891  	Polar    = polar    // Polar and polar denote identical types
  1892  )
  1893  </pre>
  1894  
  1895  
  1896  <h4 id="Type_definitions">Type definitions</h4>
  1897  
  1898  <p>
  1899  A type definition creates a new, distinct type with the same
  1900  <a href="#Types">underlying type</a> and operations as the given type,
  1901  and binds an identifier to it.
  1902  </p>
  1903  
  1904  <pre class="ebnf">
  1905  TypeDef = identifier Type .
  1906  </pre>
  1907  
  1908  <p>
  1909  The new type is called a <i>defined type</i>.
  1910  It is <a href="#Type_identity">different</a> from any other type,
  1911  including the type it is created from.
  1912  </p>
  1913  
  1914  <pre>
  1915  type (
  1916  	Point struct{ x, y float64 }  // Point and struct{ x, y float64 } are different types
  1917  	polar Point                   // polar and Point denote different types
  1918  )
  1919  
  1920  type TreeNode struct {
  1921  	left, right *TreeNode
  1922  	value *Comparable
  1923  }
  1924  
  1925  type Block interface {
  1926  	BlockSize() int
  1927  	Encrypt(src, dst []byte)
  1928  	Decrypt(src, dst []byte)
  1929  }
  1930  </pre>
  1931  
  1932  <p>
  1933  A defined type may have <a href="#Method_declarations">methods</a> associated with it.
  1934  It does not inherit any methods bound to the given type,
  1935  but the <a href="#Method_sets">method set</a>
  1936  of an interface type or of elements of a composite type remains unchanged:
  1937  </p>
  1938  
  1939  <pre>
  1940  // A Mutex is a data type with two methods, Lock and Unlock.
  1941  type Mutex struct         { /* Mutex fields */ }
  1942  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1943  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1944  
  1945  // NewMutex has the same composition as Mutex but its method set is empty.
  1946  type NewMutex Mutex
  1947  
  1948  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1949  // but the method set of PtrMutex is empty.
  1950  type PtrMutex *Mutex
  1951  
  1952  // The method set of *PrintableMutex contains the methods
  1953  // Lock and Unlock bound to its embedded field Mutex.
  1954  type PrintableMutex struct {
  1955  	Mutex
  1956  }
  1957  
  1958  // MyBlock is an interface type that has the same method set as Block.
  1959  type MyBlock Block
  1960  </pre>
  1961  
  1962  <p>
  1963  Type definitions may be used to define different boolean, numeric,
  1964  or string types and associate methods with them:
  1965  </p>
  1966  
  1967  <pre>
  1968  type TimeZone int
  1969  
  1970  const (
  1971  	EST TimeZone = -(5 + iota)
  1972  	CST
  1973  	MST
  1974  	PST
  1975  )
  1976  
  1977  func (tz TimeZone) String() string {
  1978  	return fmt.Sprintf("GMT%+dh", tz)
  1979  }
  1980  </pre>
  1981  
  1982  
  1983  <h3 id="Variable_declarations">Variable declarations</h3>
  1984  
  1985  <p>
  1986  A variable declaration creates one or more <a href="#Variables">variables</a>,
  1987  binds corresponding identifiers to them, and gives each a type and an initial value.
  1988  </p>
  1989  
  1990  <pre class="ebnf">
  1991  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1992  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1993  </pre>
  1994  
  1995  <pre>
  1996  var i int
  1997  var U, V, W float64
  1998  var k = 0
  1999  var x, y float32 = -1, -2
  2000  var (
  2001  	i       int
  2002  	u, v, s = 2.0, 3.0, "bar"
  2003  )
  2004  var re, im = complexSqrt(-1)
  2005  var _, found = entries[name]  // map lookup; only interested in "found"
  2006  </pre>
  2007  
  2008  <p>
  2009  If a list of expressions is given, the variables are initialized
  2010  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  2011  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  2012  </p>
  2013  
  2014  <p>
  2015  If a type is present, each variable is given that type.
  2016  Otherwise, each variable is given the type of the corresponding
  2017  initialization value in the assignment.
  2018  If that value is an untyped constant, it is first
  2019  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  2020  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  2021  The predeclared value <code>nil</code> cannot be used to initialize a variable
  2022  with no explicit type.
  2023  </p>
  2024  
  2025  <pre>
  2026  var d = math.Sin(0.5)  // d is float64
  2027  var i = 42             // i is int
  2028  var t, ok = x.(T)      // t is T, ok is bool
  2029  var n = nil            // illegal
  2030  </pre>
  2031  
  2032  <p>
  2033  Implementation restriction: A compiler may make it illegal to declare a variable
  2034  inside a <a href="#Function_declarations">function body</a> if the variable is
  2035  never used.
  2036  </p>
  2037  
  2038  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  2039  
  2040  <p>
  2041  A <i>short variable declaration</i> uses the syntax:
  2042  </p>
  2043  
  2044  <pre class="ebnf">
  2045  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2046  </pre>
  2047  
  2048  <p>
  2049  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2050  with initializer expressions but no types:
  2051  </p>
  2052  
  2053  <pre class="grammar">
  2054  "var" IdentifierList = ExpressionList .
  2055  </pre>
  2056  
  2057  <pre>
  2058  i, j := 0, 10
  2059  f := func() int { return 7 }
  2060  ch := make(chan int)
  2061  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2062  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2063  </pre>
  2064  
  2065  <p>
  2066  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2067  variables provided they were originally declared earlier in the same block
  2068  (or the parameter lists if the block is the function body) with the same type,
  2069  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2070  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2071  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2072  </p>
  2073  
  2074  <pre>
  2075  field1, offset := nextField(str, 0)
  2076  field2, offset := nextField(str, offset)  // redeclares offset
  2077  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2078  </pre>
  2079  
  2080  <p>
  2081  Short variable declarations may appear only inside functions.
  2082  In some contexts such as the initializers for
  2083  <a href="#If_statements">"if"</a>,
  2084  <a href="#For_statements">"for"</a>, or
  2085  <a href="#Switch_statements">"switch"</a> statements,
  2086  they can be used to declare local temporary variables.
  2087  </p>
  2088  
  2089  <h3 id="Function_declarations">Function declarations</h3>
  2090  
  2091  <p>
  2092  A function declaration binds an identifier, the <i>function name</i>,
  2093  to a function.
  2094  </p>
  2095  
  2096  <pre class="ebnf">
  2097  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2098  FunctionName = identifier .
  2099  Function     = Signature FunctionBody .
  2100  FunctionBody = Block .
  2101  </pre>
  2102  
  2103  <p>
  2104  If the function's <a href="#Function_types">signature</a> declares
  2105  result parameters, the function body's statement list must end in
  2106  a <a href="#Terminating_statements">terminating statement</a>.
  2107  </p>
  2108  
  2109  <pre>
  2110  func IndexRune(s string, r rune) int {
  2111  	for i, c := range s {
  2112  		if c == r {
  2113  			return i
  2114  		}
  2115  	}
  2116  	// invalid: missing return statement
  2117  }
  2118  </pre>
  2119  
  2120  <p>
  2121  A function declaration may omit the body. Such a declaration provides the
  2122  signature for a function implemented outside Go, such as an assembly routine.
  2123  </p>
  2124  
  2125  <pre>
  2126  func min(x int, y int) int {
  2127  	if x &lt; y {
  2128  		return x
  2129  	}
  2130  	return y
  2131  }
  2132  
  2133  func flushICache(begin, end uintptr)  // implemented externally
  2134  </pre>
  2135  
  2136  <h3 id="Method_declarations">Method declarations</h3>
  2137  
  2138  <p>
  2139  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2140  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2141  and associates the method with the receiver's <i>base type</i>.
  2142  </p>
  2143  
  2144  <pre class="ebnf">
  2145  MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
  2146  Receiver   = Parameters .
  2147  </pre>
  2148  
  2149  <p>
  2150  The receiver is specified via an extra parameter section preceding the method
  2151  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2152  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2153  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2154  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2155  it must be <a href="#Type_definitions">defined</a> in the same package as the method.
  2156  The method is said to be <i>bound</i> to the base type and the method name
  2157  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2158  or <code>*T</code>.
  2159  </p>
  2160  
  2161  <p>
  2162  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2163  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2164  If the receiver's value is not referenced inside the body of the method,
  2165  its identifier may be omitted in the declaration. The same applies in
  2166  general to parameters of functions and methods.
  2167  </p>
  2168  
  2169  <p>
  2170  For a base type, the non-blank names of methods bound to it must be unique.
  2171  If the base type is a <a href="#Struct_types">struct type</a>,
  2172  the non-blank method and field names must be distinct.
  2173  </p>
  2174  
  2175  <p>
  2176  Given type <code>Point</code>, the declarations
  2177  </p>
  2178  
  2179  <pre>
  2180  func (p *Point) Length() float64 {
  2181  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2182  }
  2183  
  2184  func (p *Point) Scale(factor float64) {
  2185  	p.x *= factor
  2186  	p.y *= factor
  2187  }
  2188  </pre>
  2189  
  2190  <p>
  2191  bind the methods <code>Length</code> and <code>Scale</code>,
  2192  with receiver type <code>*Point</code>,
  2193  to the base type <code>Point</code>.
  2194  </p>
  2195  
  2196  <p>
  2197  The type of a method is the type of a function with the receiver as first
  2198  argument.  For instance, the method <code>Scale</code> has type
  2199  </p>
  2200  
  2201  <pre>
  2202  func(p *Point, factor float64)
  2203  </pre>
  2204  
  2205  <p>
  2206  However, a function declared this way is not a method.
  2207  </p>
  2208  
  2209  
  2210  <h2 id="Expressions">Expressions</h2>
  2211  
  2212  <p>
  2213  An expression specifies the computation of a value by applying
  2214  operators and functions to operands.
  2215  </p>
  2216  
  2217  <h3 id="Operands">Operands</h3>
  2218  
  2219  <p>
  2220  Operands denote the elementary values in an expression. An operand may be a
  2221  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2222  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2223  <a href="#Constant_declarations">constant</a>,
  2224  <a href="#Variable_declarations">variable</a>, or
  2225  <a href="#Function_declarations">function</a>,
  2226  a <a href="#Method_expressions">method expression</a> yielding a function,
  2227  or a parenthesized expression.
  2228  </p>
  2229  
  2230  <p>
  2231  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2232  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2233  </p>
  2234  
  2235  <pre class="ebnf">
  2236  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2237  Literal     = BasicLit | CompositeLit | FunctionLit .
  2238  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2239  OperandName = identifier | QualifiedIdent.
  2240  </pre>
  2241  
  2242  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2243  
  2244  <p>
  2245  A qualified identifier is an identifier qualified with a package name prefix.
  2246  Both the package name and the identifier must not be
  2247  <a href="#Blank_identifier">blank</a>.
  2248  </p>
  2249  
  2250  <pre class="ebnf">
  2251  QualifiedIdent = PackageName "." identifier .
  2252  </pre>
  2253  
  2254  <p>
  2255  A qualified identifier accesses an identifier in a different package, which
  2256  must be <a href="#Import_declarations">imported</a>.
  2257  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2258  declared in the <a href="#Blocks">package block</a> of that package.
  2259  </p>
  2260  
  2261  <pre>
  2262  math.Sin	// denotes the Sin function in package math
  2263  </pre>
  2264  
  2265  <h3 id="Composite_literals">Composite literals</h3>
  2266  
  2267  <p>
  2268  Composite literals construct values for structs, arrays, slices, and maps
  2269  and create a new value each time they are evaluated.
  2270  They consist of the type of the literal followed by a brace-bound list of elements.
  2271  Each element may optionally be preceded by a corresponding key.
  2272  </p>
  2273  
  2274  <pre class="ebnf">
  2275  CompositeLit  = LiteralType LiteralValue .
  2276  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2277                  SliceType | MapType | TypeName .
  2278  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2279  ElementList   = KeyedElement { "," KeyedElement } .
  2280  KeyedElement  = [ Key ":" ] Element .
  2281  Key           = FieldName | Expression | LiteralValue .
  2282  FieldName     = identifier .
  2283  Element       = Expression | LiteralValue .
  2284  </pre>
  2285  
  2286  <p>
  2287  The LiteralType's underlying type must be a struct, array, slice, or map type
  2288  (the grammar enforces this constraint except when the type is given
  2289  as a TypeName).
  2290  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2291  to the respective field, element, and key types of the literal type;
  2292  there is no additional conversion.
  2293  The key is interpreted as a field name for struct literals,
  2294  an index for array and slice literals, and a key for map literals.
  2295  For map literals, all elements must have a key. It is an error
  2296  to specify multiple elements with the same field name or
  2297  constant key value.
  2298  </p>
  2299  
  2300  <p>
  2301  For struct literals the following rules apply:
  2302  </p>
  2303  <ul>
  2304  	<li>A key must be a field name declared in the struct type.
  2305  	</li>
  2306  	<li>An element list that does not contain any keys must
  2307  	    list an element for each struct field in the
  2308  	    order in which the fields are declared.
  2309  	</li>
  2310  	<li>If any element has a key, every element must have a key.
  2311  	</li>
  2312  	<li>An element list that contains keys does not need to
  2313  	    have an element for each struct field. Omitted fields
  2314  	    get the zero value for that field.
  2315  	</li>
  2316  	<li>A literal may omit the element list; such a literal evaluates
  2317  	    to the zero value for its type.
  2318  	</li>
  2319  	<li>It is an error to specify an element for a non-exported
  2320  	    field of a struct belonging to a different package.
  2321  	</li>
  2322  </ul>
  2323  
  2324  <p>
  2325  Given the declarations
  2326  </p>
  2327  <pre>
  2328  type Point3D struct { x, y, z float64 }
  2329  type Line struct { p, q Point3D }
  2330  </pre>
  2331  
  2332  <p>
  2333  one may write
  2334  </p>
  2335  
  2336  <pre>
  2337  origin := Point3D{}                            // zero value for Point3D
  2338  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2339  </pre>
  2340  
  2341  <p>
  2342  For array and slice literals the following rules apply:
  2343  </p>
  2344  <ul>
  2345  	<li>Each element has an associated integer index marking
  2346  	    its position in the array.
  2347  	</li>
  2348  	<li>An element with a key uses the key as its index. The
  2349  	    key must be a non-negative constant representable by
  2350  	    a value of type <code>int</code>; and if it is typed
  2351  	    it must be of integer type.
  2352  	</li>
  2353  	<li>An element without a key uses the previous element's index plus one.
  2354  	    If the first element has no key, its index is zero.
  2355  	</li>
  2356  </ul>
  2357  
  2358  <p>
  2359  <a href="#Address_operators">Taking the address</a> of a composite literal
  2360  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2361  with the literal's value.
  2362  </p>
  2363  <pre>
  2364  var pointer *Point3D = &amp;Point3D{y: 1000}
  2365  </pre>
  2366  
  2367  <p>
  2368  The length of an array literal is the length specified in the literal type.
  2369  If fewer elements than the length are provided in the literal, the missing
  2370  elements are set to the zero value for the array element type.
  2371  It is an error to provide elements with index values outside the index range
  2372  of the array. The notation <code>...</code> specifies an array length equal
  2373  to the maximum element index plus one.
  2374  </p>
  2375  
  2376  <pre>
  2377  buffer := [10]string{}             // len(buffer) == 10
  2378  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2379  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2380  </pre>
  2381  
  2382  <p>
  2383  A slice literal describes the entire underlying array literal.
  2384  Thus the length and capacity of a slice literal are the maximum
  2385  element index plus one. A slice literal has the form
  2386  </p>
  2387  
  2388  <pre>
  2389  []T{x1, x2, … xn}
  2390  </pre>
  2391  
  2392  <p>
  2393  and is shorthand for a slice operation applied to an array:
  2394  </p>
  2395  
  2396  <pre>
  2397  tmp := [n]T{x1, x2, … xn}
  2398  tmp[0 : n]
  2399  </pre>
  2400  
  2401  <p>
  2402  Within a composite literal of array, slice, or map type <code>T</code>,
  2403  elements or map keys that are themselves composite literals may elide the respective
  2404  literal type if it is identical to the element or key type of <code>T</code>.
  2405  Similarly, elements or keys that are addresses of composite literals may elide
  2406  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2407  </p>
  2408  
  2409  <pre>
  2410  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2411  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2412  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2413  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2414  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2415  
  2416  type PPoint *Point
  2417  [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
  2418  [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
  2419  </pre>
  2420  
  2421  <p>
  2422  A parsing ambiguity arises when a composite literal using the
  2423  TypeName form of the LiteralType appears as an operand between the
  2424  <a href="#Keywords">keyword</a> and the opening brace of the block
  2425  of an "if", "for", or "switch" statement, and the composite literal
  2426  is not enclosed in parentheses, square brackets, or curly braces.
  2427  In this rare case, the opening brace of the literal is erroneously parsed
  2428  as the one introducing the block of statements. To resolve the ambiguity,
  2429  the composite literal must appear within parentheses.
  2430  </p>
  2431  
  2432  <pre>
  2433  if x == (T{a,b,c}[i]) { … }
  2434  if (x == T{a,b,c}[i]) { … }
  2435  </pre>
  2436  
  2437  <p>
  2438  Examples of valid array, slice, and map literals:
  2439  </p>
  2440  
  2441  <pre>
  2442  // list of prime numbers
  2443  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2444  
  2445  // vowels[ch] is true if ch is a vowel
  2446  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2447  
  2448  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2449  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2450  
  2451  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2452  noteFrequency := map[string]float32{
  2453  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2454  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2455  }
  2456  </pre>
  2457  
  2458  
  2459  <h3 id="Function_literals">Function literals</h3>
  2460  
  2461  <p>
  2462  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2463  </p>
  2464  
  2465  <pre class="ebnf">
  2466  FunctionLit = "func" Function .
  2467  </pre>
  2468  
  2469  <pre>
  2470  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2471  </pre>
  2472  
  2473  <p>
  2474  A function literal can be assigned to a variable or invoked directly.
  2475  </p>
  2476  
  2477  <pre>
  2478  f := func(x, y int) int { return x + y }
  2479  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2480  </pre>
  2481  
  2482  <p>
  2483  Function literals are <i>closures</i>: they may refer to variables
  2484  defined in a surrounding function. Those variables are then shared between
  2485  the surrounding function and the function literal, and they survive as long
  2486  as they are accessible.
  2487  </p>
  2488  
  2489  
  2490  <h3 id="Primary_expressions">Primary expressions</h3>
  2491  
  2492  <p>
  2493  Primary expressions are the operands for unary and binary expressions.
  2494  </p>
  2495  
  2496  <pre class="ebnf">
  2497  PrimaryExpr =
  2498  	Operand |
  2499  	Conversion |
  2500  	PrimaryExpr Selector |
  2501  	PrimaryExpr Index |
  2502  	PrimaryExpr Slice |
  2503  	PrimaryExpr TypeAssertion |
  2504  	PrimaryExpr Arguments .
  2505  
  2506  Selector       = "." identifier .
  2507  Index          = "[" Expression "]" .
  2508  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2509                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2510  TypeAssertion  = "." "(" Type ")" .
  2511  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2512  </pre>
  2513  
  2514  
  2515  <pre>
  2516  x
  2517  2
  2518  (s + ".txt")
  2519  f(3.1415, true)
  2520  Point{1, 2}
  2521  m["foo"]
  2522  s[i : j + 1]
  2523  obj.color
  2524  f.p[i].x()
  2525  </pre>
  2526  
  2527  
  2528  <h3 id="Selectors">Selectors</h3>
  2529  
  2530  <p>
  2531  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2532  that is not a <a href="#Package_clause">package name</a>, the
  2533  <i>selector expression</i>
  2534  </p>
  2535  
  2536  <pre>
  2537  x.f
  2538  </pre>
  2539  
  2540  <p>
  2541  denotes the field or method <code>f</code> of the value <code>x</code>
  2542  (or sometimes <code>*x</code>; see below).
  2543  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2544  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2545  The type of the selector expression is the type of <code>f</code>.
  2546  If <code>x</code> is a package name, see the section on
  2547  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2548  </p>
  2549  
  2550  <p>
  2551  A selector <code>f</code> may denote a field or method <code>f</code> of
  2552  a type <code>T</code>, or it may refer
  2553  to a field or method <code>f</code> of a nested
  2554  <a href="#Struct_types">embedded field</a> of <code>T</code>.
  2555  The number of embedded fields traversed
  2556  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2557  The depth of a field or method <code>f</code>
  2558  declared in <code>T</code> is zero.
  2559  The depth of a field or method <code>f</code> declared in
  2560  an embedded field <code>A</code> in <code>T</code> is the
  2561  depth of <code>f</code> in <code>A</code> plus one.
  2562  </p>
  2563  
  2564  <p>
  2565  The following rules apply to selectors:
  2566  </p>
  2567  
  2568  <ol>
  2569  <li>
  2570  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2571  where <code>T</code> is not a pointer or interface type,
  2572  <code>x.f</code> denotes the field or method at the shallowest depth
  2573  in <code>T</code> where there
  2574  is such an <code>f</code>.
  2575  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2576  with shallowest depth, the selector expression is illegal.
  2577  </li>
  2578  
  2579  <li>
  2580  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2581  is an interface type, <code>x.f</code> denotes the actual method with name
  2582  <code>f</code> of the dynamic value of <code>x</code>.
  2583  If there is no method with name <code>f</code> in the
  2584  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2585  expression is illegal.
  2586  </li>
  2587  
  2588  <li>
  2589  As an exception, if the type of <code>x</code> is a named pointer type
  2590  and <code>(*x).f</code> is a valid selector expression denoting a field
  2591  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2592  </li>
  2593  
  2594  <li>
  2595  In all other cases, <code>x.f</code> is illegal.
  2596  </li>
  2597  
  2598  <li>
  2599  If <code>x</code> is of pointer type and has the value
  2600  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2601  assigning to or evaluating <code>x.f</code>
  2602  causes a <a href="#Run_time_panics">run-time panic</a>.
  2603  </li>
  2604  
  2605  <li>
  2606  If <code>x</code> is of interface type and has the value
  2607  <code>nil</code>, <a href="#Calls">calling</a> or
  2608  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2609  causes a <a href="#Run_time_panics">run-time panic</a>.
  2610  </li>
  2611  </ol>
  2612  
  2613  <p>
  2614  For example, given the declarations:
  2615  </p>
  2616  
  2617  <pre>
  2618  type T0 struct {
  2619  	x int
  2620  }
  2621  
  2622  func (*T0) M0()
  2623  
  2624  type T1 struct {
  2625  	y int
  2626  }
  2627  
  2628  func (T1) M1()
  2629  
  2630  type T2 struct {
  2631  	z int
  2632  	T1
  2633  	*T0
  2634  }
  2635  
  2636  func (*T2) M2()
  2637  
  2638  type Q *T2
  2639  
  2640  var t T2     // with t.T0 != nil
  2641  var p *T2    // with p != nil and (*p).T0 != nil
  2642  var q Q = p
  2643  </pre>
  2644  
  2645  <p>
  2646  one may write:
  2647  </p>
  2648  
  2649  <pre>
  2650  t.z          // t.z
  2651  t.y          // t.T1.y
  2652  t.x          // (*t.T0).x
  2653  
  2654  p.z          // (*p).z
  2655  p.y          // (*p).T1.y
  2656  p.x          // (*(*p).T0).x
  2657  
  2658  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2659  
  2660  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2661  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2662  p.M2()       // p.M2()              M2 expects *T2 receiver
  2663  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2664  </pre>
  2665  
  2666  <p>
  2667  but the following is invalid:
  2668  </p>
  2669  
  2670  <pre>
  2671  q.M0()       // (*q).M0 is valid but not a field selector
  2672  </pre>
  2673  
  2674  
  2675  <h3 id="Method_expressions">Method expressions</h3>
  2676  
  2677  <p>
  2678  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2679  <code>T.M</code> is a function that is callable as a regular function
  2680  with the same arguments as <code>M</code> prefixed by an additional
  2681  argument that is the receiver of the method.
  2682  </p>
  2683  
  2684  <pre class="ebnf">
  2685  MethodExpr    = ReceiverType "." MethodName .
  2686  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2687  </pre>
  2688  
  2689  <p>
  2690  Consider a struct type <code>T</code> with two methods,
  2691  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2692  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2693  </p>
  2694  
  2695  <pre>
  2696  type T struct {
  2697  	a int
  2698  }
  2699  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2700  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2701  
  2702  var t T
  2703  </pre>
  2704  
  2705  <p>
  2706  The expression
  2707  </p>
  2708  
  2709  <pre>
  2710  T.Mv
  2711  </pre>
  2712  
  2713  <p>
  2714  yields a function equivalent to <code>Mv</code> but
  2715  with an explicit receiver as its first argument; it has signature
  2716  </p>
  2717  
  2718  <pre>
  2719  func(tv T, a int) int
  2720  </pre>
  2721  
  2722  <p>
  2723  That function may be called normally with an explicit receiver, so
  2724  these five invocations are equivalent:
  2725  </p>
  2726  
  2727  <pre>
  2728  t.Mv(7)
  2729  T.Mv(t, 7)
  2730  (T).Mv(t, 7)
  2731  f1 := T.Mv; f1(t, 7)
  2732  f2 := (T).Mv; f2(t, 7)
  2733  </pre>
  2734  
  2735  <p>
  2736  Similarly, the expression
  2737  </p>
  2738  
  2739  <pre>
  2740  (*T).Mp
  2741  </pre>
  2742  
  2743  <p>
  2744  yields a function value representing <code>Mp</code> with signature
  2745  </p>
  2746  
  2747  <pre>
  2748  func(tp *T, f float32) float32
  2749  </pre>
  2750  
  2751  <p>
  2752  For a method with a value receiver, one can derive a function
  2753  with an explicit pointer receiver, so
  2754  </p>
  2755  
  2756  <pre>
  2757  (*T).Mv
  2758  </pre>
  2759  
  2760  <p>
  2761  yields a function value representing <code>Mv</code> with signature
  2762  </p>
  2763  
  2764  <pre>
  2765  func(tv *T, a int) int
  2766  </pre>
  2767  
  2768  <p>
  2769  Such a function indirects through the receiver to create a value
  2770  to pass as the receiver to the underlying method;
  2771  the method does not overwrite the value whose address is passed in
  2772  the function call.
  2773  </p>
  2774  
  2775  <p>
  2776  The final case, a value-receiver function for a pointer-receiver method,
  2777  is illegal because pointer-receiver methods are not in the method set
  2778  of the value type.
  2779  </p>
  2780  
  2781  <p>
  2782  Function values derived from methods are called with function call syntax;
  2783  the receiver is provided as the first argument to the call.
  2784  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2785  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2786  To construct a function that binds the receiver, use a
  2787  <a href="#Function_literals">function literal</a> or
  2788  <a href="#Method_values">method value</a>.
  2789  </p>
  2790  
  2791  <p>
  2792  It is legal to derive a function value from a method of an interface type.
  2793  The resulting function takes an explicit receiver of that interface type.
  2794  </p>
  2795  
  2796  <h3 id="Method_values">Method values</h3>
  2797  
  2798  <p>
  2799  If the expression <code>x</code> has static type <code>T</code> and
  2800  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2801  <code>x.M</code> is called a <i>method value</i>.
  2802  The method value <code>x.M</code> is a function value that is callable
  2803  with the same arguments as a method call of <code>x.M</code>.
  2804  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2805  method value; the saved copy is then used as the receiver in any calls,
  2806  which may be executed later.
  2807  </p>
  2808  
  2809  <p>
  2810  The type <code>T</code> may be an interface or non-interface type.
  2811  </p>
  2812  
  2813  <p>
  2814  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2815  consider a struct type <code>T</code> with two methods,
  2816  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2817  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2818  </p>
  2819  
  2820  <pre>
  2821  type T struct {
  2822  	a int
  2823  }
  2824  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2825  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2826  
  2827  var t T
  2828  var pt *T
  2829  func makeT() T
  2830  </pre>
  2831  
  2832  <p>
  2833  The expression
  2834  </p>
  2835  
  2836  <pre>
  2837  t.Mv
  2838  </pre>
  2839  
  2840  <p>
  2841  yields a function value of type
  2842  </p>
  2843  
  2844  <pre>
  2845  func(int) int
  2846  </pre>
  2847  
  2848  <p>
  2849  These two invocations are equivalent:
  2850  </p>
  2851  
  2852  <pre>
  2853  t.Mv(7)
  2854  f := t.Mv; f(7)
  2855  </pre>
  2856  
  2857  <p>
  2858  Similarly, the expression
  2859  </p>
  2860  
  2861  <pre>
  2862  pt.Mp
  2863  </pre>
  2864  
  2865  <p>
  2866  yields a function value of type
  2867  </p>
  2868  
  2869  <pre>
  2870  func(float32) float32
  2871  </pre>
  2872  
  2873  <p>
  2874  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2875  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2876  </p>
  2877  
  2878  <p>
  2879  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2880  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2881  </p>
  2882  
  2883  <pre>
  2884  f := t.Mv; f(7)   // like t.Mv(7)
  2885  f := pt.Mp; f(7)  // like pt.Mp(7)
  2886  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2887  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2888  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2889  </pre>
  2890  
  2891  <p>
  2892  Although the examples above use non-interface types, it is also legal to create a method value
  2893  from a value of interface type.
  2894  </p>
  2895  
  2896  <pre>
  2897  var i interface { M(int) } = myVal
  2898  f := i.M; f(7)  // like i.M(7)
  2899  </pre>
  2900  
  2901  
  2902  <h3 id="Index_expressions">Index expressions</h3>
  2903  
  2904  <p>
  2905  A primary expression of the form
  2906  </p>
  2907  
  2908  <pre>
  2909  a[x]
  2910  </pre>
  2911  
  2912  <p>
  2913  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2914  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2915  The following rules apply:
  2916  </p>
  2917  
  2918  <p>
  2919  If <code>a</code> is not a map:
  2920  </p>
  2921  <ul>
  2922  	<li>the index <code>x</code> must be of integer type or untyped;
  2923  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2924  	    otherwise it is <i>out of range</i></li>
  2925  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2926  	    and representable by a value of type <code>int</code>
  2927  </ul>
  2928  
  2929  <p>
  2930  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2931  </p>
  2932  <ul>
  2933  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2934  	<li>if <code>x</code> is out of range at run time,
  2935  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2936  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2937  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2938  </ul>
  2939  
  2940  <p>
  2941  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2942  </p>
  2943  <ul>
  2944  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2945  </ul>
  2946  
  2947  <p>
  2948  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2949  </p>
  2950  <ul>
  2951  	<li>if <code>x</code> is out of range at run time,
  2952  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2953  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2954  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2955  </ul>
  2956  
  2957  <p>
  2958  For <code>a</code> of <a href="#String_types">string type</a>:
  2959  </p>
  2960  <ul>
  2961  	<li>a <a href="#Constants">constant</a> index must be in range
  2962  	    if the string <code>a</code> is also constant</li>
  2963  	<li>if <code>x</code> is out of range at run time,
  2964  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2965  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2966  	    <code>a[x]</code> is <code>byte</code></li>
  2967  	<li><code>a[x]</code> may not be assigned to</li>
  2968  </ul>
  2969  
  2970  <p>
  2971  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2972  </p>
  2973  <ul>
  2974  	<li><code>x</code>'s type must be
  2975  	    <a href="#Assignability">assignable</a>
  2976  	    to the key type of <code>M</code></li>
  2977  	<li>if the map contains an entry with key <code>x</code>,
  2978  	    <code>a[x]</code> is the map value with key <code>x</code>
  2979  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2980  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2981  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2982  	    for the value type of <code>M</code></li>
  2983  </ul>
  2984  
  2985  <p>
  2986  Otherwise <code>a[x]</code> is illegal.
  2987  </p>
  2988  
  2989  <p>
  2990  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2991  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2992  </p>
  2993  
  2994  <pre>
  2995  v, ok = a[x]
  2996  v, ok := a[x]
  2997  var v, ok = a[x]
  2998  var v, ok T = a[x]
  2999  </pre>
  3000  
  3001  <p>
  3002  yields an additional untyped boolean value. The value of <code>ok</code> is
  3003  <code>true</code> if the key <code>x</code> is present in the map, and
  3004  <code>false</code> otherwise.
  3005  </p>
  3006  
  3007  <p>
  3008  Assigning to an element of a <code>nil</code> map causes a
  3009  <a href="#Run_time_panics">run-time panic</a>.
  3010  </p>
  3011  
  3012  
  3013  <h3 id="Slice_expressions">Slice expressions</h3>
  3014  
  3015  <p>
  3016  Slice expressions construct a substring or slice from a string, array, pointer
  3017  to array, or slice. There are two variants: a simple form that specifies a low
  3018  and high bound, and a full form that also specifies a bound on the capacity.
  3019  </p>
  3020  
  3021  <h4>Simple slice expressions</h4>
  3022  
  3023  <p>
  3024  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  3025  </p>
  3026  
  3027  <pre>
  3028  a[low : high]
  3029  </pre>
  3030  
  3031  <p>
  3032  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  3033  <code>high</code> select which elements of operand <code>a</code> appear
  3034  in the result. The result has indices starting at 0 and length equal to
  3035  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  3036  After slicing the array <code>a</code>
  3037  </p>
  3038  
  3039  <pre>
  3040  a := [5]int{1, 2, 3, 4, 5}
  3041  s := a[1:4]
  3042  </pre>
  3043  
  3044  <p>
  3045  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  3046  </p>
  3047  
  3048  <pre>
  3049  s[0] == 2
  3050  s[1] == 3
  3051  s[2] == 4
  3052  </pre>
  3053  
  3054  <p>
  3055  For convenience, any of the indices may be omitted. A missing <code>low</code>
  3056  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  3057  sliced operand:
  3058  </p>
  3059  
  3060  <pre>
  3061  a[2:]  // same as a[2 : len(a)]
  3062  a[:3]  // same as a[0 : 3]
  3063  a[:]   // same as a[0 : len(a)]
  3064  </pre>
  3065  
  3066  <p>
  3067  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3068  <code>(*a)[low : high]</code>.
  3069  </p>
  3070  
  3071  <p>
  3072  For arrays or strings, the indices are <i>in range</i> if
  3073  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3074  otherwise they are <i>out of range</i>.
  3075  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3076  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3077  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3078  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3079  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3080  </p>
  3081  
  3082  <p>
  3083  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3084  the result of the slice operation is a non-constant value of the same type as the operand.
  3085  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3086  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3087  and the result of the slice operation is a slice with the same element type as the array.
  3088  </p>
  3089  
  3090  <p>
  3091  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3092  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3093  operand.
  3094  </p>
  3095  
  3096  <h4>Full slice expressions</h4>
  3097  
  3098  <p>
  3099  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3100  </p>
  3101  
  3102  <pre>
  3103  a[low : high : max]
  3104  </pre>
  3105  
  3106  <p>
  3107  constructs a slice of the same type, and with the same length and elements as the simple slice
  3108  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3109  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3110  After slicing the array <code>a</code>
  3111  </p>
  3112  
  3113  <pre>
  3114  a := [5]int{1, 2, 3, 4, 5}
  3115  t := a[1:3:5]
  3116  </pre>
  3117  
  3118  <p>
  3119  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3120  </p>
  3121  
  3122  <pre>
  3123  t[0] == 2
  3124  t[1] == 3
  3125  </pre>
  3126  
  3127  <p>
  3128  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3129  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3130  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3131  </p>
  3132  
  3133  <p>
  3134  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3135  otherwise they are <i>out of range</i>.
  3136  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3137  <code>int</code>; for arrays, constant indices must also be in range.
  3138  If multiple indices are constant, the constants that are present must be in range relative to each
  3139  other.
  3140  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3141  </p>
  3142  
  3143  <h3 id="Type_assertions">Type assertions</h3>
  3144  
  3145  <p>
  3146  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3147  and a type <code>T</code>, the primary expression
  3148  </p>
  3149  
  3150  <pre>
  3151  x.(T)
  3152  </pre>
  3153  
  3154  <p>
  3155  asserts that <code>x</code> is not <code>nil</code>
  3156  and that the value stored in <code>x</code> is of type <code>T</code>.
  3157  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3158  </p>
  3159  <p>
  3160  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3161  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3162  to the type <code>T</code>.
  3163  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3164  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3165  to store a value of type <code>T</code>.
  3166  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3167  of <code>x</code> implements the interface <code>T</code>.
  3168  </p>
  3169  <p>
  3170  If the type assertion holds, the value of the expression is the value
  3171  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3172  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3173  In other words, even though the dynamic type of <code>x</code>
  3174  is known only at run time, the type of <code>x.(T)</code> is
  3175  known to be <code>T</code> in a correct program.
  3176  </p>
  3177  
  3178  <pre>
  3179  var x interface{} = 7          // x has dynamic type int and value 7
  3180  i := x.(int)                   // i has type int and value 7
  3181  
  3182  type I interface { m() }
  3183  
  3184  func f(y I) {
  3185  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3186  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3187  	…
  3188  }
  3189  </pre>
  3190  
  3191  <p>
  3192  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3193  </p>
  3194  
  3195  <pre>
  3196  v, ok = x.(T)
  3197  v, ok := x.(T)
  3198  var v, ok = x.(T)
  3199  var v, ok T1 = x.(T)
  3200  </pre>
  3201  
  3202  <p>
  3203  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3204  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3205  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3206  No run-time panic occurs in this case.
  3207  </p>
  3208  
  3209  
  3210  <h3 id="Calls">Calls</h3>
  3211  
  3212  <p>
  3213  Given an expression <code>f</code> of function type
  3214  <code>F</code>,
  3215  </p>
  3216  
  3217  <pre>
  3218  f(a1, a2, … an)
  3219  </pre>
  3220  
  3221  <p>
  3222  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3223  Except for one special case, arguments must be single-valued expressions
  3224  <a href="#Assignability">assignable</a> to the parameter types of
  3225  <code>F</code> and are evaluated before the function is called.
  3226  The type of the expression is the result type
  3227  of <code>F</code>.
  3228  A method invocation is similar but the method itself
  3229  is specified as a selector upon a value of the receiver type for
  3230  the method.
  3231  </p>
  3232  
  3233  <pre>
  3234  math.Atan2(x, y)  // function call
  3235  var pt *Point
  3236  pt.Scale(3.5)     // method call with receiver pt
  3237  </pre>
  3238  
  3239  <p>
  3240  In a function call, the function value and arguments are evaluated in
  3241  <a href="#Order_of_evaluation">the usual order</a>.
  3242  After they are evaluated, the parameters of the call are passed by value to the function
  3243  and the called function begins execution.
  3244  The return parameters of the function are passed by value
  3245  back to the calling function when the function returns.
  3246  </p>
  3247  
  3248  <p>
  3249  Calling a <code>nil</code> function value
  3250  causes a <a href="#Run_time_panics">run-time panic</a>.
  3251  </p>
  3252  
  3253  <p>
  3254  As a special case, if the return values of a function or method
  3255  <code>g</code> are equal in number and individually
  3256  assignable to the parameters of another function or method
  3257  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3258  will invoke <code>f</code> after binding the return values of
  3259  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3260  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3261  and <code>g</code> must have at least one return value.
  3262  If <code>f</code> has a final <code>...</code> parameter, it is
  3263  assigned the return values of <code>g</code> that remain after
  3264  assignment of regular parameters.
  3265  </p>
  3266  
  3267  <pre>
  3268  func Split(s string, pos int) (string, string) {
  3269  	return s[0:pos], s[pos:]
  3270  }
  3271  
  3272  func Join(s, t string) string {
  3273  	return s + t
  3274  }
  3275  
  3276  if Join(Split(value, len(value)/2)) != value {
  3277  	log.Panic("test fails")
  3278  }
  3279  </pre>
  3280  
  3281  <p>
  3282  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3283  of (the type of) <code>x</code> contains <code>m</code> and the
  3284  argument list can be assigned to the parameter list of <code>m</code>.
  3285  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3286  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3287  for <code>(&amp;x).m()</code>:
  3288  </p>
  3289  
  3290  <pre>
  3291  var p Point
  3292  p.Scale(3.5)
  3293  </pre>
  3294  
  3295  <p>
  3296  There is no distinct method type and there are no method literals.
  3297  </p>
  3298  
  3299  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3300  
  3301  <p>
  3302  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3303  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3304  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3305  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3306  the value passed to <code>p</code> is <code>nil</code>.
  3307  Otherwise, the value passed is a new slice
  3308  of type <code>[]T</code> with a new underlying array whose successive elements
  3309  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3310  to <code>T</code>. The length and capacity of the slice is therefore
  3311  the number of arguments bound to <code>p</code> and may differ for each
  3312  call site.
  3313  </p>
  3314  
  3315  <p>
  3316  Given the function and calls
  3317  </p>
  3318  <pre>
  3319  func Greeting(prefix string, who ...string)
  3320  Greeting("nobody")
  3321  Greeting("hello:", "Joe", "Anna", "Eileen")
  3322  </pre>
  3323  
  3324  <p>
  3325  within <code>Greeting</code>, <code>who</code> will have the value
  3326  <code>nil</code> in the first call, and
  3327  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3328  </p>
  3329  
  3330  <p>
  3331  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3332  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3333  is followed by <code>...</code>. In this case no new slice is created.
  3334  </p>
  3335  
  3336  <p>
  3337  Given the slice <code>s</code> and call
  3338  </p>
  3339  
  3340  <pre>
  3341  s := []string{"James", "Jasmine"}
  3342  Greeting("goodbye:", s...)
  3343  </pre>
  3344  
  3345  <p>
  3346  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3347  with the same underlying array.
  3348  </p>
  3349  
  3350  
  3351  <h3 id="Operators">Operators</h3>
  3352  
  3353  <p>
  3354  Operators combine operands into expressions.
  3355  </p>
  3356  
  3357  <pre class="ebnf">
  3358  Expression = UnaryExpr | Expression binary_op Expression .
  3359  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3360  
  3361  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3362  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3363  add_op     = "+" | "-" | "|" | "^" .
  3364  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3365  
  3366  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3367  </pre>
  3368  
  3369  <p>
  3370  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3371  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3372  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3373  For operations involving constants only, see the section on
  3374  <a href="#Constant_expressions">constant expressions</a>.
  3375  </p>
  3376  
  3377  <p>
  3378  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3379  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3380  to the type of the other operand.
  3381  </p>
  3382  
  3383  <p>
  3384  The right operand in a shift expression must have unsigned integer type
  3385  or be an untyped constant that can be converted to unsigned integer type.
  3386  If the left operand of a non-constant shift expression is an untyped constant,
  3387  it is first converted to the type it would assume if the shift expression were
  3388  replaced by its left operand alone.
  3389  </p>
  3390  
  3391  <pre>
  3392  var s uint = 33
  3393  var i = 1&lt;&lt;s           // 1 has type int
  3394  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3395  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3396  var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
  3397  var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
  3398  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3399  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3400  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3401  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3402  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3403  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3404  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3405  </pre>
  3406  
  3407  
  3408  <h4 id="Operator_precedence">Operator precedence</h4>
  3409  <p>
  3410  Unary operators have the highest precedence.
  3411  As the  <code>++</code> and <code>--</code> operators form
  3412  statements, not expressions, they fall
  3413  outside the operator hierarchy.
  3414  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3415  <p>
  3416  There are five precedence levels for binary operators.
  3417  Multiplication operators bind strongest, followed by addition
  3418  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3419  and finally <code>||</code> (logical OR):
  3420  </p>
  3421  
  3422  <pre class="grammar">
  3423  Precedence    Operator
  3424      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3425      4             +  -  |  ^
  3426      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3427      2             &amp;&amp;
  3428      1             ||
  3429  </pre>
  3430  
  3431  <p>
  3432  Binary operators of the same precedence associate from left to right.
  3433  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3434  </p>
  3435  
  3436  <pre>
  3437  +x
  3438  23 + 3*x[i]
  3439  x &lt;= f()
  3440  ^a &gt;&gt; b
  3441  f() || g()
  3442  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3443  </pre>
  3444  
  3445  
  3446  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3447  <p>
  3448  Arithmetic operators apply to numeric values and yield a result of the same
  3449  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3450  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3451  floating-point, and complex types; <code>+</code> also applies to strings.
  3452  The bitwise logical and shift operators apply to integers only.
  3453  </p>
  3454  
  3455  <pre class="grammar">
  3456  +    sum                    integers, floats, complex values, strings
  3457  -    difference             integers, floats, complex values
  3458  *    product                integers, floats, complex values
  3459  /    quotient               integers, floats, complex values
  3460  %    remainder              integers
  3461  
  3462  &amp;    bitwise AND            integers
  3463  |    bitwise OR             integers
  3464  ^    bitwise XOR            integers
  3465  &amp;^   bit clear (AND NOT)    integers
  3466  
  3467  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3468  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3469  </pre>
  3470  
  3471  
  3472  <h4 id="Integer_operators">Integer operators</h4>
  3473  
  3474  <p>
  3475  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3476  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3477  relationships:
  3478  </p>
  3479  
  3480  <pre>
  3481  x = q*y + r  and  |r| &lt; |y|
  3482  </pre>
  3483  
  3484  <p>
  3485  with <code>x / y</code> truncated towards zero
  3486  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3487  </p>
  3488  
  3489  <pre>
  3490   x     y     x / y     x % y
  3491   5     3       1         2
  3492  -5     3      -1        -2
  3493   5    -3      -1         2
  3494  -5    -3       1        -2
  3495  </pre>
  3496  
  3497  <p>
  3498  As an exception to this rule, if the dividend <code>x</code> is the most
  3499  negative value for the int type of <code>x</code>, the quotient
  3500  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3501  </p>
  3502  
  3503  <pre>
  3504  			 x, q
  3505  int8                     -128
  3506  int16                  -32768
  3507  int32             -2147483648
  3508  int64    -9223372036854775808
  3509  </pre>
  3510  
  3511  <p>
  3512  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3513  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3514  If the dividend is non-negative and the divisor is a constant power of 2,
  3515  the division may be replaced by a right shift, and computing the remainder may
  3516  be replaced by a bitwise AND operation:
  3517  </p>
  3518  
  3519  <pre>
  3520   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3521   11      2         3         2          3
  3522  -11     -2        -3        -3          1
  3523  </pre>
  3524  
  3525  <p>
  3526  The shift operators shift the left operand by the shift count specified by the
  3527  right operand. They implement arithmetic shifts if the left operand is a signed
  3528  integer and logical shifts if it is an unsigned integer.
  3529  There is no upper limit on the shift count. Shifts behave
  3530  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3531  count of <code>n</code>.
  3532  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3533  and <code>x &gt;&gt; 1</code> is the same as
  3534  <code>x/2</code> but truncated towards negative infinity.
  3535  </p>
  3536  
  3537  <p>
  3538  For integer operands, the unary operators
  3539  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3540  follows:
  3541  </p>
  3542  
  3543  <pre class="grammar">
  3544  +x                          is 0 + x
  3545  -x    negation              is 0 - x
  3546  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3547                                        and  m = -1 for signed x
  3548  </pre>
  3549  
  3550  
  3551  <h4 id="Integer_overflow">Integer overflow</h4>
  3552  
  3553  <p>
  3554  For unsigned integer values, the operations <code>+</code>,
  3555  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3556  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3557  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3558  Loosely speaking, these unsigned integer operations
  3559  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3560  </p>
  3561  <p>
  3562  For signed integers, the operations <code>+</code>,
  3563  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3564  overflow and the resulting value exists and is deterministically defined
  3565  by the signed integer representation, the operation, and its operands.
  3566  No exception is raised as a result of overflow. A
  3567  compiler may not optimize code under the assumption that overflow does
  3568  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3569  </p>
  3570  
  3571  
  3572  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3573  
  3574  <p>
  3575  For floating-point and complex numbers,
  3576  <code>+x</code> is the same as <code>x</code>,
  3577  while <code>-x</code> is the negation of <code>x</code>.
  3578  The result of a floating-point or complex division by zero is not specified beyond the
  3579  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3580  occurs is implementation-specific.
  3581  </p>
  3582  
  3583  
  3584  <h4 id="String_concatenation">String concatenation</h4>
  3585  
  3586  <p>
  3587  Strings can be concatenated using the <code>+</code> operator
  3588  or the <code>+=</code> assignment operator:
  3589  </p>
  3590  
  3591  <pre>
  3592  s := "hi" + string(c)
  3593  s += " and good bye"
  3594  </pre>
  3595  
  3596  <p>
  3597  String addition creates a new string by concatenating the operands.
  3598  </p>
  3599  
  3600  
  3601  <h3 id="Comparison_operators">Comparison operators</h3>
  3602  
  3603  <p>
  3604  Comparison operators compare two operands and yield an untyped boolean value.
  3605  </p>
  3606  
  3607  <pre class="grammar">
  3608  ==    equal
  3609  !=    not equal
  3610  &lt;     less
  3611  &lt;=    less or equal
  3612  &gt;     greater
  3613  &gt;=    greater or equal
  3614  </pre>
  3615  
  3616  <p>
  3617  In any comparison, the first operand
  3618  must be <a href="#Assignability">assignable</a>
  3619  to the type of the second operand, or vice versa.
  3620  </p>
  3621  <p>
  3622  The equality operators <code>==</code> and <code>!=</code> apply
  3623  to operands that are <i>comparable</i>.
  3624  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3625  apply to operands that are <i>ordered</i>.
  3626  These terms and the result of the comparisons are defined as follows:
  3627  </p>
  3628  
  3629  <ul>
  3630  	<li>
  3631  	Boolean values are comparable.
  3632  	Two boolean values are equal if they are either both
  3633  	<code>true</code> or both <code>false</code>.
  3634  	</li>
  3635  
  3636  	<li>
  3637  	Integer values are comparable and ordered, in the usual way.
  3638  	</li>
  3639  
  3640  	<li>
  3641  	Floating point values are comparable and ordered,
  3642  	as defined by the IEEE-754 standard.
  3643  	</li>
  3644  
  3645  	<li>
  3646  	Complex values are comparable.
  3647  	Two complex values <code>u</code> and <code>v</code> are
  3648  	equal if both <code>real(u) == real(v)</code> and
  3649  	<code>imag(u) == imag(v)</code>.
  3650  	</li>
  3651  
  3652  	<li>
  3653  	String values are comparable and ordered, lexically byte-wise.
  3654  	</li>
  3655  
  3656  	<li>
  3657  	Pointer values are comparable.
  3658  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3659  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3660  	</li>
  3661  
  3662  	<li>
  3663  	Channel values are comparable.
  3664  	Two channel values are equal if they were created by the same call to
  3665  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3666  	or if both have value <code>nil</code>.
  3667  	</li>
  3668  
  3669  	<li>
  3670  	Interface values are comparable.
  3671  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3672  	and equal dynamic values or if both have value <code>nil</code>.
  3673  	</li>
  3674  
  3675  	<li>
  3676  	A value <code>x</code> of non-interface type <code>X</code> and
  3677  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3678  	of type <code>X</code> are comparable and
  3679  	<code>X</code> implements <code>T</code>.
  3680  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3681  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3682  	</li>
  3683  
  3684  	<li>
  3685  	Struct values are comparable if all their fields are comparable.
  3686  	Two struct values are equal if their corresponding
  3687  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3688  	</li>
  3689  
  3690  	<li>
  3691  	Array values are comparable if values of the array element type are comparable.
  3692  	Two array values are equal if their corresponding elements are equal.
  3693  	</li>
  3694  </ul>
  3695  
  3696  <p>
  3697  A comparison of two interface values with identical dynamic types
  3698  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3699  of that type are not comparable.  This behavior applies not only to direct interface
  3700  value comparisons but also when comparing arrays of interface values
  3701  or structs with interface-valued fields.
  3702  </p>
  3703  
  3704  <p>
  3705  Slice, map, and function values are not comparable.
  3706  However, as a special case, a slice, map, or function value may
  3707  be compared to the predeclared identifier <code>nil</code>.
  3708  Comparison of pointer, channel, and interface values to <code>nil</code>
  3709  is also allowed and follows from the general rules above.
  3710  </p>
  3711  
  3712  <pre>
  3713  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3714  
  3715  type MyBool bool
  3716  var x, y int
  3717  var (
  3718  	// The result of a comparison is an untyped boolean.
  3719  	// The usual assignment rules apply.
  3720  	b3        = x == y // b3 has type bool
  3721  	b4 bool   = x == y // b4 has type bool
  3722  	b5 MyBool = x == y // b5 has type MyBool
  3723  )
  3724  </pre>
  3725  
  3726  <h3 id="Logical_operators">Logical operators</h3>
  3727  
  3728  <p>
  3729  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3730  and yield a result of the same type as the operands.
  3731  The right operand is evaluated conditionally.
  3732  </p>
  3733  
  3734  <pre class="grammar">
  3735  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3736  ||    conditional OR     p || q  is  "if p then true else q"
  3737  !     NOT                !p      is  "not p"
  3738  </pre>
  3739  
  3740  
  3741  <h3 id="Address_operators">Address operators</h3>
  3742  
  3743  <p>
  3744  For an operand <code>x</code> of type <code>T</code>, the address operation
  3745  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3746  The operand must be <i>addressable</i>,
  3747  that is, either a variable, pointer indirection, or slice indexing
  3748  operation; or a field selector of an addressable struct operand;
  3749  or an array indexing operation of an addressable array.
  3750  As an exception to the addressability requirement, <code>x</code> may also be a
  3751  (possibly parenthesized)
  3752  <a href="#Composite_literals">composite literal</a>.
  3753  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3754  then the evaluation of <code>&amp;x</code> does too.
  3755  </p>
  3756  
  3757  <p>
  3758  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3759  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3760  to by <code>x</code>.
  3761  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3762  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3763  </p>
  3764  
  3765  <pre>
  3766  &amp;x
  3767  &amp;a[f(2)]
  3768  &amp;Point{2, 3}
  3769  *p
  3770  *pf(x)
  3771  
  3772  var x *int = nil
  3773  *x   // causes a run-time panic
  3774  &amp;*x  // causes a run-time panic
  3775  </pre>
  3776  
  3777  
  3778  <h3 id="Receive_operator">Receive operator</h3>
  3779  
  3780  <p>
  3781  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3782  the value of the receive operation <code>&lt;-ch</code> is the value received
  3783  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3784  and the type of the receive operation is the element type of the channel.
  3785  The expression blocks until a value is available.
  3786  Receiving from a <code>nil</code> channel blocks forever.
  3787  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3788  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3789  after any previously sent values have been received.
  3790  </p>
  3791  
  3792  <pre>
  3793  v1 := &lt;-ch
  3794  v2 = &lt;-ch
  3795  f(&lt;-ch)
  3796  &lt;-strobe  // wait until clock pulse and discard received value
  3797  </pre>
  3798  
  3799  <p>
  3800  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3801  </p>
  3802  
  3803  <pre>
  3804  x, ok = &lt;-ch
  3805  x, ok := &lt;-ch
  3806  var x, ok = &lt;-ch
  3807  var x, ok T = &lt;-ch
  3808  </pre>
  3809  
  3810  <p>
  3811  yields an additional untyped boolean result reporting whether the
  3812  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3813  if the value received was delivered by a successful send operation to the
  3814  channel, or <code>false</code> if it is a zero value generated because the
  3815  channel is closed and empty.
  3816  </p>
  3817  
  3818  
  3819  <h3 id="Conversions">Conversions</h3>
  3820  
  3821  <p>
  3822  Conversions are expressions of the form <code>T(x)</code>
  3823  where <code>T</code> is a type and <code>x</code> is an expression
  3824  that can be converted to type <code>T</code>.
  3825  </p>
  3826  
  3827  <pre class="ebnf">
  3828  Conversion = Type "(" Expression [ "," ] ")" .
  3829  </pre>
  3830  
  3831  <p>
  3832  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3833  or if the type starts with the keyword <code>func</code>
  3834  and has no result list, it must be parenthesized when
  3835  necessary to avoid ambiguity:
  3836  </p>
  3837  
  3838  <pre>
  3839  *Point(p)        // same as *(Point(p))
  3840  (*Point)(p)      // p is converted to *Point
  3841  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3842  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3843  func()(x)        // function signature func() x
  3844  (func())(x)      // x is converted to func()
  3845  (func() int)(x)  // x is converted to func() int
  3846  func() int(x)    // x is converted to func() int (unambiguous)
  3847  </pre>
  3848  
  3849  <p>
  3850  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3851  type <code>T</code> in any of these cases:
  3852  </p>
  3853  
  3854  <ul>
  3855  	<li>
  3856  	<code>x</code> is representable by a value of type <code>T</code>.
  3857  	</li>
  3858  	<li>
  3859  	<code>x</code> is a floating-point constant,
  3860  	<code>T</code> is a floating-point type,
  3861  	and <code>x</code> is representable by a value
  3862  	of type <code>T</code> after rounding using
  3863  	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
  3864  	further rounded to an unsigned <code>0.0</code>.
  3865  	The constant <code>T(x)</code> is the rounded value.
  3866  	</li>
  3867  	<li>
  3868  	<code>x</code> is an integer constant and <code>T</code> is a
  3869  	<a href="#String_types">string type</a>.
  3870  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3871  	as for non-constant <code>x</code> applies in this case.
  3872  	</li>
  3873  </ul>
  3874  
  3875  <p>
  3876  Converting a constant yields a typed constant as result.
  3877  </p>
  3878  
  3879  <pre>
  3880  uint(iota)               // iota value of type uint
  3881  float32(2.718281828)     // 2.718281828 of type float32
  3882  complex128(1)            // 1.0 + 0.0i of type complex128
  3883  float32(0.49999999)      // 0.5 of type float32
  3884  float64(-1e-1000)        // 0.0 of type float64
  3885  string('x')              // "x" of type string
  3886  string(0x266c)           // "♬" of type string
  3887  MyString("foo" + "bar")  // "foobar" of type MyString
  3888  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3889  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3890  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3891  string(65.0)             // illegal: 65.0 is not an integer constant
  3892  </pre>
  3893  
  3894  <p>
  3895  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3896  in any of these cases:
  3897  </p>
  3898  
  3899  <ul>
  3900  	<li>
  3901  	<code>x</code> is <a href="#Assignability">assignable</a>
  3902  	to <code>T</code>.
  3903  	</li>
  3904  	<li>
  3905  	ignoring struct tags (see below),
  3906  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3907  	<a href="#Types">underlying types</a>.
  3908  	</li>
  3909  	<li>
  3910  	ignoring struct tags (see below),
  3911  	<code>x</code>'s type and <code>T</code> are pointer types
  3912  	that are not <a href="#Type_definitions">defined types</a>,
  3913  	and their pointer base types have identical underlying types.
  3914  	</li>
  3915  	<li>
  3916  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3917  	point types.
  3918  	</li>
  3919  	<li>
  3920  	<code>x</code>'s type and <code>T</code> are both complex types.
  3921  	</li>
  3922  	<li>
  3923  	<code>x</code> is an integer or a slice of bytes or runes
  3924  	and <code>T</code> is a string type.
  3925  	</li>
  3926  	<li>
  3927  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3928  	</li>
  3929  </ul>
  3930  
  3931  <p>
  3932  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  3933  for identity for the purpose of conversion:
  3934  </p>
  3935  
  3936  <pre>
  3937  type Person struct {
  3938  	Name    string
  3939  	Address *struct {
  3940  		Street string
  3941  		City   string
  3942  	}
  3943  }
  3944  
  3945  var data *struct {
  3946  	Name    string `json:"name"`
  3947  	Address *struct {
  3948  		Street string `json:"street"`
  3949  		City   string `json:"city"`
  3950  	} `json:"address"`
  3951  }
  3952  
  3953  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  3954  </pre>
  3955  
  3956  <p>
  3957  Specific rules apply to (non-constant) conversions between numeric types or
  3958  to and from a string type.
  3959  These conversions may change the representation of <code>x</code>
  3960  and incur a run-time cost.
  3961  All other conversions only change the type but not the representation
  3962  of <code>x</code>.
  3963  </p>
  3964  
  3965  <p>
  3966  There is no linguistic mechanism to convert between pointers and integers.
  3967  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3968  implements this functionality under
  3969  restricted circumstances.
  3970  </p>
  3971  
  3972  <h4>Conversions between numeric types</h4>
  3973  
  3974  <p>
  3975  For the conversion of non-constant numeric values, the following rules apply:
  3976  </p>
  3977  
  3978  <ol>
  3979  <li>
  3980  When converting between integer types, if the value is a signed integer, it is
  3981  sign extended to implicit infinite precision; otherwise it is zero extended.
  3982  It is then truncated to fit in the result type's size.
  3983  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3984  The conversion always yields a valid value; there is no indication of overflow.
  3985  </li>
  3986  <li>
  3987  When converting a floating-point number to an integer, the fraction is discarded
  3988  (truncation towards zero).
  3989  </li>
  3990  <li>
  3991  When converting an integer or floating-point number to a floating-point type,
  3992  or a complex number to another complex type, the result value is rounded
  3993  to the precision specified by the destination type.
  3994  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3995  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3996  but float32(x) represents the result of rounding <code>x</code>'s value to
  3997  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  3998  of precision, but <code>float32(x + 0.1)</code> does not.
  3999  </li>
  4000  </ol>
  4001  
  4002  <p>
  4003  In all non-constant conversions involving floating-point or complex values,
  4004  if the result type cannot represent the value the conversion
  4005  succeeds but the result value is implementation-dependent.
  4006  </p>
  4007  
  4008  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  4009  
  4010  <ol>
  4011  <li>
  4012  Converting a signed or unsigned integer value to a string type yields a
  4013  string containing the UTF-8 representation of the integer. Values outside
  4014  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  4015  
  4016  <pre>
  4017  string('a')       // "a"
  4018  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  4019  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  4020  type MyString string
  4021  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  4022  </pre>
  4023  </li>
  4024  
  4025  <li>
  4026  Converting a slice of bytes to a string type yields
  4027  a string whose successive bytes are the elements of the slice.
  4028  
  4029  <pre>
  4030  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  4031  string([]byte{})                                     // ""
  4032  string([]byte(nil))                                  // ""
  4033  
  4034  type MyBytes []byte
  4035  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  4036  </pre>
  4037  </li>
  4038  
  4039  <li>
  4040  Converting a slice of runes to a string type yields
  4041  a string that is the concatenation of the individual rune values
  4042  converted to strings.
  4043  
  4044  <pre>
  4045  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4046  string([]rune{})                         // ""
  4047  string([]rune(nil))                      // ""
  4048  
  4049  type MyRunes []rune
  4050  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  4051  </pre>
  4052  </li>
  4053  
  4054  <li>
  4055  Converting a value of a string type to a slice of bytes type
  4056  yields a slice whose successive elements are the bytes of the string.
  4057  
  4058  <pre>
  4059  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4060  []byte("")        // []byte{}
  4061  
  4062  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4063  </pre>
  4064  </li>
  4065  
  4066  <li>
  4067  Converting a value of a string type to a slice of runes type
  4068  yields a slice containing the individual Unicode code points of the string.
  4069  
  4070  <pre>
  4071  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4072  []rune("")                 // []rune{}
  4073  
  4074  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4075  </pre>
  4076  </li>
  4077  </ol>
  4078  
  4079  
  4080  <h3 id="Constant_expressions">Constant expressions</h3>
  4081  
  4082  <p>
  4083  Constant expressions may contain only <a href="#Constants">constant</a>
  4084  operands and are evaluated at compile time.
  4085  </p>
  4086  
  4087  <p>
  4088  Untyped boolean, numeric, and string constants may be used as operands
  4089  wherever it is legal to use an operand of boolean, numeric, or string type,
  4090  respectively.
  4091  Except for shift operations, if the operands of a binary operation are
  4092  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4093  the kind that appears later in this list: integer, rune, floating-point, complex.
  4094  For example, an untyped integer constant divided by an
  4095  untyped complex constant yields an untyped complex constant.
  4096  </p>
  4097  
  4098  <p>
  4099  A constant <a href="#Comparison_operators">comparison</a> always yields
  4100  an untyped boolean constant.  If the left operand of a constant
  4101  <a href="#Operators">shift expression</a> is an untyped constant, the
  4102  result is an integer constant; otherwise it is a constant of the same
  4103  type as the left operand, which must be of
  4104  <a href="#Numeric_types">integer type</a>.
  4105  Applying all other operators to untyped constants results in an untyped
  4106  constant of the same kind (that is, a boolean, integer, floating-point,
  4107  complex, or string constant).
  4108  </p>
  4109  
  4110  <pre>
  4111  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4112  const b = 15 / 4           // b == 3     (untyped integer constant)
  4113  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4114  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4115  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4116  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4117  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4118  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4119  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4120  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4121  const j = true             // j == true  (untyped boolean constant)
  4122  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4123  const l = "hi"             // l == "hi"  (untyped string constant)
  4124  const m = string(k)        // m == "x"   (type string)
  4125  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4126  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4127  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4128  </pre>
  4129  
  4130  <p>
  4131  Applying the built-in function <code>complex</code> to untyped
  4132  integer, rune, or floating-point constants yields
  4133  an untyped complex constant.
  4134  </p>
  4135  
  4136  <pre>
  4137  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4138  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4139  </pre>
  4140  
  4141  <p>
  4142  Constant expressions are always evaluated exactly; intermediate values and the
  4143  constants themselves may require precision significantly larger than supported
  4144  by any predeclared type in the language. The following are legal declarations:
  4145  </p>
  4146  
  4147  <pre>
  4148  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4149  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4150  </pre>
  4151  
  4152  <p>
  4153  The divisor of a constant division or remainder operation must not be zero:
  4154  </p>
  4155  
  4156  <pre>
  4157  3.14 / 0.0   // illegal: division by zero
  4158  </pre>
  4159  
  4160  <p>
  4161  The values of <i>typed</i> constants must always be accurately representable as values
  4162  of the constant type. The following constant expressions are illegal:
  4163  </p>
  4164  
  4165  <pre>
  4166  uint(-1)     // -1 cannot be represented as a uint
  4167  int(3.14)    // 3.14 cannot be represented as an int
  4168  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4169  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4170  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4171  </pre>
  4172  
  4173  <p>
  4174  The mask used by the unary bitwise complement operator <code>^</code> matches
  4175  the rule for non-constants: the mask is all 1s for unsigned constants
  4176  and -1 for signed and untyped constants.
  4177  </p>
  4178  
  4179  <pre>
  4180  ^1         // untyped integer constant, equal to -2
  4181  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4182  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4183  int8(^1)   // same as int8(-2)
  4184  ^int8(1)   // same as -1 ^ int8(1) = -2
  4185  </pre>
  4186  
  4187  <p>
  4188  Implementation restriction: A compiler may use rounding while
  4189  computing untyped floating-point or complex constant expressions; see
  4190  the implementation restriction in the section
  4191  on <a href="#Constants">constants</a>.  This rounding may cause a
  4192  floating-point constant expression to be invalid in an integer
  4193  context, even if it would be integral when calculated using infinite
  4194  precision, and vice versa.
  4195  </p>
  4196  
  4197  
  4198  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4199  
  4200  <p>
  4201  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4202  determine the evaluation order of individual initialization expressions in
  4203  <a href="#Variable_declarations">variable declarations</a>.
  4204  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4205  expression, assignment, or
  4206  <a href="#Return_statements">return statement</a>,
  4207  all function calls, method calls, and
  4208  communication operations are evaluated in lexical left-to-right
  4209  order.
  4210  </p>
  4211  
  4212  <p>
  4213  For example, in the (function-local) assignment
  4214  </p>
  4215  <pre>
  4216  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4217  </pre>
  4218  <p>
  4219  the function calls and communication happen in the order
  4220  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4221  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4222  However, the order of those events compared to the evaluation
  4223  and indexing of <code>x</code> and the evaluation
  4224  of <code>y</code> is not specified.
  4225  </p>
  4226  
  4227  <pre>
  4228  a := 1
  4229  f := func() int { a++; return a }
  4230  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4231  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4232  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4233  </pre>
  4234  
  4235  <p>
  4236  At package level, initialization dependencies override the left-to-right rule
  4237  for individual initialization expressions, but not for operands within each
  4238  expression:
  4239  </p>
  4240  
  4241  <pre>
  4242  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4243  
  4244  func f() int        { return c }
  4245  func g() int        { return a }
  4246  func sqr(x int) int { return x*x }
  4247  
  4248  // functions u and v are independent of all other variables and functions
  4249  </pre>
  4250  
  4251  <p>
  4252  The function calls happen in the order
  4253  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4254  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4255  </p>
  4256  
  4257  <p>
  4258  Floating-point operations within a single expression are evaluated according to
  4259  the associativity of the operators.  Explicit parentheses affect the evaluation
  4260  by overriding the default associativity.
  4261  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4262  is performed before adding <code>x</code>.
  4263  </p>
  4264  
  4265  <h2 id="Statements">Statements</h2>
  4266  
  4267  <p>
  4268  Statements control execution.
  4269  </p>
  4270  
  4271  <pre class="ebnf">
  4272  Statement =
  4273  	Declaration | LabeledStmt | SimpleStmt |
  4274  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4275  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4276  	DeferStmt .
  4277  
  4278  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4279  </pre>
  4280  
  4281  <h3 id="Terminating_statements">Terminating statements</h3>
  4282  
  4283  <p>
  4284  A terminating statement is one of the following:
  4285  </p>
  4286  
  4287  <ol>
  4288  <li>
  4289  	A <a href="#Return_statements">"return"</a> or
  4290      	<a href="#Goto_statements">"goto"</a> statement.
  4291  	<!-- ul below only for regular layout -->
  4292  	<ul> </ul>
  4293  </li>
  4294  
  4295  <li>
  4296  	A call to the built-in function
  4297  	<a href="#Handling_panics"><code>panic</code></a>.
  4298  	<!-- ul below only for regular layout -->
  4299  	<ul> </ul>
  4300  </li>
  4301  
  4302  <li>
  4303  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4304  	<!-- ul below only for regular layout -->
  4305  	<ul> </ul>
  4306  </li>
  4307  
  4308  <li>
  4309  	An <a href="#If_statements">"if" statement</a> in which:
  4310  	<ul>
  4311  	<li>the "else" branch is present, and</li>
  4312  	<li>both branches are terminating statements.</li>
  4313  	</ul>
  4314  </li>
  4315  
  4316  <li>
  4317  	A <a href="#For_statements">"for" statement</a> in which:
  4318  	<ul>
  4319  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4320  	<li>the loop condition is absent.</li>
  4321  	</ul>
  4322  </li>
  4323  
  4324  <li>
  4325  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4326  	<ul>
  4327  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4328  	<li>there is a default case, and</li>
  4329  	<li>the statement lists in each case, including the default, end in a terminating
  4330  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4331  	    statement</a>.</li>
  4332  	</ul>
  4333  </li>
  4334  
  4335  <li>
  4336  	A <a href="#Select_statements">"select" statement</a> in which:
  4337  	<ul>
  4338  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4339  	<li>the statement lists in each case, including the default if present,
  4340  	    end in a terminating statement.</li>
  4341  	</ul>
  4342  </li>
  4343  
  4344  <li>
  4345  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4346  	a terminating statement.
  4347  </li>
  4348  </ol>
  4349  
  4350  <p>
  4351  All other statements are not terminating.
  4352  </p>
  4353  
  4354  <p>
  4355  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4356  is not empty and its final non-empty statement is terminating.
  4357  </p>
  4358  
  4359  
  4360  <h3 id="Empty_statements">Empty statements</h3>
  4361  
  4362  <p>
  4363  The empty statement does nothing.
  4364  </p>
  4365  
  4366  <pre class="ebnf">
  4367  EmptyStmt = .
  4368  </pre>
  4369  
  4370  
  4371  <h3 id="Labeled_statements">Labeled statements</h3>
  4372  
  4373  <p>
  4374  A labeled statement may be the target of a <code>goto</code>,
  4375  <code>break</code> or <code>continue</code> statement.
  4376  </p>
  4377  
  4378  <pre class="ebnf">
  4379  LabeledStmt = Label ":" Statement .
  4380  Label       = identifier .
  4381  </pre>
  4382  
  4383  <pre>
  4384  Error: log.Panic("error encountered")
  4385  </pre>
  4386  
  4387  
  4388  <h3 id="Expression_statements">Expression statements</h3>
  4389  
  4390  <p>
  4391  With the exception of specific built-in functions,
  4392  function and method <a href="#Calls">calls</a> and
  4393  <a href="#Receive_operator">receive operations</a>
  4394  can appear in statement context. Such statements may be parenthesized.
  4395  </p>
  4396  
  4397  <pre class="ebnf">
  4398  ExpressionStmt = Expression .
  4399  </pre>
  4400  
  4401  <p>
  4402  The following built-in functions are not permitted in statement context:
  4403  </p>
  4404  
  4405  <pre>
  4406  append cap complex imag len make new real
  4407  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4408  </pre>
  4409  
  4410  <pre>
  4411  h(x+y)
  4412  f.Close()
  4413  &lt;-ch
  4414  (&lt;-ch)
  4415  len("foo")  // illegal if len is the built-in function
  4416  </pre>
  4417  
  4418  
  4419  <h3 id="Send_statements">Send statements</h3>
  4420  
  4421  <p>
  4422  A send statement sends a value on a channel.
  4423  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4424  the channel direction must permit send operations,
  4425  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4426  to the channel's element type.
  4427  </p>
  4428  
  4429  <pre class="ebnf">
  4430  SendStmt = Channel "&lt;-" Expression .
  4431  Channel  = Expression .
  4432  </pre>
  4433  
  4434  <p>
  4435  Both the channel and the value expression are evaluated before communication
  4436  begins. Communication blocks until the send can proceed.
  4437  A send on an unbuffered channel can proceed if a receiver is ready.
  4438  A send on a buffered channel can proceed if there is room in the buffer.
  4439  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4440  A send on a <code>nil</code> channel blocks forever.
  4441  </p>
  4442  
  4443  <pre>
  4444  ch &lt;- 3  // send value 3 to channel ch
  4445  </pre>
  4446  
  4447  
  4448  <h3 id="IncDec_statements">IncDec statements</h3>
  4449  
  4450  <p>
  4451  The "++" and "--" statements increment or decrement their operands
  4452  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4453  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4454  or a map index expression.
  4455  </p>
  4456  
  4457  <pre class="ebnf">
  4458  IncDecStmt = Expression ( "++" | "--" ) .
  4459  </pre>
  4460  
  4461  <p>
  4462  The following <a href="#Assignments">assignment statements</a> are semantically
  4463  equivalent:
  4464  </p>
  4465  
  4466  <pre class="grammar">
  4467  IncDec statement    Assignment
  4468  x++                 x += 1
  4469  x--                 x -= 1
  4470  </pre>
  4471  
  4472  
  4473  <h3 id="Assignments">Assignments</h3>
  4474  
  4475  <pre class="ebnf">
  4476  Assignment = ExpressionList assign_op ExpressionList .
  4477  
  4478  assign_op = [ add_op | mul_op ] "=" .
  4479  </pre>
  4480  
  4481  <p>
  4482  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4483  a map index expression, or (for <code>=</code> assignments only) the
  4484  <a href="#Blank_identifier">blank identifier</a>.
  4485  Operands may be parenthesized.
  4486  </p>
  4487  
  4488  <pre>
  4489  x = 1
  4490  *p = f()
  4491  a[i] = 23
  4492  (k) = &lt;-ch  // same as: k = &lt;-ch
  4493  </pre>
  4494  
  4495  <p>
  4496  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4497  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4498  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4499  <code>(y)</code> but evaluates <code>x</code>
  4500  only once.  The <i>op</i><code>=</code> construct is a single token.
  4501  In assignment operations, both the left- and right-hand expression lists
  4502  must contain exactly one single-valued expression, and the left-hand
  4503  expression must not be the blank identifier.
  4504  </p>
  4505  
  4506  <pre>
  4507  a[i] &lt;&lt;= 2
  4508  i &amp;^= 1&lt;&lt;n
  4509  </pre>
  4510  
  4511  <p>
  4512  A tuple assignment assigns the individual elements of a multi-valued
  4513  operation to a list of variables.  There are two forms.  In the
  4514  first, the right hand operand is a single multi-valued expression
  4515  such as a function call, a <a href="#Channel_types">channel</a> or
  4516  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4517  The number of operands on the left
  4518  hand side must match the number of values.  For instance, if
  4519  <code>f</code> is a function returning two values,
  4520  </p>
  4521  
  4522  <pre>
  4523  x, y = f()
  4524  </pre>
  4525  
  4526  <p>
  4527  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4528  In the second form, the number of operands on the left must equal the number
  4529  of expressions on the right, each of which must be single-valued, and the
  4530  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4531  operand on the left:
  4532  </p>
  4533  
  4534  <pre>
  4535  one, two, three = '一', '二', '三'
  4536  </pre>
  4537  
  4538  <p>
  4539  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4540  ignore right-hand side values in an assignment:
  4541  </p>
  4542  
  4543  <pre>
  4544  _ = x       // evaluate x but ignore it
  4545  x, _ = f()  // evaluate f() but ignore second result value
  4546  </pre>
  4547  
  4548  <p>
  4549  The assignment proceeds in two phases.
  4550  First, the operands of <a href="#Index_expressions">index expressions</a>
  4551  and <a href="#Address_operators">pointer indirections</a>
  4552  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4553  on the left and the expressions on the right are all
  4554  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4555  Second, the assignments are carried out in left-to-right order.
  4556  </p>
  4557  
  4558  <pre>
  4559  a, b = b, a  // exchange a and b
  4560  
  4561  x := []int{1, 2, 3}
  4562  i := 0
  4563  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4564  
  4565  i = 0
  4566  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4567  
  4568  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4569  
  4570  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4571  
  4572  type Point struct { x, y int }
  4573  var p *Point
  4574  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4575  
  4576  i = 2
  4577  x = []int{3, 5, 7}
  4578  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4579  	break
  4580  }
  4581  // after this loop, i == 0 and x == []int{3, 5, 3}
  4582  </pre>
  4583  
  4584  <p>
  4585  In assignments, each value must be <a href="#Assignability">assignable</a>
  4586  to the type of the operand to which it is assigned, with the following special cases:
  4587  </p>
  4588  
  4589  <ol>
  4590  <li>
  4591  	Any typed value may be assigned to the blank identifier.
  4592  </li>
  4593  
  4594  <li>
  4595  	If an untyped constant
  4596  	is assigned to a variable of interface type or the blank identifier,
  4597  	the constant is first <a href="#Conversions">converted</a> to its
  4598  	 <a href="#Constants">default type</a>.
  4599  </li>
  4600  
  4601  <li>
  4602  	If an untyped boolean value is assigned to a variable of interface type or
  4603  	the blank identifier, it is first converted to type <code>bool</code>.
  4604  </li>
  4605  </ol>
  4606  
  4607  <h3 id="If_statements">If statements</h3>
  4608  
  4609  <p>
  4610  "If" statements specify the conditional execution of two branches
  4611  according to the value of a boolean expression.  If the expression
  4612  evaluates to true, the "if" branch is executed, otherwise, if
  4613  present, the "else" branch is executed.
  4614  </p>
  4615  
  4616  <pre class="ebnf">
  4617  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4618  </pre>
  4619  
  4620  <pre>
  4621  if x &gt; max {
  4622  	x = max
  4623  }
  4624  </pre>
  4625  
  4626  <p>
  4627  The expression may be preceded by a simple statement, which
  4628  executes before the expression is evaluated.
  4629  </p>
  4630  
  4631  <pre>
  4632  if x := f(); x &lt; y {
  4633  	return x
  4634  } else if x &gt; z {
  4635  	return z
  4636  } else {
  4637  	return y
  4638  }
  4639  </pre>
  4640  
  4641  
  4642  <h3 id="Switch_statements">Switch statements</h3>
  4643  
  4644  <p>
  4645  "Switch" statements provide multi-way execution.
  4646  An expression or type specifier is compared to the "cases"
  4647  inside the "switch" to determine which branch
  4648  to execute.
  4649  </p>
  4650  
  4651  <pre class="ebnf">
  4652  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4653  </pre>
  4654  
  4655  <p>
  4656  There are two forms: expression switches and type switches.
  4657  In an expression switch, the cases contain expressions that are compared
  4658  against the value of the switch expression.
  4659  In a type switch, the cases contain types that are compared against the
  4660  type of a specially annotated switch expression.
  4661  The switch expression is evaluated exactly once in a switch statement.
  4662  </p>
  4663  
  4664  <h4 id="Expression_switches">Expression switches</h4>
  4665  
  4666  <p>
  4667  In an expression switch,
  4668  the switch expression is evaluated and
  4669  the case expressions, which need not be constants,
  4670  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4671  switch expression
  4672  triggers execution of the statements of the associated case;
  4673  the other cases are skipped.
  4674  If no case matches and there is a "default" case,
  4675  its statements are executed.
  4676  There can be at most one default case and it may appear anywhere in the
  4677  "switch" statement.
  4678  A missing switch expression is equivalent to the boolean value
  4679  <code>true</code>.
  4680  </p>
  4681  
  4682  <pre class="ebnf">
  4683  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4684  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4685  ExprSwitchCase = "case" ExpressionList | "default" .
  4686  </pre>
  4687  
  4688  <p>
  4689  If the switch expression evaluates to an untyped constant, it is first
  4690  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4691  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4692  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4693  </p>
  4694  
  4695  <p>
  4696  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4697  to the type of the switch expression.
  4698  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4699  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4700  </p>
  4701  
  4702  <p>
  4703  In other words, the switch expression is treated as if it were used to declare and
  4704  initialize a temporary variable <code>t</code> without explicit type; it is that
  4705  value of <code>t</code> against which each case expression <code>x</code> is tested
  4706  for equality.
  4707  </p>
  4708  
  4709  <p>
  4710  In a case or default clause, the last non-empty statement
  4711  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4712  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4713  indicate that control should flow from the end of this clause to
  4714  the first statement of the next clause.
  4715  Otherwise control flows to the end of the "switch" statement.
  4716  A "fallthrough" statement may appear as the last statement of all
  4717  but the last clause of an expression switch.
  4718  </p>
  4719  
  4720  <p>
  4721  The switch expression may be preceded by a simple statement, which
  4722  executes before the expression is evaluated.
  4723  </p>
  4724  
  4725  <pre>
  4726  switch tag {
  4727  default: s3()
  4728  case 0, 1, 2, 3: s1()
  4729  case 4, 5, 6, 7: s2()
  4730  }
  4731  
  4732  switch x := f(); {  // missing switch expression means "true"
  4733  case x &lt; 0: return -x
  4734  default: return x
  4735  }
  4736  
  4737  switch {
  4738  case x &lt; y: f1()
  4739  case x &lt; z: f2()
  4740  case x == 4: f3()
  4741  }
  4742  </pre>
  4743  
  4744  <p>
  4745  Implementation restriction: A compiler may disallow multiple case
  4746  expressions evaluating to the same constant.
  4747  For instance, the current compilers disallow duplicate integer,
  4748  floating point, or string constants in case expressions.
  4749  </p>
  4750  
  4751  <h4 id="Type_switches">Type switches</h4>
  4752  
  4753  <p>
  4754  A type switch compares types rather than values. It is otherwise similar
  4755  to an expression switch. It is marked by a special switch expression that
  4756  has the form of a <a href="#Type_assertions">type assertion</a>
  4757  using the reserved word <code>type</code> rather than an actual type:
  4758  </p>
  4759  
  4760  <pre>
  4761  switch x.(type) {
  4762  // cases
  4763  }
  4764  </pre>
  4765  
  4766  <p>
  4767  Cases then match actual types <code>T</code> against the dynamic type of the
  4768  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4769  <a href="#Interface_types">interface type</a>, and each non-interface type
  4770  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4771  The types listed in the cases of a type switch must all be
  4772  <a href="#Type_identity">different</a>.
  4773  </p>
  4774  
  4775  <pre class="ebnf">
  4776  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4777  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4778  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4779  TypeSwitchCase  = "case" TypeList | "default" .
  4780  TypeList        = Type { "," Type } .
  4781  </pre>
  4782  
  4783  <p>
  4784  The TypeSwitchGuard may include a
  4785  <a href="#Short_variable_declarations">short variable declaration</a>.
  4786  When that form is used, the variable is declared at the end of the
  4787  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4788  In clauses with a case listing exactly one type, the variable
  4789  has that type; otherwise, the variable has the type of the expression
  4790  in the TypeSwitchGuard.
  4791  </p>
  4792  
  4793  <p>
  4794  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4795  that case is used when the expression in the TypeSwitchGuard
  4796  is a <code>nil</code> interface value.
  4797  There may be at most one <code>nil</code> case.
  4798  </p>
  4799  
  4800  <p>
  4801  Given an expression <code>x</code> of type <code>interface{}</code>,
  4802  the following type switch:
  4803  </p>
  4804  
  4805  <pre>
  4806  switch i := x.(type) {
  4807  case nil:
  4808  	printString("x is nil")                // type of i is type of x (interface{})
  4809  case int:
  4810  	printInt(i)                            // type of i is int
  4811  case float64:
  4812  	printFloat64(i)                        // type of i is float64
  4813  case func(int) float64:
  4814  	printFunction(i)                       // type of i is func(int) float64
  4815  case bool, string:
  4816  	printString("type is bool or string")  // type of i is type of x (interface{})
  4817  default:
  4818  	printString("don't know the type")     // type of i is type of x (interface{})
  4819  }
  4820  </pre>
  4821  
  4822  <p>
  4823  could be rewritten:
  4824  </p>
  4825  
  4826  <pre>
  4827  v := x  // x is evaluated exactly once
  4828  if v == nil {
  4829  	i := v                                 // type of i is type of x (interface{})
  4830  	printString("x is nil")
  4831  } else if i, isInt := v.(int); isInt {
  4832  	printInt(i)                            // type of i is int
  4833  } else if i, isFloat64 := v.(float64); isFloat64 {
  4834  	printFloat64(i)                        // type of i is float64
  4835  } else if i, isFunc := v.(func(int) float64); isFunc {
  4836  	printFunction(i)                       // type of i is func(int) float64
  4837  } else {
  4838  	_, isBool := v.(bool)
  4839  	_, isString := v.(string)
  4840  	if isBool || isString {
  4841  		i := v                         // type of i is type of x (interface{})
  4842  		printString("type is bool or string")
  4843  	} else {
  4844  		i := v                         // type of i is type of x (interface{})
  4845  		printString("don't know the type")
  4846  	}
  4847  }
  4848  </pre>
  4849  
  4850  <p>
  4851  The type switch guard may be preceded by a simple statement, which
  4852  executes before the guard is evaluated.
  4853  </p>
  4854  
  4855  <p>
  4856  The "fallthrough" statement is not permitted in a type switch.
  4857  </p>
  4858  
  4859  <h3 id="For_statements">For statements</h3>
  4860  
  4861  <p>
  4862  A "for" statement specifies repeated execution of a block. There are three forms:
  4863  The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
  4864  </p>
  4865  
  4866  <pre class="ebnf">
  4867  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4868  Condition = Expression .
  4869  </pre>
  4870  
  4871  <h4 id="For_condition">For statements with single condition</h4>
  4872  
  4873  <p>
  4874  In its simplest form, a "for" statement specifies the repeated execution of
  4875  a block as long as a boolean condition evaluates to true.
  4876  The condition is evaluated before each iteration.
  4877  If the condition is absent, it is equivalent to the boolean value
  4878  <code>true</code>.
  4879  </p>
  4880  
  4881  <pre>
  4882  for a &lt; b {
  4883  	a *= 2
  4884  }
  4885  </pre>
  4886  
  4887  <h4 id="For_clause">For statements with <code>for</code> clause</h4>
  4888  
  4889  <p>
  4890  A "for" statement with a ForClause is also controlled by its condition, but
  4891  additionally it may specify an <i>init</i>
  4892  and a <i>post</i> statement, such as an assignment,
  4893  an increment or decrement statement. The init statement may be a
  4894  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4895  Variables declared by the init statement are re-used in each iteration.
  4896  </p>
  4897  
  4898  <pre class="ebnf">
  4899  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4900  InitStmt = SimpleStmt .
  4901  PostStmt = SimpleStmt .
  4902  </pre>
  4903  
  4904  <pre>
  4905  for i := 0; i &lt; 10; i++ {
  4906  	f(i)
  4907  }
  4908  </pre>
  4909  
  4910  <p>
  4911  If non-empty, the init statement is executed once before evaluating the
  4912  condition for the first iteration;
  4913  the post statement is executed after each execution of the block (and
  4914  only if the block was executed).
  4915  Any element of the ForClause may be empty but the
  4916  <a href="#Semicolons">semicolons</a> are
  4917  required unless there is only a condition.
  4918  If the condition is absent, it is equivalent to the boolean value
  4919  <code>true</code>.
  4920  </p>
  4921  
  4922  <pre>
  4923  for cond { S() }    is the same as    for ; cond ; { S() }
  4924  for      { S() }    is the same as    for true     { S() }
  4925  </pre>
  4926  
  4927  <h4 id="For_range">For statements with <code>range</code> clause</h4>
  4928  
  4929  <p>
  4930  A "for" statement with a "range" clause
  4931  iterates through all entries of an array, slice, string or map,
  4932  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4933  to corresponding <i>iteration variables</i> if present and then executes the block.
  4934  </p>
  4935  
  4936  <pre class="ebnf">
  4937  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4938  </pre>
  4939  
  4940  <p>
  4941  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4942  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4943  <a href="#Receive_operator">receive operations</a>.
  4944  As with an assignment, if present the operands on the left must be
  4945  <a href="#Address_operators">addressable</a> or map index expressions; they
  4946  denote the iteration variables. If the range expression is a channel, at most
  4947  one iteration variable is permitted, otherwise there may be up to two.
  4948  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4949  the range clause is equivalent to the same clause without that identifier.
  4950  </p>
  4951  
  4952  <p>
  4953  The range expression is evaluated once before beginning the loop,
  4954  with one exception: if the range expression is an array or a pointer to an array
  4955  and at most one iteration variable is present, only the range expression's
  4956  length is evaluated; if that length is constant,
  4957  <a href="#Length_and_capacity">by definition</a>
  4958  the range expression itself will not be evaluated.
  4959  </p>
  4960  
  4961  <p>
  4962  Function calls on the left are evaluated once per iteration.
  4963  For each iteration, iteration values are produced as follows
  4964  if the respective iteration variables are present:
  4965  </p>
  4966  
  4967  <pre class="grammar">
  4968  Range expression                          1st value          2nd value
  4969  
  4970  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4971  string          s  string type            index    i  int    see below  rune
  4972  map             m  map[K]V                key      k  K      m[k]       V
  4973  channel         c  chan E, &lt;-chan E       element  e  E
  4974  </pre>
  4975  
  4976  <ol>
  4977  <li>
  4978  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4979  values are produced in increasing order, starting at element index 0.
  4980  If at most one iteration variable is present, the range loop produces
  4981  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4982  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4983  </li>
  4984  
  4985  <li>
  4986  For a string value, the "range" clause iterates over the Unicode code points
  4987  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4988  index of the first byte of successive UTF-8-encoded code points in the string,
  4989  and the second value, of type <code>rune</code>, will be the value of
  4990  the corresponding code point.  If the iteration encounters an invalid
  4991  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4992  the Unicode replacement character, and the next iteration will advance
  4993  a single byte in the string.
  4994  </li>
  4995  
  4996  <li>
  4997  The iteration order over maps is not specified
  4998  and is not guaranteed to be the same from one iteration to the next.
  4999  If map entries that have not yet been reached are removed during iteration,
  5000  the corresponding iteration values will not be produced. If map entries are
  5001  created during iteration, that entry may be produced during the iteration or
  5002  may be skipped. The choice may vary for each entry created and from one
  5003  iteration to the next.
  5004  If the map is <code>nil</code>, the number of iterations is 0.
  5005  </li>
  5006  
  5007  <li>
  5008  For channels, the iteration values produced are the successive values sent on
  5009  the channel until the channel is <a href="#Close">closed</a>. If the channel
  5010  is <code>nil</code>, the range expression blocks forever.
  5011  </li>
  5012  </ol>
  5013  
  5014  <p>
  5015  The iteration values are assigned to the respective
  5016  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  5017  </p>
  5018  
  5019  <p>
  5020  The iteration variables may be declared by the "range" clause using a form of
  5021  <a href="#Short_variable_declarations">short variable declaration</a>
  5022  (<code>:=</code>).
  5023  In this case their types are set to the types of the respective iteration values
  5024  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  5025  statement; they are re-used in each iteration.
  5026  If the iteration variables are declared outside the "for" statement,
  5027  after execution their values will be those of the last iteration.
  5028  </p>
  5029  
  5030  <pre>
  5031  var testdata *struct {
  5032  	a *[7]int
  5033  }
  5034  for i, _ := range testdata.a {
  5035  	// testdata.a is never evaluated; len(testdata.a) is constant
  5036  	// i ranges from 0 to 6
  5037  	f(i)
  5038  }
  5039  
  5040  var a [10]string
  5041  for i, s := range a {
  5042  	// type of i is int
  5043  	// type of s is string
  5044  	// s == a[i]
  5045  	g(i, s)
  5046  }
  5047  
  5048  var key string
  5049  var val interface {}  // value type of m is assignable to val
  5050  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  5051  for key, val = range m {
  5052  	h(key, val)
  5053  }
  5054  // key == last map key encountered in iteration
  5055  // val == map[key]
  5056  
  5057  var ch chan Work = producer()
  5058  for w := range ch {
  5059  	doWork(w)
  5060  }
  5061  
  5062  // empty a channel
  5063  for range ch {}
  5064  </pre>
  5065  
  5066  
  5067  <h3 id="Go_statements">Go statements</h3>
  5068  
  5069  <p>
  5070  A "go" statement starts the execution of a function call
  5071  as an independent concurrent thread of control, or <i>goroutine</i>,
  5072  within the same address space.
  5073  </p>
  5074  
  5075  <pre class="ebnf">
  5076  GoStmt = "go" Expression .
  5077  </pre>
  5078  
  5079  <p>
  5080  The expression must be a function or method call; it cannot be parenthesized.
  5081  Calls of built-in functions are restricted as for
  5082  <a href="#Expression_statements">expression statements</a>.
  5083  </p>
  5084  
  5085  <p>
  5086  The function value and parameters are
  5087  <a href="#Calls">evaluated as usual</a>
  5088  in the calling goroutine, but
  5089  unlike with a regular call, program execution does not wait
  5090  for the invoked function to complete.
  5091  Instead, the function begins executing independently
  5092  in a new goroutine.
  5093  When the function terminates, its goroutine also terminates.
  5094  If the function has any return values, they are discarded when the
  5095  function completes.
  5096  </p>
  5097  
  5098  <pre>
  5099  go Server()
  5100  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  5101  </pre>
  5102  
  5103  
  5104  <h3 id="Select_statements">Select statements</h3>
  5105  
  5106  <p>
  5107  A "select" statement chooses which of a set of possible
  5108  <a href="#Send_statements">send</a> or
  5109  <a href="#Receive_operator">receive</a>
  5110  operations will proceed.
  5111  It looks similar to a
  5112  <a href="#Switch_statements">"switch"</a> statement but with the
  5113  cases all referring to communication operations.
  5114  </p>
  5115  
  5116  <pre class="ebnf">
  5117  SelectStmt = "select" "{" { CommClause } "}" .
  5118  CommClause = CommCase ":" StatementList .
  5119  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5120  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5121  RecvExpr   = Expression .
  5122  </pre>
  5123  
  5124  <p>
  5125  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5126  two variables, which may be declared using a
  5127  <a href="#Short_variable_declarations">short variable declaration</a>.
  5128  The RecvExpr must be a (possibly parenthesized) receive operation.
  5129  There can be at most one default case and it may appear anywhere
  5130  in the list of cases.
  5131  </p>
  5132  
  5133  <p>
  5134  Execution of a "select" statement proceeds in several steps:
  5135  </p>
  5136  
  5137  <ol>
  5138  <li>
  5139  For all the cases in the statement, the channel operands of receive operations
  5140  and the channel and right-hand-side expressions of send statements are
  5141  evaluated exactly once, in source order, upon entering the "select" statement.
  5142  The result is a set of channels to receive from or send to,
  5143  and the corresponding values to send.
  5144  Any side effects in that evaluation will occur irrespective of which (if any)
  5145  communication operation is selected to proceed.
  5146  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5147  or assignment are not yet evaluated.
  5148  </li>
  5149  
  5150  <li>
  5151  If one or more of the communications can proceed,
  5152  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5153  Otherwise, if there is a default case, that case is chosen.
  5154  If there is no default case, the "select" statement blocks until
  5155  at least one of the communications can proceed.
  5156  </li>
  5157  
  5158  <li>
  5159  Unless the selected case is the default case, the respective communication
  5160  operation is executed.
  5161  </li>
  5162  
  5163  <li>
  5164  If the selected case is a RecvStmt with a short variable declaration or
  5165  an assignment, the left-hand side expressions are evaluated and the
  5166  received value (or values) are assigned.
  5167  </li>
  5168  
  5169  <li>
  5170  The statement list of the selected case is executed.
  5171  </li>
  5172  </ol>
  5173  
  5174  <p>
  5175  Since communication on <code>nil</code> channels can never proceed,
  5176  a select with only <code>nil</code> channels and no default case blocks forever.
  5177  </p>
  5178  
  5179  <pre>
  5180  var a []int
  5181  var c, c1, c2, c3, c4 chan int
  5182  var i1, i2 int
  5183  select {
  5184  case i1 = &lt;-c1:
  5185  	print("received ", i1, " from c1\n")
  5186  case c2 &lt;- i2:
  5187  	print("sent ", i2, " to c2\n")
  5188  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5189  	if ok {
  5190  		print("received ", i3, " from c3\n")
  5191  	} else {
  5192  		print("c3 is closed\n")
  5193  	}
  5194  case a[f()] = &lt;-c4:
  5195  	// same as:
  5196  	// case t := &lt;-c4
  5197  	//	a[f()] = t
  5198  default:
  5199  	print("no communication\n")
  5200  }
  5201  
  5202  for {  // send random sequence of bits to c
  5203  	select {
  5204  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5205  	case c &lt;- 1:
  5206  	}
  5207  }
  5208  
  5209  select {}  // block forever
  5210  </pre>
  5211  
  5212  
  5213  <h3 id="Return_statements">Return statements</h3>
  5214  
  5215  <p>
  5216  A "return" statement in a function <code>F</code> terminates the execution
  5217  of <code>F</code>, and optionally provides one or more result values.
  5218  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5219  are executed before <code>F</code> returns to its caller.
  5220  </p>
  5221  
  5222  <pre class="ebnf">
  5223  ReturnStmt = "return" [ ExpressionList ] .
  5224  </pre>
  5225  
  5226  <p>
  5227  In a function without a result type, a "return" statement must not
  5228  specify any result values.
  5229  </p>
  5230  <pre>
  5231  func noResult() {
  5232  	return
  5233  }
  5234  </pre>
  5235  
  5236  <p>
  5237  There are three ways to return values from a function with a result
  5238  type:
  5239  </p>
  5240  
  5241  <ol>
  5242  	<li>The return value or values may be explicitly listed
  5243  		in the "return" statement. Each expression must be single-valued
  5244  		and <a href="#Assignability">assignable</a>
  5245  		to the corresponding element of the function's result type.
  5246  <pre>
  5247  func simpleF() int {
  5248  	return 2
  5249  }
  5250  
  5251  func complexF1() (re float64, im float64) {
  5252  	return -7.0, -4.0
  5253  }
  5254  </pre>
  5255  	</li>
  5256  	<li>The expression list in the "return" statement may be a single
  5257  		call to a multi-valued function. The effect is as if each value
  5258  		returned from that function were assigned to a temporary
  5259  		variable with the type of the respective value, followed by a
  5260  		"return" statement listing these variables, at which point the
  5261  		rules of the previous case apply.
  5262  <pre>
  5263  func complexF2() (re float64, im float64) {
  5264  	return complexF1()
  5265  }
  5266  </pre>
  5267  	</li>
  5268  	<li>The expression list may be empty if the function's result
  5269  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5270  		The result parameters act as ordinary local variables
  5271  		and the function may assign values to them as necessary.
  5272  		The "return" statement returns the values of these variables.
  5273  <pre>
  5274  func complexF3() (re float64, im float64) {
  5275  	re = 7.0
  5276  	im = 4.0
  5277  	return
  5278  }
  5279  
  5280  func (devnull) Write(p []byte) (n int, _ error) {
  5281  	n = len(p)
  5282  	return
  5283  }
  5284  </pre>
  5285  	</li>
  5286  </ol>
  5287  
  5288  <p>
  5289  Regardless of how they are declared, all the result values are initialized to
  5290  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5291  function. A "return" statement that specifies results sets the result parameters before
  5292  any deferred functions are executed.
  5293  </p>
  5294  
  5295  <p>
  5296  Implementation restriction: A compiler may disallow an empty expression list
  5297  in a "return" statement if a different entity (constant, type, or variable)
  5298  with the same name as a result parameter is in
  5299  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5300  </p>
  5301  
  5302  <pre>
  5303  func f(n int) (res int, err error) {
  5304  	if _, err := f(n-1); err != nil {
  5305  		return  // invalid return statement: err is shadowed
  5306  	}
  5307  	return
  5308  }
  5309  </pre>
  5310  
  5311  <h3 id="Break_statements">Break statements</h3>
  5312  
  5313  <p>
  5314  A "break" statement terminates execution of the innermost
  5315  <a href="#For_statements">"for"</a>,
  5316  <a href="#Switch_statements">"switch"</a>, or
  5317  <a href="#Select_statements">"select"</a> statement
  5318  within the same function.
  5319  </p>
  5320  
  5321  <pre class="ebnf">
  5322  BreakStmt = "break" [ Label ] .
  5323  </pre>
  5324  
  5325  <p>
  5326  If there is a label, it must be that of an enclosing
  5327  "for", "switch", or "select" statement,
  5328  and that is the one whose execution terminates.
  5329  </p>
  5330  
  5331  <pre>
  5332  OuterLoop:
  5333  	for i = 0; i &lt; n; i++ {
  5334  		for j = 0; j &lt; m; j++ {
  5335  			switch a[i][j] {
  5336  			case nil:
  5337  				state = Error
  5338  				break OuterLoop
  5339  			case item:
  5340  				state = Found
  5341  				break OuterLoop
  5342  			}
  5343  		}
  5344  	}
  5345  </pre>
  5346  
  5347  <h3 id="Continue_statements">Continue statements</h3>
  5348  
  5349  <p>
  5350  A "continue" statement begins the next iteration of the
  5351  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5352  The "for" loop must be within the same function.
  5353  </p>
  5354  
  5355  <pre class="ebnf">
  5356  ContinueStmt = "continue" [ Label ] .
  5357  </pre>
  5358  
  5359  <p>
  5360  If there is a label, it must be that of an enclosing
  5361  "for" statement, and that is the one whose execution
  5362  advances.
  5363  </p>
  5364  
  5365  <pre>
  5366  RowLoop:
  5367  	for y, row := range rows {
  5368  		for x, data := range row {
  5369  			if data == endOfRow {
  5370  				continue RowLoop
  5371  			}
  5372  			row[x] = data + bias(x, y)
  5373  		}
  5374  	}
  5375  </pre>
  5376  
  5377  <h3 id="Goto_statements">Goto statements</h3>
  5378  
  5379  <p>
  5380  A "goto" statement transfers control to the statement with the corresponding label
  5381  within the same function.
  5382  </p>
  5383  
  5384  <pre class="ebnf">
  5385  GotoStmt = "goto" Label .
  5386  </pre>
  5387  
  5388  <pre>
  5389  goto Error
  5390  </pre>
  5391  
  5392  <p>
  5393  Executing the "goto" statement must not cause any variables to come into
  5394  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5395  For instance, this example:
  5396  </p>
  5397  
  5398  <pre>
  5399  	goto L  // BAD
  5400  	v := 3
  5401  L:
  5402  </pre>
  5403  
  5404  <p>
  5405  is erroneous because the jump to label <code>L</code> skips
  5406  the creation of <code>v</code>.
  5407  </p>
  5408  
  5409  <p>
  5410  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5411  For instance, this example:
  5412  </p>
  5413  
  5414  <pre>
  5415  if n%2 == 1 {
  5416  	goto L1
  5417  }
  5418  for n &gt; 0 {
  5419  	f()
  5420  	n--
  5421  L1:
  5422  	f()
  5423  	n--
  5424  }
  5425  </pre>
  5426  
  5427  <p>
  5428  is erroneous because the label <code>L1</code> is inside
  5429  the "for" statement's block but the <code>goto</code> is not.
  5430  </p>
  5431  
  5432  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5433  
  5434  <p>
  5435  A "fallthrough" statement transfers control to the first statement of the
  5436  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5437  It may be used only as the final non-empty statement in such a clause.
  5438  </p>
  5439  
  5440  <pre class="ebnf">
  5441  FallthroughStmt = "fallthrough" .
  5442  </pre>
  5443  
  5444  
  5445  <h3 id="Defer_statements">Defer statements</h3>
  5446  
  5447  <p>
  5448  A "defer" statement invokes a function whose execution is deferred
  5449  to the moment the surrounding function returns, either because the
  5450  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5451  reached the end of its <a href="#Function_declarations">function body</a>,
  5452  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5453  </p>
  5454  
  5455  <pre class="ebnf">
  5456  DeferStmt = "defer" Expression .
  5457  </pre>
  5458  
  5459  <p>
  5460  The expression must be a function or method call; it cannot be parenthesized.
  5461  Calls of built-in functions are restricted as for
  5462  <a href="#Expression_statements">expression statements</a>.
  5463  </p>
  5464  
  5465  <p>
  5466  Each time a "defer" statement
  5467  executes, the function value and parameters to the call are
  5468  <a href="#Calls">evaluated as usual</a>
  5469  and saved anew but the actual function is not invoked.
  5470  Instead, deferred functions are invoked immediately before
  5471  the surrounding function returns, in the reverse order
  5472  they were deferred.
  5473  If a deferred function value evaluates
  5474  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5475  when the function is invoked, not when the "defer" statement is executed.
  5476  </p>
  5477  
  5478  <p>
  5479  For instance, if the deferred function is
  5480  a <a href="#Function_literals">function literal</a> and the surrounding
  5481  function has <a href="#Function_types">named result parameters</a> that
  5482  are in scope within the literal, the deferred function may access and modify
  5483  the result parameters before they are returned.
  5484  If the deferred function has any return values, they are discarded when
  5485  the function completes.
  5486  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5487  </p>
  5488  
  5489  <pre>
  5490  lock(l)
  5491  defer unlock(l)  // unlocking happens before surrounding function returns
  5492  
  5493  // prints 3 2 1 0 before surrounding function returns
  5494  for i := 0; i &lt;= 3; i++ {
  5495  	defer fmt.Print(i)
  5496  }
  5497  
  5498  // f returns 1
  5499  func f() (result int) {
  5500  	defer func() {
  5501  		result++
  5502  	}()
  5503  	return 0
  5504  }
  5505  </pre>
  5506  
  5507  <h2 id="Built-in_functions">Built-in functions</h2>
  5508  
  5509  <p>
  5510  Built-in functions are
  5511  <a href="#Predeclared_identifiers">predeclared</a>.
  5512  They are called like any other function but some of them
  5513  accept a type instead of an expression as the first argument.
  5514  </p>
  5515  
  5516  <p>
  5517  The built-in functions do not have standard Go types,
  5518  so they can only appear in <a href="#Calls">call expressions</a>;
  5519  they cannot be used as function values.
  5520  </p>
  5521  
  5522  <h3 id="Close">Close</h3>
  5523  
  5524  <p>
  5525  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5526  records that no more values will be sent on the channel.
  5527  It is an error if <code>c</code> is a receive-only channel.
  5528  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5529  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5530  After calling <code>close</code>, and after any previously
  5531  sent values have been received, receive operations will return
  5532  the zero value for the channel's type without blocking.
  5533  The multi-valued <a href="#Receive_operator">receive operation</a>
  5534  returns a received value along with an indication of whether the channel is closed.
  5535  </p>
  5536  
  5537  
  5538  <h3 id="Length_and_capacity">Length and capacity</h3>
  5539  
  5540  <p>
  5541  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5542  of various types and return a result of type <code>int</code>.
  5543  The implementation guarantees that the result always fits into an <code>int</code>.
  5544  </p>
  5545  
  5546  <pre class="grammar">
  5547  Call      Argument type    Result
  5548  
  5549  len(s)    string type      string length in bytes
  5550            [n]T, *[n]T      array length (== n)
  5551            []T              slice length
  5552            map[K]T          map length (number of defined keys)
  5553            chan T           number of elements queued in channel buffer
  5554  
  5555  cap(s)    [n]T, *[n]T      array length (== n)
  5556            []T              slice capacity
  5557            chan T           channel buffer capacity
  5558  </pre>
  5559  
  5560  <p>
  5561  The capacity of a slice is the number of elements for which there is
  5562  space allocated in the underlying array.
  5563  At any time the following relationship holds:
  5564  </p>
  5565  
  5566  <pre>
  5567  0 &lt;= len(s) &lt;= cap(s)
  5568  </pre>
  5569  
  5570  <p>
  5571  The length of a <code>nil</code> slice, map or channel is 0.
  5572  The capacity of a <code>nil</code> slice or channel is 0.
  5573  </p>
  5574  
  5575  <p>
  5576  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5577  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5578  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5579  or pointer to an array and the expression <code>s</code> does not contain
  5580  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5581  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5582  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5583  constant and <code>s</code> is evaluated.
  5584  </p>
  5585  
  5586  <pre>
  5587  const (
  5588  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5589  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5590  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5591  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5592  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5593  )
  5594  var z complex128
  5595  </pre>
  5596  
  5597  <h3 id="Allocation">Allocation</h3>
  5598  
  5599  <p>
  5600  The built-in function <code>new</code> takes a type <code>T</code>,
  5601  allocates storage for a <a href="#Variables">variable</a> of that type
  5602  at run time, and returns a value of type <code>*T</code>
  5603  <a href="#Pointer_types">pointing</a> to it.
  5604  The variable is initialized as described in the section on
  5605  <a href="#The_zero_value">initial values</a>.
  5606  </p>
  5607  
  5608  <pre class="grammar">
  5609  new(T)
  5610  </pre>
  5611  
  5612  <p>
  5613  For instance
  5614  </p>
  5615  
  5616  <pre>
  5617  type S struct { a int; b float64 }
  5618  new(S)
  5619  </pre>
  5620  
  5621  <p>
  5622  allocates storage for a variable of type <code>S</code>,
  5623  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5624  and returns a value of type <code>*S</code> containing the address
  5625  of the location.
  5626  </p>
  5627  
  5628  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5629  
  5630  <p>
  5631  The built-in function <code>make</code> takes a type <code>T</code>,
  5632  which must be a slice, map or channel type,
  5633  optionally followed by a type-specific list of expressions.
  5634  It returns a value of type <code>T</code> (not <code>*T</code>).
  5635  The memory is initialized as described in the section on
  5636  <a href="#The_zero_value">initial values</a>.
  5637  </p>
  5638  
  5639  <pre class="grammar">
  5640  Call             Type T     Result
  5641  
  5642  make(T, n)       slice      slice of type T with length n and capacity n
  5643  make(T, n, m)    slice      slice of type T with length n and capacity m
  5644  
  5645  make(T)          map        map of type T
  5646  make(T, n)       map        map of type T with initial space for n elements
  5647  
  5648  make(T)          channel    unbuffered channel of type T
  5649  make(T, n)       channel    buffered channel of type T, buffer size n
  5650  </pre>
  5651  
  5652  
  5653  <p>
  5654  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5655  A <a href="#Constants">constant</a> size argument must be non-negative and
  5656  representable by a value of type <code>int</code>.
  5657  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5658  <code>n</code> must be no larger than <code>m</code>.
  5659  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5660  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5661  </p>
  5662  
  5663  <pre>
  5664  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5665  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5666  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5667  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5668  c := make(chan int, 10)         // channel with a buffer size of 10
  5669  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5670  </pre>
  5671  
  5672  
  5673  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5674  
  5675  <p>
  5676  The built-in functions <code>append</code> and <code>copy</code> assist in
  5677  common slice operations.
  5678  For both functions, the result is independent of whether the memory referenced
  5679  by the arguments overlaps.
  5680  </p>
  5681  
  5682  <p>
  5683  The <a href="#Function_types">variadic</a> function <code>append</code>
  5684  appends zero or more values <code>x</code>
  5685  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5686  returns the resulting slice, also of type <code>S</code>.
  5687  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5688  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5689  <code>S</code> and the respective
  5690  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5691  As a special case, <code>append</code> also accepts a first argument
  5692  assignable to type <code>[]byte</code> with a second argument of
  5693  string type followed by <code>...</code>. This form appends the
  5694  bytes of the string.
  5695  </p>
  5696  
  5697  <pre class="grammar">
  5698  append(s S, x ...T) S  // T is the element type of S
  5699  </pre>
  5700  
  5701  <p>
  5702  If the capacity of <code>s</code> is not large enough to fit the additional
  5703  values, <code>append</code> allocates a new, sufficiently large underlying
  5704  array that fits both the existing slice elements and the additional values.
  5705  Otherwise, <code>append</code> re-uses the underlying array.
  5706  </p>
  5707  
  5708  <pre>
  5709  s0 := []int{0, 0}
  5710  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5711  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5712  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5713  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5714  
  5715  var t []interface{}
  5716  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5717  
  5718  var b []byte
  5719  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5720  </pre>
  5721  
  5722  <p>
  5723  The function <code>copy</code> copies slice elements from
  5724  a source <code>src</code> to a destination <code>dst</code> and returns the
  5725  number of elements copied.
  5726  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5727  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5728  The number of elements copied is the minimum of
  5729  <code>len(src)</code> and <code>len(dst)</code>.
  5730  As a special case, <code>copy</code> also accepts a destination argument assignable
  5731  to type <code>[]byte</code> with a source argument of a string type.
  5732  This form copies the bytes from the string into the byte slice.
  5733  </p>
  5734  
  5735  <pre class="grammar">
  5736  copy(dst, src []T) int
  5737  copy(dst []byte, src string) int
  5738  </pre>
  5739  
  5740  <p>
  5741  Examples:
  5742  </p>
  5743  
  5744  <pre>
  5745  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5746  var s = make([]int, 6)
  5747  var b = make([]byte, 5)
  5748  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5749  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5750  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5751  </pre>
  5752  
  5753  
  5754  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5755  
  5756  <p>
  5757  The built-in function <code>delete</code> removes the element with key
  5758  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5759  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5760  to the key type of <code>m</code>.
  5761  </p>
  5762  
  5763  <pre class="grammar">
  5764  delete(m, k)  // remove element m[k] from map m
  5765  </pre>
  5766  
  5767  <p>
  5768  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5769  does not exist, <code>delete</code> is a no-op.
  5770  </p>
  5771  
  5772  
  5773  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5774  
  5775  <p>
  5776  Three functions assemble and disassemble complex numbers.
  5777  The built-in function <code>complex</code> constructs a complex
  5778  value from a floating-point real and imaginary part, while
  5779  <code>real</code> and <code>imag</code>
  5780  extract the real and imaginary parts of a complex value.
  5781  </p>
  5782  
  5783  <pre class="grammar">
  5784  complex(realPart, imaginaryPart floatT) complexT
  5785  real(complexT) floatT
  5786  imag(complexT) floatT
  5787  </pre>
  5788  
  5789  <p>
  5790  The type of the arguments and return value correspond.
  5791  For <code>complex</code>, the two arguments must be of the same
  5792  floating-point type and the return type is the complex type
  5793  with the corresponding floating-point constituents:
  5794  <code>complex64</code> for <code>float32</code> arguments, and
  5795  <code>complex128</code> for <code>float64</code> arguments.
  5796  If one of the arguments evaluates to an untyped constant, it is first
  5797  <a href="#Conversions">converted</a> to the type of the other argument.
  5798  If both arguments evaluate to untyped constants, they must be non-complex
  5799  numbers or their imaginary parts must be zero, and the return value of
  5800  the function is an untyped complex constant.
  5801  </p>
  5802  
  5803  <p>
  5804  For <code>real</code> and <code>imag</code>, the argument must be
  5805  of complex type, and the return type is the corresponding floating-point
  5806  type: <code>float32</code> for a <code>complex64</code> argument, and
  5807  <code>float64</code> for a <code>complex128</code> argument.
  5808  If the argument evaluates to an untyped constant, it must be a number,
  5809  and the return value of the function is an untyped floating-point constant.
  5810  </p>
  5811  
  5812  <p>
  5813  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5814  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5815  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5816  </p>
  5817  
  5818  <p>
  5819  If the operands of these functions are all constants, the return
  5820  value is a constant.
  5821  </p>
  5822  
  5823  <pre>
  5824  var a = complex(2, -2)             // complex128
  5825  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5826  x := float32(math.Cos(math.Pi/2))  // float32
  5827  var c64 = complex(5, -x)           // complex64
  5828  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5829  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5830  var rl = real(c64)                 // float32
  5831  var im = imag(a)                   // float64
  5832  const c = imag(b)                  // untyped constant -1.4
  5833  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5834  </pre>
  5835  
  5836  <h3 id="Handling_panics">Handling panics</h3>
  5837  
  5838  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5839  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5840  and program-defined error conditions.
  5841  </p>
  5842  
  5843  <pre class="grammar">
  5844  func panic(interface{})
  5845  func recover() interface{}
  5846  </pre>
  5847  
  5848  <p>
  5849  While executing a function <code>F</code>,
  5850  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5851  terminates the execution of <code>F</code>.
  5852  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5853  are then executed as usual.
  5854  Next, any deferred functions run by <code>F's</code> caller are run,
  5855  and so on up to any deferred by the top-level function in the executing goroutine.
  5856  At that point, the program is terminated and the error
  5857  condition is reported, including the value of the argument to <code>panic</code>.
  5858  This termination sequence is called <i>panicking</i>.
  5859  </p>
  5860  
  5861  <pre>
  5862  panic(42)
  5863  panic("unreachable")
  5864  panic(Error("cannot parse"))
  5865  </pre>
  5866  
  5867  <p>
  5868  The <code>recover</code> function allows a program to manage behavior
  5869  of a panicking goroutine.
  5870  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5871  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5872  is executing.
  5873  When the running of deferred functions reaches <code>D</code>,
  5874  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5875  If <code>D</code> returns normally, without starting a new
  5876  <code>panic</code>, the panicking sequence stops. In that case,
  5877  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5878  is discarded, and normal execution resumes.
  5879  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5880  execution terminates by returning to its caller.
  5881  </p>
  5882  
  5883  <p>
  5884  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5885  </p>
  5886  <ul>
  5887  <li>
  5888  <code>panic</code>'s argument was <code>nil</code>;
  5889  </li>
  5890  <li>
  5891  the goroutine is not panicking;
  5892  </li>
  5893  <li>
  5894  <code>recover</code> was not called directly by a deferred function.
  5895  </li>
  5896  </ul>
  5897  
  5898  <p>
  5899  The <code>protect</code> function in the example below invokes
  5900  the function argument <code>g</code> and protects callers from
  5901  run-time panics raised by <code>g</code>.
  5902  </p>
  5903  
  5904  <pre>
  5905  func protect(g func()) {
  5906  	defer func() {
  5907  		log.Println("done")  // Println executes normally even if there is a panic
  5908  		if x := recover(); x != nil {
  5909  			log.Printf("run time panic: %v", x)
  5910  		}
  5911  	}()
  5912  	log.Println("start")
  5913  	g()
  5914  }
  5915  </pre>
  5916  
  5917  
  5918  <h3 id="Bootstrapping">Bootstrapping</h3>
  5919  
  5920  <p>
  5921  Current implementations provide several built-in functions useful during
  5922  bootstrapping. These functions are documented for completeness but are not
  5923  guaranteed to stay in the language. They do not return a result.
  5924  </p>
  5925  
  5926  <pre class="grammar">
  5927  Function   Behavior
  5928  
  5929  print      prints all arguments; formatting of arguments is implementation-specific
  5930  println    like print but prints spaces between arguments and a newline at the end
  5931  </pre>
  5932  
  5933  
  5934  <h2 id="Packages">Packages</h2>
  5935  
  5936  <p>
  5937  Go programs are constructed by linking together <i>packages</i>.
  5938  A package in turn is constructed from one or more source files
  5939  that together declare constants, types, variables and functions
  5940  belonging to the package and which are accessible in all files
  5941  of the same package. Those elements may be
  5942  <a href="#Exported_identifiers">exported</a> and used in another package.
  5943  </p>
  5944  
  5945  <h3 id="Source_file_organization">Source file organization</h3>
  5946  
  5947  <p>
  5948  Each source file consists of a package clause defining the package
  5949  to which it belongs, followed by a possibly empty set of import
  5950  declarations that declare packages whose contents it wishes to use,
  5951  followed by a possibly empty set of declarations of functions,
  5952  types, variables, and constants.
  5953  </p>
  5954  
  5955  <pre class="ebnf">
  5956  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5957  </pre>
  5958  
  5959  <h3 id="Package_clause">Package clause</h3>
  5960  
  5961  <p>
  5962  A package clause begins each source file and defines the package
  5963  to which the file belongs.
  5964  </p>
  5965  
  5966  <pre class="ebnf">
  5967  PackageClause  = "package" PackageName .
  5968  PackageName    = identifier .
  5969  </pre>
  5970  
  5971  <p>
  5972  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5973  </p>
  5974  
  5975  <pre>
  5976  package math
  5977  </pre>
  5978  
  5979  <p>
  5980  A set of files sharing the same PackageName form the implementation of a package.
  5981  An implementation may require that all source files for a package inhabit the same directory.
  5982  </p>
  5983  
  5984  <h3 id="Import_declarations">Import declarations</h3>
  5985  
  5986  <p>
  5987  An import declaration states that the source file containing the declaration
  5988  depends on functionality of the <i>imported</i> package
  5989  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5990  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5991  of that package.
  5992  The import names an identifier (PackageName) to be used for access and an ImportPath
  5993  that specifies the package to be imported.
  5994  </p>
  5995  
  5996  <pre class="ebnf">
  5997  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5998  ImportSpec       = [ "." | PackageName ] ImportPath .
  5999  ImportPath       = string_lit .
  6000  </pre>
  6001  
  6002  <p>
  6003  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  6004  to access exported identifiers of the package within the importing source file.
  6005  It is declared in the <a href="#Blocks">file block</a>.
  6006  If the PackageName is omitted, it defaults to the identifier specified in the
  6007  <a href="#Package_clause">package clause</a> of the imported package.
  6008  If an explicit period (<code>.</code>) appears instead of a name, all the
  6009  package's exported identifiers declared in that package's
  6010  <a href="#Blocks">package block</a> will be declared in the importing source
  6011  file's file block and must be accessed without a qualifier.
  6012  </p>
  6013  
  6014  <p>
  6015  The interpretation of the ImportPath is implementation-dependent but
  6016  it is typically a substring of the full file name of the compiled
  6017  package and may be relative to a repository of installed packages.
  6018  </p>
  6019  
  6020  <p>
  6021  Implementation restriction: A compiler may restrict ImportPaths to
  6022  non-empty strings using only characters belonging to
  6023  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  6024  L, M, N, P, and S general categories (the Graphic characters without
  6025  spaces) and may also exclude the characters
  6026  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  6027  and the Unicode replacement character U+FFFD.
  6028  </p>
  6029  
  6030  <p>
  6031  Assume we have compiled a package containing the package clause
  6032  <code>package math</code>, which exports function <code>Sin</code>, and
  6033  installed the compiled package in the file identified by
  6034  <code>"lib/math"</code>.
  6035  This table illustrates how <code>Sin</code> is accessed in files
  6036  that import the package after the
  6037  various types of import declaration.
  6038  </p>
  6039  
  6040  <pre class="grammar">
  6041  Import declaration          Local name of Sin
  6042  
  6043  import   "lib/math"         math.Sin
  6044  import m "lib/math"         m.Sin
  6045  import . "lib/math"         Sin
  6046  </pre>
  6047  
  6048  <p>
  6049  An import declaration declares a dependency relation between
  6050  the importing and imported package.
  6051  It is illegal for a package to import itself, directly or indirectly,
  6052  or to directly import a package without
  6053  referring to any of its exported identifiers. To import a package solely for
  6054  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  6055  identifier as explicit package name:
  6056  </p>
  6057  
  6058  <pre>
  6059  import _ "lib/math"
  6060  </pre>
  6061  
  6062  
  6063  <h3 id="An_example_package">An example package</h3>
  6064  
  6065  <p>
  6066  Here is a complete Go package that implements a concurrent prime sieve.
  6067  </p>
  6068  
  6069  <pre>
  6070  package main
  6071  
  6072  import "fmt"
  6073  
  6074  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6075  func generate(ch chan&lt;- int) {
  6076  	for i := 2; ; i++ {
  6077  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6078  	}
  6079  }
  6080  
  6081  // Copy the values from channel 'src' to channel 'dst',
  6082  // removing those divisible by 'prime'.
  6083  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6084  	for i := range src {  // Loop over values received from 'src'.
  6085  		if i%prime != 0 {
  6086  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6087  		}
  6088  	}
  6089  }
  6090  
  6091  // The prime sieve: Daisy-chain filter processes together.
  6092  func sieve() {
  6093  	ch := make(chan int)  // Create a new channel.
  6094  	go generate(ch)       // Start generate() as a subprocess.
  6095  	for {
  6096  		prime := &lt;-ch
  6097  		fmt.Print(prime, "\n")
  6098  		ch1 := make(chan int)
  6099  		go filter(ch, ch1, prime)
  6100  		ch = ch1
  6101  	}
  6102  }
  6103  
  6104  func main() {
  6105  	sieve()
  6106  }
  6107  </pre>
  6108  
  6109  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6110  
  6111  <h3 id="The_zero_value">The zero value</h3>
  6112  <p>
  6113  When storage is allocated for a <a href="#Variables">variable</a>,
  6114  either through a declaration or a call of <code>new</code>, or when
  6115  a new value is created, either through a composite literal or a call
  6116  of <code>make</code>,
  6117  and no explicit initialization is provided, the variable or value is
  6118  given a default value.  Each element of such a variable or value is
  6119  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6120  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  6121  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6122  This initialization is done recursively, so for instance each element of an
  6123  array of structs will have its fields zeroed if no value is specified.
  6124  </p>
  6125  <p>
  6126  These two simple declarations are equivalent:
  6127  </p>
  6128  
  6129  <pre>
  6130  var i int
  6131  var i int = 0
  6132  </pre>
  6133  
  6134  <p>
  6135  After
  6136  </p>
  6137  
  6138  <pre>
  6139  type T struct { i int; f float64; next *T }
  6140  t := new(T)
  6141  </pre>
  6142  
  6143  <p>
  6144  the following holds:
  6145  </p>
  6146  
  6147  <pre>
  6148  t.i == 0
  6149  t.f == 0.0
  6150  t.next == nil
  6151  </pre>
  6152  
  6153  <p>
  6154  The same would also be true after
  6155  </p>
  6156  
  6157  <pre>
  6158  var t T
  6159  </pre>
  6160  
  6161  <h3 id="Package_initialization">Package initialization</h3>
  6162  
  6163  <p>
  6164  Within a package, package-level variables are initialized in
  6165  <i>declaration order</i> but after any of the variables
  6166  they <i>depend</i> on.
  6167  </p>
  6168  
  6169  <p>
  6170  More precisely, a package-level variable is considered <i>ready for
  6171  initialization</i> if it is not yet initialized and either has
  6172  no <a href="#Variable_declarations">initialization expression</a> or
  6173  its initialization expression has no dependencies on uninitialized variables.
  6174  Initialization proceeds by repeatedly initializing the next package-level
  6175  variable that is earliest in declaration order and ready for initialization,
  6176  until there are no variables ready for initialization.
  6177  </p>
  6178  
  6179  <p>
  6180  If any variables are still uninitialized when this
  6181  process ends, those variables are part of one or more initialization cycles,
  6182  and the program is not valid.
  6183  </p>
  6184  
  6185  <p>
  6186  The declaration order of variables declared in multiple files is determined
  6187  by the order in which the files are presented to the compiler: Variables
  6188  declared in the first file are declared before any of the variables declared
  6189  in the second file, and so on.
  6190  </p>
  6191  
  6192  <p>
  6193  Dependency analysis does not rely on the actual values of the
  6194  variables, only on lexical <i>references</i> to them in the source,
  6195  analyzed transitively. For instance, if a variable <code>x</code>'s
  6196  initialization expression refers to a function whose body refers to
  6197  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6198  Specifically:
  6199  </p>
  6200  
  6201  <ul>
  6202  <li>
  6203  A reference to a variable or function is an identifier denoting that
  6204  variable or function.
  6205  </li>
  6206  
  6207  <li>
  6208  A reference to a method <code>m</code> is a
  6209  <a href="#Method_values">method value</a> or
  6210  <a href="#Method_expressions">method expression</a> of the form
  6211  <code>t.m</code>, where the (static) type of <code>t</code> is
  6212  not an interface type, and the method <code>m</code> is in the
  6213  <a href="#Method_sets">method set</a> of <code>t</code>.
  6214  It is immaterial whether the resulting function value
  6215  <code>t.m</code> is invoked.
  6216  </li>
  6217  
  6218  <li>
  6219  A variable, function, or method <code>x</code> depends on a variable
  6220  <code>y</code> if <code>x</code>'s initialization expression or body
  6221  (for functions and methods) contains a reference to <code>y</code>
  6222  or to a function or method that depends on <code>y</code>.
  6223  </li>
  6224  </ul>
  6225  
  6226  <p>
  6227  Dependency analysis is performed per package; only references referring
  6228  to variables, functions, and methods declared in the current package
  6229  are considered.
  6230  </p>
  6231  
  6232  <p>
  6233  For example, given the declarations
  6234  </p>
  6235  
  6236  <pre>
  6237  var (
  6238  	a = c + b
  6239  	b = f()
  6240  	c = f()
  6241  	d = 3
  6242  )
  6243  
  6244  func f() int {
  6245  	d++
  6246  	return d
  6247  }
  6248  </pre>
  6249  
  6250  <p>
  6251  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6252  </p>
  6253  
  6254  <p>
  6255  Variables may also be initialized using functions named <code>init</code>
  6256  declared in the package block, with no arguments and no result parameters.
  6257  </p>
  6258  
  6259  <pre>
  6260  func init() { … }
  6261  </pre>
  6262  
  6263  <p>
  6264  Multiple such functions may be defined per package, even within a single
  6265  source file. In the package block, the <code>init</code> identifier can
  6266  be used only to declare <code>init</code> functions, yet the identifier
  6267  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6268  <code>init</code> functions cannot be referred to from anywhere
  6269  in a program.
  6270  </p>
  6271  
  6272  <p>
  6273  A package with no imports is initialized by assigning initial values
  6274  to all its package-level variables followed by calling all <code>init</code>
  6275  functions in the order they appear in the source, possibly in multiple files,
  6276  as presented to the compiler.
  6277  If a package has imports, the imported packages are initialized
  6278  before initializing the package itself. If multiple packages import
  6279  a package, the imported package will be initialized only once.
  6280  The importing of packages, by construction, guarantees that there
  6281  can be no cyclic initialization dependencies.
  6282  </p>
  6283  
  6284  <p>
  6285  Package initialization&mdash;variable initialization and the invocation of
  6286  <code>init</code> functions&mdash;happens in a single goroutine,
  6287  sequentially, one package at a time.
  6288  An <code>init</code> function may launch other goroutines, which can run
  6289  concurrently with the initialization code. However, initialization
  6290  always sequences
  6291  the <code>init</code> functions: it will not invoke the next one
  6292  until the previous one has returned.
  6293  </p>
  6294  
  6295  <p>
  6296  To ensure reproducible initialization behavior, build systems are encouraged
  6297  to present multiple files belonging to the same package in lexical file name
  6298  order to a compiler.
  6299  </p>
  6300  
  6301  
  6302  <h3 id="Program_execution">Program execution</h3>
  6303  <p>
  6304  A complete program is created by linking a single, unimported package
  6305  called the <i>main package</i> with all the packages it imports, transitively.
  6306  The main package must
  6307  have package name <code>main</code> and
  6308  declare a function <code>main</code> that takes no
  6309  arguments and returns no value.
  6310  </p>
  6311  
  6312  <pre>
  6313  func main() { … }
  6314  </pre>
  6315  
  6316  <p>
  6317  Program execution begins by initializing the main package and then
  6318  invoking the function <code>main</code>.
  6319  When that function invocation returns, the program exits.
  6320  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6321  </p>
  6322  
  6323  <h2 id="Errors">Errors</h2>
  6324  
  6325  <p>
  6326  The predeclared type <code>error</code> is defined as
  6327  </p>
  6328  
  6329  <pre>
  6330  type error interface {
  6331  	Error() string
  6332  }
  6333  </pre>
  6334  
  6335  <p>
  6336  It is the conventional interface for representing an error condition,
  6337  with the nil value representing no error.
  6338  For instance, a function to read data from a file might be defined:
  6339  </p>
  6340  
  6341  <pre>
  6342  func Read(f *File, b []byte) (n int, err error)
  6343  </pre>
  6344  
  6345  <h2 id="Run_time_panics">Run-time panics</h2>
  6346  
  6347  <p>
  6348  Execution errors such as attempting to index an array out
  6349  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6350  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6351  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6352  That type satisfies the predeclared interface type
  6353  <a href="#Errors"><code>error</code></a>.
  6354  The exact error values that
  6355  represent distinct run-time error conditions are unspecified.
  6356  </p>
  6357  
  6358  <pre>
  6359  package runtime
  6360  
  6361  type Error interface {
  6362  	error
  6363  	// and perhaps other methods
  6364  }
  6365  </pre>
  6366  
  6367  <h2 id="System_considerations">System considerations</h2>
  6368  
  6369  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6370  
  6371  <p>
  6372  The built-in package <code>unsafe</code>, known to the compiler,
  6373  provides facilities for low-level programming including operations
  6374  that violate the type system. A package using <code>unsafe</code>
  6375  must be vetted manually for type safety and may not be portable.
  6376  The package provides the following interface:
  6377  </p>
  6378  
  6379  <pre class="grammar">
  6380  package unsafe
  6381  
  6382  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6383  type Pointer *ArbitraryType
  6384  
  6385  func Alignof(variable ArbitraryType) uintptr
  6386  func Offsetof(selector ArbitraryType) uintptr
  6387  func Sizeof(variable ArbitraryType) uintptr
  6388  </pre>
  6389  
  6390  <p>
  6391  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6392  value may not be <a href="#Address_operators">dereferenced</a>.
  6393  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6394  a <code>Pointer</code> type and vice versa.
  6395  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6396  </p>
  6397  
  6398  <pre>
  6399  var f float64
  6400  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6401  
  6402  type ptr unsafe.Pointer
  6403  bits = *(*uint64)(ptr(&amp;f))
  6404  
  6405  var p ptr = nil
  6406  </pre>
  6407  
  6408  <p>
  6409  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6410  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6411  as if <code>v</code> was declared via <code>var v = x</code>.
  6412  </p>
  6413  <p>
  6414  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6415  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6416  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6417  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6418  without pointer indirections through fields of the struct.
  6419  For a struct <code>s</code> with field <code>f</code>:
  6420  </p>
  6421  
  6422  <pre>
  6423  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6424  </pre>
  6425  
  6426  <p>
  6427  Computer architectures may require memory addresses to be <i>aligned</i>;
  6428  that is, for addresses of a variable to be a multiple of a factor,
  6429  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6430  takes an expression denoting a variable of any type and returns the
  6431  alignment of the (type of the) variable in bytes.  For a variable
  6432  <code>x</code>:
  6433  </p>
  6434  
  6435  <pre>
  6436  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6437  </pre>
  6438  
  6439  <p>
  6440  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6441  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6442  </p>
  6443  
  6444  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6445  
  6446  <p>
  6447  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6448  </p>
  6449  
  6450  <pre class="grammar">
  6451  type                                 size in bytes
  6452  
  6453  byte, uint8, int8                     1
  6454  uint16, int16                         2
  6455  uint32, int32, float32                4
  6456  uint64, int64, float64, complex64     8
  6457  complex128                           16
  6458  </pre>
  6459  
  6460  <p>
  6461  The following minimal alignment properties are guaranteed:
  6462  </p>
  6463  <ol>
  6464  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6465  </li>
  6466  
  6467  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6468     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6469  </li>
  6470  
  6471  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6472  	the alignment of a variable of the array's element type.
  6473  </li>
  6474  </ol>
  6475  
  6476  <p>
  6477  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6478  </p>