github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/src/cmd/compile/internal/gc/subr.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "bytes" 9 "cmd/internal/obj" 10 "cmd/internal/src" 11 "crypto/md5" 12 "encoding/binary" 13 "fmt" 14 "os" 15 "runtime/debug" 16 "sort" 17 "strconv" 18 "strings" 19 "unicode" 20 "unicode/utf8" 21 ) 22 23 type Error struct { 24 pos src.XPos 25 msg string 26 } 27 28 var errors []Error 29 30 func errorexit() { 31 flusherrors() 32 if outfile != "" { 33 os.Remove(outfile) 34 } 35 os.Exit(2) 36 } 37 38 func adderrorname(n *Node) { 39 if n.Op != ODOT { 40 return 41 } 42 old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left) 43 if len(errors) > 0 && errors[len(errors)-1].pos.Line() == n.Pos.Line() && errors[len(errors)-1].msg == old { 44 errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n) 45 } 46 } 47 48 func adderr(pos src.XPos, format string, args ...interface{}) { 49 errors = append(errors, Error{ 50 pos: pos, 51 msg: fmt.Sprintf("%v: %s\n", linestr(pos), fmt.Sprintf(format, args...)), 52 }) 53 } 54 55 // byPos sorts errors by source position. 56 type byPos []Error 57 58 func (x byPos) Len() int { return len(x) } 59 func (x byPos) Less(i, j int) bool { return x[i].pos.Before(x[j].pos) } 60 func (x byPos) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 61 62 // flusherrors sorts errors seen so far by line number, prints them to stdout, 63 // and empties the errors array. 64 func flusherrors() { 65 Ctxt.Bso.Flush() 66 if len(errors) == 0 { 67 return 68 } 69 sort.Stable(byPos(errors)) 70 for i := 0; i < len(errors); i++ { 71 if i == 0 || errors[i].msg != errors[i-1].msg { 72 fmt.Printf("%s", errors[i].msg) 73 } 74 } 75 errors = errors[:0] 76 } 77 78 func hcrash() { 79 if Debug['h'] != 0 { 80 flusherrors() 81 if outfile != "" { 82 os.Remove(outfile) 83 } 84 var x *int 85 *x = 0 86 } 87 } 88 89 func linestr(pos src.XPos) string { 90 return Ctxt.PosTable.Pos(pos).String() 91 } 92 93 // lasterror keeps track of the most recently issued error. 94 // It is used to avoid multiple error messages on the same 95 // line. 96 var lasterror struct { 97 syntax src.XPos // source position of last syntax error 98 other src.XPos // source position of last non-syntax error 99 msg string // error message of last non-syntax error 100 } 101 102 // sameline reports whether two positions a, b are on the same line. 103 func sameline(a, b src.XPos) bool { 104 p := Ctxt.PosTable.Pos(a) 105 q := Ctxt.PosTable.Pos(b) 106 return p.Base() == q.Base() && p.Line() == q.Line() 107 } 108 109 func yyerrorl(pos src.XPos, format string, args ...interface{}) { 110 msg := fmt.Sprintf(format, args...) 111 112 if strings.HasPrefix(msg, "syntax error") { 113 nsyntaxerrors++ 114 // only one syntax error per line, no matter what error 115 if sameline(lasterror.syntax, pos) { 116 return 117 } 118 lasterror.syntax = pos 119 } else { 120 // only one of multiple equal non-syntax errors per line 121 // (flusherrors shows only one of them, so we filter them 122 // here as best as we can (they may not appear in order) 123 // so that we don't count them here and exit early, and 124 // then have nothing to show for.) 125 if sameline(lasterror.other, pos) && lasterror.msg == msg { 126 return 127 } 128 lasterror.other = pos 129 lasterror.msg = msg 130 } 131 132 adderr(pos, "%s", msg) 133 134 hcrash() 135 nerrors++ 136 if nsavederrors+nerrors >= 10 && Debug['e'] == 0 { 137 flusherrors() 138 fmt.Printf("%v: too many errors\n", linestr(pos)) 139 errorexit() 140 } 141 } 142 143 func yyerror(format string, args ...interface{}) { 144 yyerrorl(lineno, format, args...) 145 } 146 147 func Warn(fmt_ string, args ...interface{}) { 148 adderr(lineno, fmt_, args...) 149 150 hcrash() 151 } 152 153 func Warnl(line src.XPos, fmt_ string, args ...interface{}) { 154 adderr(line, fmt_, args...) 155 if Debug['m'] != 0 { 156 flusherrors() 157 } 158 } 159 160 func Fatalf(fmt_ string, args ...interface{}) { 161 flusherrors() 162 163 fmt.Printf("%v: internal compiler error: ", linestr(lineno)) 164 fmt.Printf(fmt_, args...) 165 fmt.Printf("\n") 166 167 // If this is a released compiler version, ask for a bug report. 168 if strings.HasPrefix(obj.Version, "release") { 169 fmt.Printf("\n") 170 fmt.Printf("Please file a bug report including a short program that triggers the error.\n") 171 fmt.Printf("https://golang.org/issue/new\n") 172 } else { 173 // Not a release; dump a stack trace, too. 174 fmt.Println() 175 os.Stdout.Write(debug.Stack()) 176 fmt.Println() 177 } 178 179 hcrash() 180 errorexit() 181 } 182 183 func setlineno(n *Node) src.XPos { 184 lno := lineno 185 if n != nil { 186 switch n.Op { 187 case ONAME, OPACK: 188 break 189 190 case OLITERAL, OTYPE: 191 if n.Sym != nil { 192 break 193 } 194 fallthrough 195 196 default: 197 lineno = n.Pos 198 if !lineno.IsKnown() { 199 if Debug['K'] != 0 { 200 Warn("setlineno: unknown position (line 0)") 201 } 202 lineno = lno 203 } 204 } 205 } 206 207 return lno 208 } 209 210 func lookup(name string) *Sym { 211 return localpkg.Lookup(name) 212 } 213 214 func lookupf(format string, a ...interface{}) *Sym { 215 return lookup(fmt.Sprintf(format, a...)) 216 } 217 218 func lookupBytes(name []byte) *Sym { 219 return localpkg.LookupBytes(name) 220 } 221 222 // lookupN looks up the symbol starting with prefix and ending with 223 // the decimal n. If prefix is too long, lookupN panics. 224 func lookupN(prefix string, n int) *Sym { 225 var buf [20]byte // plenty long enough for all current users 226 copy(buf[:], prefix) 227 b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10) 228 return lookupBytes(b) 229 } 230 231 // autolabel generates a new Name node for use with 232 // an automatically generated label. 233 // prefix is a short mnemonic (e.g. ".s" for switch) 234 // to help with debugging. 235 // It should begin with "." to avoid conflicts with 236 // user labels. 237 func autolabel(prefix string) *Node { 238 if prefix[0] != '.' { 239 Fatalf("autolabel prefix must start with '.', have %q", prefix) 240 } 241 fn := Curfn 242 if Curfn == nil { 243 Fatalf("autolabel outside function") 244 } 245 n := fn.Func.Label 246 fn.Func.Label++ 247 return newname(lookupN(prefix, int(n))) 248 } 249 250 var initSyms []*Sym 251 252 var nopkg = &Pkg{ 253 Syms: make(map[string]*Sym), 254 } 255 256 func (pkg *Pkg) Lookup(name string) *Sym { 257 if pkg == nil { 258 pkg = nopkg 259 } 260 if s := pkg.Syms[name]; s != nil { 261 return s 262 } 263 264 s := &Sym{ 265 Name: name, 266 Pkg: pkg, 267 } 268 if name == "init" { 269 initSyms = append(initSyms, s) 270 } 271 pkg.Syms[name] = s 272 return s 273 } 274 275 func (pkg *Pkg) LookupBytes(name []byte) *Sym { 276 if pkg == nil { 277 pkg = nopkg 278 } 279 if s := pkg.Syms[string(name)]; s != nil { 280 return s 281 } 282 str := internString(name) 283 return pkg.Lookup(str) 284 } 285 286 func Pkglookup(name string, pkg *Pkg) *Sym { 287 return pkg.Lookup(name) 288 } 289 290 func restrictlookup(name string, pkg *Pkg) *Sym { 291 if !exportname(name) && pkg != localpkg { 292 yyerror("cannot refer to unexported name %s.%s", pkg.Name, name) 293 } 294 return Pkglookup(name, pkg) 295 } 296 297 // find all the exported symbols in package opkg 298 // and make them available in the current package 299 func importdot(opkg *Pkg, pack *Node) { 300 var s1 *Sym 301 var pkgerror string 302 303 n := 0 304 for _, s := range opkg.Syms { 305 if s.Def == nil { 306 continue 307 } 308 if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot 309 continue 310 } 311 s1 = lookup(s.Name) 312 if s1.Def != nil { 313 pkgerror = fmt.Sprintf("during import %q", opkg.Path) 314 redeclare(s1, pkgerror) 315 continue 316 } 317 318 s1.Def = s.Def 319 s1.Block = s.Block 320 if s1.Def.Name == nil { 321 Dump("s1def", s1.Def) 322 Fatalf("missing Name") 323 } 324 s1.Def.Name.Pack = pack 325 s1.Origpkg = opkg 326 n++ 327 } 328 329 if n == 0 { 330 // can't possibly be used - there were no symbols 331 yyerrorl(pack.Pos, "imported and not used: %q", opkg.Path) 332 } 333 } 334 335 func nod(op Op, nleft *Node, nright *Node) *Node { 336 var n *Node 337 switch op { 338 case OCLOSURE, ODCLFUNC: 339 var x struct { 340 Node 341 Func 342 } 343 n = &x.Node 344 n.Func = &x.Func 345 n.Func.IsHiddenClosure = Curfn != nil 346 case ONAME: 347 var x struct { 348 Node 349 Name 350 Param 351 } 352 n = &x.Node 353 n.Name = &x.Name 354 n.Name.Param = &x.Param 355 case OLABEL, OPACK: 356 var x struct { 357 Node 358 Name 359 } 360 n = &x.Node 361 n.Name = &x.Name 362 default: 363 n = new(Node) 364 } 365 n.Op = op 366 n.Left = nleft 367 n.Right = nright 368 n.Pos = lineno 369 n.Xoffset = BADWIDTH 370 n.Orig = n 371 if n.Name != nil { 372 n.Name.Curfn = Curfn 373 } 374 return n 375 } 376 377 // nodSym makes a Node with Op op and with the Left field set to left 378 // and the Sym field set to sym. This is for ODOT and friends. 379 func nodSym(op Op, left *Node, sym *Sym) *Node { 380 n := nod(op, left, nil) 381 n.Sym = sym 382 return n 383 } 384 385 func saveorignode(n *Node) { 386 if n.Orig != nil { 387 return 388 } 389 norig := nod(n.Op, nil, nil) 390 *norig = *n 391 n.Orig = norig 392 } 393 394 // methcmp sorts by symbol, then by package path for unexported symbols. 395 type methcmp []*Field 396 397 func (x methcmp) Len() int { return len(x) } 398 func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 399 func (x methcmp) Less(i, j int) bool { 400 a := x[i] 401 b := x[j] 402 if a.Sym == nil && b.Sym == nil { 403 return false 404 } 405 if a.Sym == nil { 406 return true 407 } 408 if b.Sym == nil { 409 return false 410 } 411 if a.Sym.Name != b.Sym.Name { 412 return a.Sym.Name < b.Sym.Name 413 } 414 if !exportname(a.Sym.Name) { 415 if a.Sym.Pkg.Path != b.Sym.Pkg.Path { 416 return a.Sym.Pkg.Path < b.Sym.Pkg.Path 417 } 418 } 419 420 return false 421 } 422 423 func nodintconst(v int64) *Node { 424 c := nod(OLITERAL, nil, nil) 425 c.Addable = true 426 c.SetVal(Val{new(Mpint)}) 427 c.Val().U.(*Mpint).SetInt64(v) 428 c.Type = Types[TIDEAL] 429 ullmancalc(c) 430 return c 431 } 432 433 func nodfltconst(v *Mpflt) *Node { 434 c := nod(OLITERAL, nil, nil) 435 c.Addable = true 436 c.SetVal(Val{newMpflt()}) 437 c.Val().U.(*Mpflt).Set(v) 438 c.Type = Types[TIDEAL] 439 ullmancalc(c) 440 return c 441 } 442 443 func nodconst(n *Node, t *Type, v int64) { 444 *n = Node{} 445 n.Op = OLITERAL 446 n.Addable = true 447 ullmancalc(n) 448 n.SetVal(Val{new(Mpint)}) 449 n.Val().U.(*Mpint).SetInt64(v) 450 n.Type = t 451 452 if t.IsFloat() { 453 Fatalf("nodconst: bad type %v", t) 454 } 455 } 456 457 func nodnil() *Node { 458 c := nodintconst(0) 459 c.SetVal(Val{new(NilVal)}) 460 c.Type = Types[TNIL] 461 return c 462 } 463 464 func nodbool(b bool) *Node { 465 c := nodintconst(0) 466 c.SetVal(Val{b}) 467 c.Type = idealbool 468 return c 469 } 470 471 // treecopy recursively copies n, with the exception of 472 // ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves. 473 // Copies of iota ONONAME nodes are assigned the current 474 // value of iota_. If pos.IsKnown(), it sets the source 475 // position of newly allocated nodes to pos. 476 func treecopy(n *Node, pos src.XPos) *Node { 477 if n == nil { 478 return nil 479 } 480 481 switch n.Op { 482 default: 483 m := *n 484 m.Orig = &m 485 m.Left = treecopy(n.Left, pos) 486 m.Right = treecopy(n.Right, pos) 487 m.List.Set(listtreecopy(n.List.Slice(), pos)) 488 if pos.IsKnown() { 489 m.Pos = pos 490 } 491 if m.Name != nil && n.Op != ODCLFIELD { 492 Dump("treecopy", n) 493 Fatalf("treecopy Name") 494 } 495 return &m 496 497 case OPACK: 498 // OPACK nodes are never valid in const value declarations, 499 // but allow them like any other declared symbol to avoid 500 // crashing (golang.org/issue/11361). 501 fallthrough 502 503 case ONAME, ONONAME, OLITERAL, OTYPE: 504 return n 505 506 } 507 } 508 509 // isnil reports whether n represents the universal untyped zero value "nil". 510 func isnil(n *Node) bool { 511 // Check n.Orig because constant propagation may produce typed nil constants, 512 // which don't exist in the Go spec. 513 return Isconst(n.Orig, CTNIL) 514 } 515 516 func isptrto(t *Type, et EType) bool { 517 if t == nil { 518 return false 519 } 520 if !t.IsPtr() { 521 return false 522 } 523 t = t.Elem() 524 if t == nil { 525 return false 526 } 527 if t.Etype != et { 528 return false 529 } 530 return true 531 } 532 533 func isblank(n *Node) bool { 534 if n == nil { 535 return false 536 } 537 return isblanksym(n.Sym) 538 } 539 540 func isblanksym(s *Sym) bool { 541 return s != nil && s.Name == "_" 542 } 543 544 // methtype returns the underlying type, if any, 545 // that owns methods with receiver parameter t. 546 // The result is either a named type or an anonymous struct. 547 func methtype(t *Type) *Type { 548 if t == nil { 549 return nil 550 } 551 552 // Strip away pointer if it's there. 553 if t.IsPtr() { 554 if t.Sym != nil { 555 return nil 556 } 557 t = t.Elem() 558 if t == nil { 559 return nil 560 } 561 } 562 563 // Must be a named type or anonymous struct. 564 if t.Sym == nil && !t.IsStruct() { 565 return nil 566 } 567 568 // Check types. 569 if issimple[t.Etype] { 570 return t 571 } 572 switch t.Etype { 573 case TARRAY, TCHAN, TFUNC, TMAP, TSLICE, TSTRING, TSTRUCT: 574 return t 575 } 576 return nil 577 } 578 579 func cplxsubtype(et EType) EType { 580 switch et { 581 case TCOMPLEX64: 582 return TFLOAT32 583 584 case TCOMPLEX128: 585 return TFLOAT64 586 } 587 588 Fatalf("cplxsubtype: %v\n", et) 589 return 0 590 } 591 592 // eqtype reports whether t1 and t2 are identical, following the spec rules. 593 // 594 // Any cyclic type must go through a named type, and if one is 595 // named, it is only identical to the other if they are the same 596 // pointer (t1 == t2), so there's no chance of chasing cycles 597 // ad infinitum, so no need for a depth counter. 598 func eqtype(t1, t2 *Type) bool { 599 return eqtype1(t1, t2, true, nil) 600 } 601 602 // eqtypeIgnoreTags is like eqtype but it ignores struct tags for struct identity. 603 func eqtypeIgnoreTags(t1, t2 *Type) bool { 604 return eqtype1(t1, t2, false, nil) 605 } 606 607 type typePair struct { 608 t1 *Type 609 t2 *Type 610 } 611 612 func eqtype1(t1, t2 *Type, cmpTags bool, assumedEqual map[typePair]struct{}) bool { 613 if t1 == t2 { 614 return true 615 } 616 if t1 == nil || t2 == nil || t1.Etype != t2.Etype || t1.Broke || t2.Broke { 617 return false 618 } 619 if t1.Sym != nil || t2.Sym != nil { 620 // Special case: we keep byte/uint8 and rune/int32 621 // separate for error messages. Treat them as equal. 622 switch t1.Etype { 623 case TUINT8: 624 return (t1 == Types[TUINT8] || t1 == bytetype) && (t2 == Types[TUINT8] || t2 == bytetype) 625 case TINT32: 626 return (t1 == Types[TINT32] || t1 == runetype) && (t2 == Types[TINT32] || t2 == runetype) 627 default: 628 return false 629 } 630 } 631 632 if assumedEqual == nil { 633 assumedEqual = make(map[typePair]struct{}) 634 } else if _, ok := assumedEqual[typePair{t1, t2}]; ok { 635 return true 636 } 637 assumedEqual[typePair{t1, t2}] = struct{}{} 638 639 switch t1.Etype { 640 case TINTER, TSTRUCT: 641 t1, i1 := iterFields(t1) 642 t2, i2 := iterFields(t2) 643 for ; t1 != nil && t2 != nil; t1, t2 = i1.Next(), i2.Next() { 644 if t1.Sym != t2.Sym || t1.Embedded != t2.Embedded || !eqtype1(t1.Type, t2.Type, cmpTags, assumedEqual) || cmpTags && t1.Note != t2.Note { 645 return false 646 } 647 } 648 649 if t1 == nil && t2 == nil { 650 return true 651 } 652 return false 653 654 case TFUNC: 655 // Check parameters and result parameters for type equality. 656 // We intentionally ignore receiver parameters for type 657 // equality, because they're never relevant. 658 for _, f := range paramsResults { 659 // Loop over fields in structs, ignoring argument names. 660 ta, ia := iterFields(f(t1)) 661 tb, ib := iterFields(f(t2)) 662 for ; ta != nil && tb != nil; ta, tb = ia.Next(), ib.Next() { 663 if ta.Isddd != tb.Isddd || !eqtype1(ta.Type, tb.Type, cmpTags, assumedEqual) { 664 return false 665 } 666 } 667 if ta != nil || tb != nil { 668 return false 669 } 670 } 671 return true 672 673 case TARRAY: 674 if t1.NumElem() != t2.NumElem() { 675 return false 676 } 677 678 case TCHAN: 679 if t1.ChanDir() != t2.ChanDir() { 680 return false 681 } 682 683 case TMAP: 684 if !eqtype1(t1.Key(), t2.Key(), cmpTags, assumedEqual) { 685 return false 686 } 687 return eqtype1(t1.Val(), t2.Val(), cmpTags, assumedEqual) 688 } 689 690 return eqtype1(t1.Elem(), t2.Elem(), cmpTags, assumedEqual) 691 } 692 693 // Are t1 and t2 equal struct types when field names are ignored? 694 // For deciding whether the result struct from g can be copied 695 // directly when compiling f(g()). 696 func eqtypenoname(t1 *Type, t2 *Type) bool { 697 if t1 == nil || t2 == nil || !t1.IsStruct() || !t2.IsStruct() { 698 return false 699 } 700 701 f1, i1 := iterFields(t1) 702 f2, i2 := iterFields(t2) 703 for { 704 if !eqtype(f1.Type, f2.Type) { 705 return false 706 } 707 if f1 == nil { 708 return true 709 } 710 f1 = i1.Next() 711 f2 = i2.Next() 712 } 713 } 714 715 // Is type src assignment compatible to type dst? 716 // If so, return op code to use in conversion. 717 // If not, return 0. 718 func assignop(src *Type, dst *Type, why *string) Op { 719 if why != nil { 720 *why = "" 721 } 722 723 // TODO(rsc,lvd): This behaves poorly in the presence of inlining. 724 // https://golang.org/issue/2795 725 if safemode && importpkg == nil && src != nil && src.Etype == TUNSAFEPTR { 726 yyerror("cannot use unsafe.Pointer") 727 errorexit() 728 } 729 730 if src == dst { 731 return OCONVNOP 732 } 733 if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil { 734 return 0 735 } 736 737 // 1. src type is identical to dst. 738 if eqtype(src, dst) { 739 return OCONVNOP 740 } 741 742 // 2. src and dst have identical underlying types 743 // and either src or dst is not a named type or 744 // both are empty interface types. 745 // For assignable but different non-empty interface types, 746 // we want to recompute the itab. Recomputing the itab ensures 747 // that itabs are unique (thus an interface with a compile-time 748 // type I has an itab with interface type I). 749 if eqtype(src.Orig, dst.Orig) { 750 if src.IsEmptyInterface() { 751 // Conversion between two empty interfaces 752 // requires no code. 753 return OCONVNOP 754 } 755 if (src.Sym == nil || dst.Sym == nil) && !src.IsInterface() { 756 // Conversion between two types, at least one unnamed, 757 // needs no conversion. The exception is nonempty interfaces 758 // which need to have their itab updated. 759 return OCONVNOP 760 } 761 } 762 763 // 3. dst is an interface type and src implements dst. 764 if dst.IsInterface() && src.Etype != TNIL { 765 var missing, have *Field 766 var ptr int 767 if implements(src, dst, &missing, &have, &ptr) { 768 return OCONVIFACE 769 } 770 771 // we'll have complained about this method anyway, suppress spurious messages. 772 if have != nil && have.Sym == missing.Sym && (have.Type.Broke || missing.Type.Broke) { 773 return OCONVIFACE 774 } 775 776 if why != nil { 777 if isptrto(src, TINTER) { 778 *why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src) 779 } else if have != nil && have.Sym == missing.Sym && have.Nointerface { 780 *why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym) 781 } else if have != nil && have.Sym == missing.Sym { 782 *why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+ 783 "\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type) 784 } else if ptr != 0 { 785 *why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym) 786 } else if have != nil { 787 *why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+ 788 "\t\thave %v%0S\n\t\twant %v%0S", src, dst, missing.Sym, have.Sym, have.Type, missing.Sym, missing.Type) 789 } else { 790 *why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym) 791 } 792 } 793 794 return 0 795 } 796 797 if isptrto(dst, TINTER) { 798 if why != nil { 799 *why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst) 800 } 801 return 0 802 } 803 804 if src.IsInterface() && dst.Etype != TBLANK { 805 var missing, have *Field 806 var ptr int 807 if why != nil && implements(dst, src, &missing, &have, &ptr) { 808 *why = ": need type assertion" 809 } 810 return 0 811 } 812 813 // 4. src is a bidirectional channel value, dst is a channel type, 814 // src and dst have identical element types, and 815 // either src or dst is not a named type. 816 if src.IsChan() && src.ChanDir() == Cboth && dst.IsChan() { 817 if eqtype(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) { 818 return OCONVNOP 819 } 820 } 821 822 // 5. src is the predeclared identifier nil and dst is a nillable type. 823 if src.Etype == TNIL { 824 switch dst.Etype { 825 case TPTR32, 826 TPTR64, 827 TFUNC, 828 TMAP, 829 TCHAN, 830 TINTER, 831 TSLICE: 832 return OCONVNOP 833 } 834 } 835 836 // 6. rule about untyped constants - already converted by defaultlit. 837 838 // 7. Any typed value can be assigned to the blank identifier. 839 if dst.Etype == TBLANK { 840 return OCONVNOP 841 } 842 843 return 0 844 } 845 846 // Can we convert a value of type src to a value of type dst? 847 // If so, return op code to use in conversion (maybe OCONVNOP). 848 // If not, return 0. 849 func convertop(src *Type, dst *Type, why *string) Op { 850 if why != nil { 851 *why = "" 852 } 853 854 if src == dst { 855 return OCONVNOP 856 } 857 if src == nil || dst == nil { 858 return 0 859 } 860 861 // Conversions from regular to go:notinheap are not allowed 862 // (unless it's unsafe.Pointer). This is a runtime-specific 863 // rule. 864 if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap && !src.Elem().NotInHeap { 865 if why != nil { 866 *why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem()) 867 } 868 return 0 869 } 870 871 // 1. src can be assigned to dst. 872 op := assignop(src, dst, why) 873 if op != 0 { 874 return op 875 } 876 877 // The rules for interfaces are no different in conversions 878 // than assignments. If interfaces are involved, stop now 879 // with the good message from assignop. 880 // Otherwise clear the error. 881 if src.IsInterface() || dst.IsInterface() { 882 return 0 883 } 884 if why != nil { 885 *why = "" 886 } 887 888 // 2. Ignoring struct tags, src and dst have identical underlying types. 889 if eqtypeIgnoreTags(src.Orig, dst.Orig) { 890 return OCONVNOP 891 } 892 893 // 3. src and dst are unnamed pointer types and, ignoring struct tags, 894 // their base types have identical underlying types. 895 if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil { 896 if eqtypeIgnoreTags(src.Elem().Orig, dst.Elem().Orig) { 897 return OCONVNOP 898 } 899 } 900 901 // 4. src and dst are both integer or floating point types. 902 if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) { 903 if simtype[src.Etype] == simtype[dst.Etype] { 904 return OCONVNOP 905 } 906 return OCONV 907 } 908 909 // 5. src and dst are both complex types. 910 if src.IsComplex() && dst.IsComplex() { 911 if simtype[src.Etype] == simtype[dst.Etype] { 912 return OCONVNOP 913 } 914 return OCONV 915 } 916 917 // 6. src is an integer or has type []byte or []rune 918 // and dst is a string type. 919 if src.IsInteger() && dst.IsString() { 920 return ORUNESTR 921 } 922 923 if src.IsSlice() && dst.IsString() { 924 if src.Elem().Etype == bytetype.Etype { 925 return OARRAYBYTESTR 926 } 927 if src.Elem().Etype == runetype.Etype { 928 return OARRAYRUNESTR 929 } 930 } 931 932 // 7. src is a string and dst is []byte or []rune. 933 // String to slice. 934 if src.IsString() && dst.IsSlice() { 935 if dst.Elem().Etype == bytetype.Etype { 936 return OSTRARRAYBYTE 937 } 938 if dst.Elem().Etype == runetype.Etype { 939 return OSTRARRAYRUNE 940 } 941 } 942 943 // 8. src is a pointer or uintptr and dst is unsafe.Pointer. 944 if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR { 945 return OCONVNOP 946 } 947 948 // 9. src is unsafe.Pointer and dst is a pointer or uintptr. 949 if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) { 950 return OCONVNOP 951 } 952 953 return 0 954 } 955 956 func assignconv(n *Node, t *Type, context string) *Node { 957 return assignconvfn(n, t, func() string { return context }) 958 } 959 960 // Convert node n for assignment to type t. 961 func assignconvfn(n *Node, t *Type, context func() string) *Node { 962 if n == nil || n.Type == nil || n.Type.Broke { 963 return n 964 } 965 966 if t.Etype == TBLANK && n.Type.Etype == TNIL { 967 yyerror("use of untyped nil") 968 } 969 970 old := n 971 od := old.Diag 972 old.Diag = true // silence errors about n; we'll issue one below 973 n = defaultlit(n, t) 974 old.Diag = od 975 if t.Etype == TBLANK { 976 return n 977 } 978 979 // Convert ideal bool from comparison to plain bool 980 // if the next step is non-bool (like interface{}). 981 if n.Type == idealbool && !t.IsBoolean() { 982 if n.Op == ONAME || n.Op == OLITERAL { 983 r := nod(OCONVNOP, n, nil) 984 r.Type = Types[TBOOL] 985 r.Typecheck = 1 986 r.Implicit = true 987 n = r 988 } 989 } 990 991 if eqtype(n.Type, t) { 992 return n 993 } 994 995 var why string 996 op := assignop(n.Type, t, &why) 997 if op == 0 { 998 yyerror("cannot use %L as type %v in %s%s", n, t, context(), why) 999 op = OCONV 1000 } 1001 1002 r := nod(op, n, nil) 1003 r.Type = t 1004 r.Typecheck = 1 1005 r.Implicit = true 1006 r.Orig = n.Orig 1007 return r 1008 } 1009 1010 // IsMethod reports whether n is a method. 1011 // n must be a function or a method. 1012 func (n *Node) IsMethod() bool { 1013 return n.Type.Recv() != nil 1014 } 1015 1016 // SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max]. 1017 // n must be a slice expression. max is nil if n is a simple slice expression. 1018 func (n *Node) SliceBounds() (low, high, max *Node) { 1019 if n.List.Len() == 0 { 1020 return nil, nil, nil 1021 } 1022 1023 switch n.Op { 1024 case OSLICE, OSLICEARR, OSLICESTR: 1025 s := n.List.Slice() 1026 return s[0], s[1], nil 1027 case OSLICE3, OSLICE3ARR: 1028 s := n.List.Slice() 1029 return s[0], s[1], s[2] 1030 } 1031 Fatalf("SliceBounds op %v: %v", n.Op, n) 1032 return nil, nil, nil 1033 } 1034 1035 // SetSliceBounds sets n's slice bounds, where n is a slice expression. 1036 // n must be a slice expression. If max is non-nil, n must be a full slice expression. 1037 func (n *Node) SetSliceBounds(low, high, max *Node) { 1038 switch n.Op { 1039 case OSLICE, OSLICEARR, OSLICESTR: 1040 if max != nil { 1041 Fatalf("SetSliceBounds %v given three bounds", n.Op) 1042 } 1043 s := n.List.Slice() 1044 if s == nil { 1045 if low == nil && high == nil { 1046 return 1047 } 1048 n.List.Set([]*Node{low, high}) 1049 return 1050 } 1051 s[0] = low 1052 s[1] = high 1053 return 1054 case OSLICE3, OSLICE3ARR: 1055 s := n.List.Slice() 1056 if s == nil { 1057 if low == nil && high == nil && max == nil { 1058 return 1059 } 1060 n.List.Set([]*Node{low, high, max}) 1061 return 1062 } 1063 s[0] = low 1064 s[1] = high 1065 s[2] = max 1066 return 1067 } 1068 Fatalf("SetSliceBounds op %v: %v", n.Op, n) 1069 } 1070 1071 // IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR). 1072 // o must be a slicing op. 1073 func (o Op) IsSlice3() bool { 1074 switch o { 1075 case OSLICE, OSLICEARR, OSLICESTR: 1076 return false 1077 case OSLICE3, OSLICE3ARR: 1078 return true 1079 } 1080 Fatalf("IsSlice3 op %v", o) 1081 return false 1082 } 1083 1084 func syslook(name string) *Node { 1085 s := Pkglookup(name, Runtimepkg) 1086 if s == nil || s.Def == nil { 1087 Fatalf("syslook: can't find runtime.%s", name) 1088 } 1089 return s.Def 1090 } 1091 1092 // typehash computes a hash value for type t to use in type switch 1093 // statements. 1094 func typehash(t *Type) uint32 { 1095 // t.tconv(FmtLeft | FmtUnsigned) already contains all the necessary logic 1096 // to generate a representation that completely describes the type, so using 1097 // it here avoids duplicating that code. 1098 // See the comments in exprSwitch.checkDupCases. 1099 p := t.tconv(FmtLeft | FmtUnsigned) 1100 1101 // Using MD5 is overkill, but reduces accidental collisions. 1102 h := md5.Sum([]byte(p)) 1103 return binary.LittleEndian.Uint32(h[:4]) 1104 } 1105 1106 // ptrto returns the Type *t. 1107 // The returned struct must not be modified. 1108 func ptrto(t *Type) *Type { 1109 if Tptr == 0 { 1110 Fatalf("ptrto: no tptr") 1111 } 1112 if t == nil { 1113 Fatalf("ptrto: nil ptr") 1114 } 1115 return typPtr(t) 1116 } 1117 1118 func frame(context int) { 1119 if context != 0 { 1120 fmt.Printf("--- external frame ---\n") 1121 for _, n := range externdcl { 1122 printframenode(n) 1123 } 1124 return 1125 } 1126 1127 if Curfn != nil { 1128 fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym) 1129 for _, ln := range Curfn.Func.Dcl { 1130 printframenode(ln) 1131 } 1132 } 1133 } 1134 1135 func printframenode(n *Node) { 1136 w := int64(-1) 1137 if n.Type != nil { 1138 w = n.Type.Width 1139 } 1140 switch n.Op { 1141 case ONAME: 1142 fmt.Printf("%v %v G%d %v width=%d\n", n.Op, n.Sym, n.Name.Vargen, n.Type, w) 1143 case OTYPE: 1144 fmt.Printf("%v %v width=%d\n", n.Op, n.Type, w) 1145 } 1146 } 1147 1148 // calculate sethi/ullman number 1149 // roughly how many registers needed to 1150 // compile a node. used to compile the 1151 // hardest side first to minimize registers. 1152 func ullmancalc(n *Node) { 1153 if n == nil { 1154 return 1155 } 1156 1157 var ul int 1158 var ur int 1159 if n.Ninit.Len() != 0 { 1160 ul = UINF 1161 goto out 1162 } 1163 1164 switch n.Op { 1165 case OLITERAL, ONAME: 1166 ul = 1 1167 if n.Class == PAUTOHEAP { 1168 ul++ 1169 } 1170 goto out 1171 1172 case OAS: 1173 if !needwritebarrier(n.Left, n.Right) { 1174 break 1175 } 1176 fallthrough 1177 case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER: 1178 ul = UINF 1179 goto out 1180 1181 // hard with instrumented code 1182 case OANDAND, OOROR: 1183 if instrumenting { 1184 ul = UINF 1185 goto out 1186 } 1187 case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR, 1188 OIND, ODOTPTR, ODOTTYPE, ODIV, OMOD: 1189 // These ops might panic, make sure they are done 1190 // before we start marshaling args for a call. See issue 16760. 1191 ul = UINF 1192 goto out 1193 } 1194 1195 ul = 1 1196 if n.Left != nil { 1197 ul = int(n.Left.Ullman) 1198 } 1199 ur = 1 1200 if n.Right != nil { 1201 ur = int(n.Right.Ullman) 1202 } 1203 if ul == ur { 1204 ul += 1 1205 } 1206 if ur > ul { 1207 ul = ur 1208 } 1209 1210 out: 1211 if ul > 200 { 1212 ul = 200 // clamp to uchar with room to grow 1213 } 1214 n.Ullman = uint8(ul) 1215 } 1216 1217 func badtype(op Op, tl *Type, tr *Type) { 1218 fmt_ := "" 1219 if tl != nil { 1220 fmt_ += fmt.Sprintf("\n\t%v", tl) 1221 } 1222 if tr != nil { 1223 fmt_ += fmt.Sprintf("\n\t%v", tr) 1224 } 1225 1226 // common mistake: *struct and *interface. 1227 if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() { 1228 if tl.Elem().IsStruct() && tr.Elem().IsInterface() { 1229 fmt_ += "\n\t(*struct vs *interface)" 1230 } else if tl.Elem().IsInterface() && tr.Elem().IsStruct() { 1231 fmt_ += "\n\t(*interface vs *struct)" 1232 } 1233 } 1234 1235 s := fmt_ 1236 yyerror("illegal types for operand: %v%s", op, s) 1237 } 1238 1239 // brcom returns !(op). 1240 // For example, brcom(==) is !=. 1241 func brcom(op Op) Op { 1242 switch op { 1243 case OEQ: 1244 return ONE 1245 case ONE: 1246 return OEQ 1247 case OLT: 1248 return OGE 1249 case OGT: 1250 return OLE 1251 case OLE: 1252 return OGT 1253 case OGE: 1254 return OLT 1255 } 1256 Fatalf("brcom: no com for %v\n", op) 1257 return op 1258 } 1259 1260 // brrev returns reverse(op). 1261 // For example, Brrev(<) is >. 1262 func brrev(op Op) Op { 1263 switch op { 1264 case OEQ: 1265 return OEQ 1266 case ONE: 1267 return ONE 1268 case OLT: 1269 return OGT 1270 case OGT: 1271 return OLT 1272 case OLE: 1273 return OGE 1274 case OGE: 1275 return OLE 1276 } 1277 Fatalf("brrev: no rev for %v\n", op) 1278 return op 1279 } 1280 1281 // return side effect-free n, appending side effects to init. 1282 // result is assignable if n is. 1283 func safeexpr(n *Node, init *Nodes) *Node { 1284 if n == nil { 1285 return nil 1286 } 1287 1288 if n.Ninit.Len() != 0 { 1289 walkstmtlist(n.Ninit.Slice()) 1290 init.AppendNodes(&n.Ninit) 1291 } 1292 1293 switch n.Op { 1294 case ONAME, OLITERAL: 1295 return n 1296 1297 case ODOT, OLEN, OCAP: 1298 l := safeexpr(n.Left, init) 1299 if l == n.Left { 1300 return n 1301 } 1302 r := nod(OXXX, nil, nil) 1303 *r = *n 1304 r.Left = l 1305 r = typecheck(r, Erv) 1306 r = walkexpr(r, init) 1307 return r 1308 1309 case ODOTPTR, OIND: 1310 l := safeexpr(n.Left, init) 1311 if l == n.Left { 1312 return n 1313 } 1314 a := nod(OXXX, nil, nil) 1315 *a = *n 1316 a.Left = l 1317 a = walkexpr(a, init) 1318 return a 1319 1320 case OINDEX, OINDEXMAP: 1321 l := safeexpr(n.Left, init) 1322 r := safeexpr(n.Right, init) 1323 if l == n.Left && r == n.Right { 1324 return n 1325 } 1326 a := nod(OXXX, nil, nil) 1327 *a = *n 1328 a.Left = l 1329 a.Right = r 1330 a = walkexpr(a, init) 1331 return a 1332 1333 case OSTRUCTLIT, OARRAYLIT, OSLICELIT: 1334 if isStaticCompositeLiteral(n) { 1335 return n 1336 } 1337 } 1338 1339 // make a copy; must not be used as an lvalue 1340 if islvalue(n) { 1341 Fatalf("missing lvalue case in safeexpr: %v", n) 1342 } 1343 return cheapexpr(n, init) 1344 } 1345 1346 func copyexpr(n *Node, t *Type, init *Nodes) *Node { 1347 l := temp(t) 1348 a := nod(OAS, l, n) 1349 a = typecheck(a, Etop) 1350 a = walkexpr(a, init) 1351 init.Append(a) 1352 return l 1353 } 1354 1355 // return side-effect free and cheap n, appending side effects to init. 1356 // result may not be assignable. 1357 func cheapexpr(n *Node, init *Nodes) *Node { 1358 switch n.Op { 1359 case ONAME, OLITERAL: 1360 return n 1361 } 1362 1363 return copyexpr(n, n.Type, init) 1364 } 1365 1366 // Code to resolve elided DOTs in embedded types. 1367 1368 // A Dlist stores a pointer to a TFIELD Type embedded within 1369 // a TSTRUCT or TINTER Type. 1370 type Dlist struct { 1371 field *Field 1372 } 1373 1374 // dotlist is used by adddot1 to record the path of embedded fields 1375 // used to access a target field or method. 1376 // Must be non-nil so that dotpath returns a non-nil slice even if d is zero. 1377 var dotlist = make([]Dlist, 10) 1378 1379 // lookdot0 returns the number of fields or methods named s associated 1380 // with Type t. If exactly one exists, it will be returned in *save 1381 // (if save is not nil). 1382 func lookdot0(s *Sym, t *Type, save **Field, ignorecase bool) int { 1383 u := t 1384 if u.IsPtr() { 1385 u = u.Elem() 1386 } 1387 1388 c := 0 1389 if u.IsStruct() || u.IsInterface() { 1390 for _, f := range u.Fields().Slice() { 1391 if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Recv() != nil && strings.EqualFold(f.Sym.Name, s.Name)) { 1392 if save != nil { 1393 *save = f 1394 } 1395 c++ 1396 } 1397 } 1398 } 1399 1400 u = methtype(t) 1401 if u != nil { 1402 for _, f := range u.Methods().Slice() { 1403 if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) { 1404 if save != nil { 1405 *save = f 1406 } 1407 c++ 1408 } 1409 } 1410 } 1411 1412 return c 1413 } 1414 1415 // adddot1 returns the number of fields or methods named s at depth d in Type t. 1416 // If exactly one exists, it will be returned in *save (if save is not nil), 1417 // and dotlist will contain the path of embedded fields traversed to find it, 1418 // in reverse order. If none exist, more will indicate whether t contains any 1419 // embedded fields at depth d, so callers can decide whether to retry at 1420 // a greater depth. 1421 func adddot1(s *Sym, t *Type, d int, save **Field, ignorecase bool) (c int, more bool) { 1422 if t.Trecur != 0 { 1423 return 1424 } 1425 t.Trecur = 1 1426 1427 var u *Type 1428 d-- 1429 if d < 0 { 1430 // We've reached our target depth. If t has any fields/methods 1431 // named s, then we're done. Otherwise, we still need to check 1432 // below for embedded fields. 1433 c = lookdot0(s, t, save, ignorecase) 1434 if c != 0 { 1435 goto out 1436 } 1437 } 1438 1439 u = t 1440 if u.IsPtr() { 1441 u = u.Elem() 1442 } 1443 if !u.IsStruct() && !u.IsInterface() { 1444 goto out 1445 } 1446 1447 for _, f := range u.Fields().Slice() { 1448 if f.Embedded == 0 || f.Sym == nil { 1449 continue 1450 } 1451 if d < 0 { 1452 // Found an embedded field at target depth. 1453 more = true 1454 goto out 1455 } 1456 a, more1 := adddot1(s, f.Type, d, save, ignorecase) 1457 if a != 0 && c == 0 { 1458 dotlist[d].field = f 1459 } 1460 c += a 1461 if more1 { 1462 more = true 1463 } 1464 } 1465 1466 out: 1467 t.Trecur = 0 1468 return c, more 1469 } 1470 1471 // dotpath computes the unique shortest explicit selector path to fully qualify 1472 // a selection expression x.f, where x is of type t and f is the symbol s. 1473 // If no such path exists, dotpath returns nil. 1474 // If there are multiple shortest paths to the same depth, ambig is true. 1475 func dotpath(s *Sym, t *Type, save **Field, ignorecase bool) (path []Dlist, ambig bool) { 1476 // The embedding of types within structs imposes a tree structure onto 1477 // types: structs parent the types they embed, and types parent their 1478 // fields or methods. Our goal here is to find the shortest path to 1479 // a field or method named s in the subtree rooted at t. To accomplish 1480 // that, we iteratively perform depth-first searches of increasing depth 1481 // until we either find the named field/method or exhaust the tree. 1482 for d := 0; ; d++ { 1483 if d > len(dotlist) { 1484 dotlist = append(dotlist, Dlist{}) 1485 } 1486 if c, more := adddot1(s, t, d, save, ignorecase); c == 1 { 1487 return dotlist[:d], false 1488 } else if c > 1 { 1489 return nil, true 1490 } else if !more { 1491 return nil, false 1492 } 1493 } 1494 } 1495 1496 // in T.field 1497 // find missing fields that 1498 // will give shortest unique addressing. 1499 // modify the tree with missing type names. 1500 func adddot(n *Node) *Node { 1501 n.Left = typecheck(n.Left, Etype|Erv) 1502 if n.Left.Diag { 1503 n.Diag = true 1504 } 1505 t := n.Left.Type 1506 if t == nil { 1507 return n 1508 } 1509 1510 if n.Left.Op == OTYPE { 1511 return n 1512 } 1513 1514 s := n.Sym 1515 if s == nil { 1516 return n 1517 } 1518 1519 switch path, ambig := dotpath(s, t, nil, false); { 1520 case path != nil: 1521 // rebuild elided dots 1522 for c := len(path) - 1; c >= 0; c-- { 1523 n.Left = nodSym(ODOT, n.Left, path[c].field.Sym) 1524 n.Left.Implicit = true 1525 } 1526 case ambig: 1527 yyerror("ambiguous selector %v", n) 1528 n.Left = nil 1529 } 1530 1531 return n 1532 } 1533 1534 // code to help generate trampoline 1535 // functions for methods on embedded 1536 // subtypes. 1537 // these are approx the same as 1538 // the corresponding adddot routines 1539 // except that they expect to be called 1540 // with unique tasks and they return 1541 // the actual methods. 1542 type Symlink struct { 1543 field *Field 1544 followptr bool 1545 } 1546 1547 var slist []Symlink 1548 1549 func expand0(t *Type, followptr bool) { 1550 u := t 1551 if u.IsPtr() { 1552 followptr = true 1553 u = u.Elem() 1554 } 1555 1556 if u.IsInterface() { 1557 for _, f := range u.Fields().Slice() { 1558 if f.Sym.Flags&SymUniq != 0 { 1559 continue 1560 } 1561 f.Sym.Flags |= SymUniq 1562 slist = append(slist, Symlink{field: f, followptr: followptr}) 1563 } 1564 1565 return 1566 } 1567 1568 u = methtype(t) 1569 if u != nil { 1570 for _, f := range u.Methods().Slice() { 1571 if f.Sym.Flags&SymUniq != 0 { 1572 continue 1573 } 1574 f.Sym.Flags |= SymUniq 1575 slist = append(slist, Symlink{field: f, followptr: followptr}) 1576 } 1577 } 1578 } 1579 1580 func expand1(t *Type, top, followptr bool) { 1581 if t.Trecur != 0 { 1582 return 1583 } 1584 t.Trecur = 1 1585 1586 if !top { 1587 expand0(t, followptr) 1588 } 1589 1590 u := t 1591 if u.IsPtr() { 1592 followptr = true 1593 u = u.Elem() 1594 } 1595 1596 if !u.IsStruct() && !u.IsInterface() { 1597 goto out 1598 } 1599 1600 for _, f := range u.Fields().Slice() { 1601 if f.Embedded == 0 { 1602 continue 1603 } 1604 if f.Sym == nil { 1605 continue 1606 } 1607 expand1(f.Type, false, followptr) 1608 } 1609 1610 out: 1611 t.Trecur = 0 1612 } 1613 1614 func expandmeth(t *Type) { 1615 if t == nil || t.AllMethods().Len() != 0 { 1616 return 1617 } 1618 1619 // mark top-level method symbols 1620 // so that expand1 doesn't consider them. 1621 for _, f := range t.Methods().Slice() { 1622 f.Sym.Flags |= SymUniq 1623 } 1624 1625 // generate all reachable methods 1626 slist = slist[:0] 1627 expand1(t, true, false) 1628 1629 // check each method to be uniquely reachable 1630 var ms []*Field 1631 for i, sl := range slist { 1632 slist[i].field = nil 1633 sl.field.Sym.Flags &^= SymUniq 1634 1635 var f *Field 1636 if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil { 1637 continue 1638 } 1639 1640 // dotpath may have dug out arbitrary fields, we only want methods. 1641 if f.Type.Etype != TFUNC || f.Type.Recv() == nil { 1642 continue 1643 } 1644 1645 // add it to the base type method list 1646 f = f.Copy() 1647 f.Embedded = 1 // needs a trampoline 1648 if sl.followptr { 1649 f.Embedded = 2 1650 } 1651 ms = append(ms, f) 1652 } 1653 1654 for _, f := range t.Methods().Slice() { 1655 f.Sym.Flags &^= SymUniq 1656 } 1657 1658 ms = append(ms, t.Methods().Slice()...) 1659 t.AllMethods().Set(ms) 1660 } 1661 1662 // Given funarg struct list, return list of ODCLFIELD Node fn args. 1663 func structargs(tl *Type, mustname bool) []*Node { 1664 var args []*Node 1665 gen := 0 1666 for _, t := range tl.Fields().Slice() { 1667 var n *Node 1668 if mustname && (t.Sym == nil || t.Sym.Name == "_") { 1669 // invent a name so that we can refer to it in the trampoline 1670 buf := fmt.Sprintf(".anon%d", gen) 1671 gen++ 1672 n = newname(lookup(buf)) 1673 } else if t.Sym != nil { 1674 n = newname(t.Sym) 1675 } 1676 a := nod(ODCLFIELD, n, typenod(t.Type)) 1677 a.Isddd = t.Isddd 1678 if n != nil { 1679 n.Isddd = t.Isddd 1680 } 1681 args = append(args, a) 1682 } 1683 1684 return args 1685 } 1686 1687 // Generate a wrapper function to convert from 1688 // a receiver of type T to a receiver of type U. 1689 // That is, 1690 // 1691 // func (t T) M() { 1692 // ... 1693 // } 1694 // 1695 // already exists; this function generates 1696 // 1697 // func (u U) M() { 1698 // u.M() 1699 // } 1700 // 1701 // where the types T and U are such that u.M() is valid 1702 // and calls the T.M method. 1703 // The resulting function is for use in method tables. 1704 // 1705 // rcvr - U 1706 // method - M func (t T)(), a TFIELD type struct 1707 // newnam - the eventual mangled name of this function 1708 1709 func genwrapper(rcvr *Type, method *Field, newnam *Sym, iface int) { 1710 if false && Debug['r'] != 0 { 1711 fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam) 1712 } 1713 1714 lineno = makePos(src.NewFileBase("<autogenerated>", "<autogenerated>"), 1, 0) 1715 1716 dclcontext = PEXTERN 1717 markdcl() 1718 1719 this := nod(ODCLFIELD, newname(lookup(".this")), typenod(rcvr)) 1720 this.Left.Name.Param.Ntype = this.Right 1721 in := structargs(method.Type.Params(), true) 1722 out := structargs(method.Type.Results(), false) 1723 1724 t := nod(OTFUNC, nil, nil) 1725 l := []*Node{this} 1726 if iface != 0 && rcvr.Width < Types[Tptr].Width { 1727 // Building method for interface table and receiver 1728 // is smaller than the single pointer-sized word 1729 // that the interface call will pass in. 1730 // Add a dummy padding argument after the 1731 // receiver to make up the difference. 1732 tpad := typArray(Types[TUINT8], Types[Tptr].Width-rcvr.Width) 1733 pad := nod(ODCLFIELD, newname(lookup(".pad")), typenod(tpad)) 1734 l = append(l, pad) 1735 } 1736 1737 t.List.Set(append(l, in...)) 1738 t.Rlist.Set(out) 1739 1740 fn := nod(ODCLFUNC, nil, nil) 1741 fn.Func.Nname = newname(newnam) 1742 fn.Func.Nname.Name.Defn = fn 1743 fn.Func.Nname.Name.Param.Ntype = t 1744 declare(fn.Func.Nname, PFUNC) 1745 funchdr(fn) 1746 1747 // arg list 1748 var args []*Node 1749 1750 isddd := false 1751 for _, n := range in { 1752 args = append(args, n.Left) 1753 isddd = n.Left.Isddd 1754 } 1755 1756 methodrcvr := method.Type.Recv().Type 1757 1758 // generate nil pointer check for better error 1759 if rcvr.IsPtr() && rcvr.Elem() == methodrcvr { 1760 // generating wrapper from *T to T. 1761 n := nod(OIF, nil, nil) 1762 n.Left = nod(OEQ, this.Left, nodnil()) 1763 call := nod(OCALL, syslook("panicwrap"), nil) 1764 n.Nbody.Set1(call) 1765 fn.Nbody.Append(n) 1766 } 1767 1768 dot := adddot(nodSym(OXDOT, this.Left, method.Sym)) 1769 1770 // generate call 1771 // It's not possible to use a tail call when dynamic linking on ppc64le. The 1772 // bad scenario is when a local call is made to the wrapper: the wrapper will 1773 // call the implementation, which might be in a different module and so set 1774 // the TOC to the appropriate value for that module. But if it returns 1775 // directly to the wrapper's caller, nothing will reset it to the correct 1776 // value for that function. 1777 if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(Thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) { 1778 // generate tail call: adjust pointer receiver and jump to embedded method. 1779 dot = dot.Left // skip final .M 1780 // TODO(mdempsky): Remove dependency on dotlist. 1781 if !dotlist[0].field.Type.IsPtr() { 1782 dot = nod(OADDR, dot, nil) 1783 } 1784 as := nod(OAS, this.Left, nod(OCONVNOP, dot, nil)) 1785 as.Right.Type = rcvr 1786 fn.Nbody.Append(as) 1787 n := nod(ORETJMP, nil, nil) 1788 n.Left = newname(methodsym(method.Sym, methodrcvr, 0)) 1789 fn.Nbody.Append(n) 1790 // When tail-calling, we can't use a frame pointer. 1791 fn.Func.NoFramePointer = true 1792 } else { 1793 fn.Func.Wrapper = true // ignore frame for panic+recover matching 1794 call := nod(OCALL, dot, nil) 1795 call.List.Set(args) 1796 call.Isddd = isddd 1797 if method.Type.Results().NumFields() > 0 { 1798 n := nod(ORETURN, nil, nil) 1799 n.List.Set1(call) 1800 call = n 1801 } 1802 1803 fn.Nbody.Append(call) 1804 } 1805 1806 if false && Debug['r'] != 0 { 1807 dumplist("genwrapper body", fn.Nbody) 1808 } 1809 1810 funcbody(fn) 1811 Curfn = fn 1812 popdcl() 1813 if debug_dclstack != 0 { 1814 testdclstack() 1815 } 1816 1817 // wrappers where T is anonymous (struct or interface) can be duplicated. 1818 if rcvr.IsStruct() || rcvr.IsInterface() || rcvr.IsPtr() && rcvr.Elem().IsStruct() { 1819 fn.Func.Dupok = true 1820 } 1821 fn = typecheck(fn, Etop) 1822 typecheckslice(fn.Nbody.Slice(), Etop) 1823 1824 inlcalls(fn) 1825 escAnalyze([]*Node{fn}, false) 1826 1827 Curfn = nil 1828 funccompile(fn) 1829 } 1830 1831 func hashmem(t *Type) *Node { 1832 sym := Pkglookup("memhash", Runtimepkg) 1833 1834 n := newname(sym) 1835 n.Class = PFUNC 1836 tfn := nod(OTFUNC, nil, nil) 1837 tfn.List.Append(nod(ODCLFIELD, nil, typenod(ptrto(t)))) 1838 tfn.List.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR]))) 1839 tfn.List.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR]))) 1840 tfn.Rlist.Append(nod(ODCLFIELD, nil, typenod(Types[TUINTPTR]))) 1841 tfn = typecheck(tfn, Etype) 1842 n.Type = tfn.Type 1843 return n 1844 } 1845 1846 func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase bool) *Field { 1847 *followptr = false 1848 1849 if t == nil { 1850 return nil 1851 } 1852 1853 var m *Field 1854 path, ambig := dotpath(s, t, &m, ignorecase) 1855 if path == nil { 1856 if ambig { 1857 yyerror("%v.%v is ambiguous", t, s) 1858 } 1859 return nil 1860 } 1861 1862 for _, d := range path { 1863 if d.field.Type.IsPtr() { 1864 *followptr = true 1865 break 1866 } 1867 } 1868 1869 if m.Type.Etype != TFUNC || m.Type.Recv() == nil { 1870 yyerror("%v.%v is a field, not a method", t, s) 1871 return nil 1872 } 1873 1874 return m 1875 } 1876 1877 func implements(t, iface *Type, m, samename **Field, ptr *int) bool { 1878 t0 := t 1879 if t == nil { 1880 return false 1881 } 1882 1883 // if this is too slow, 1884 // could sort these first 1885 // and then do one loop. 1886 1887 if t.IsInterface() { 1888 for _, im := range iface.Fields().Slice() { 1889 for _, tm := range t.Fields().Slice() { 1890 if tm.Sym == im.Sym { 1891 if eqtype(tm.Type, im.Type) { 1892 goto found 1893 } 1894 *m = im 1895 *samename = tm 1896 *ptr = 0 1897 return false 1898 } 1899 } 1900 1901 *m = im 1902 *samename = nil 1903 *ptr = 0 1904 return false 1905 found: 1906 } 1907 1908 return true 1909 } 1910 1911 t = methtype(t) 1912 if t != nil { 1913 expandmeth(t) 1914 } 1915 for _, im := range iface.Fields().Slice() { 1916 if im.Broke { 1917 continue 1918 } 1919 var followptr bool 1920 tm := ifacelookdot(im.Sym, t, &followptr, false) 1921 if tm == nil || tm.Nointerface || !eqtype(tm.Type, im.Type) { 1922 if tm == nil { 1923 tm = ifacelookdot(im.Sym, t, &followptr, true) 1924 } 1925 *m = im 1926 *samename = tm 1927 *ptr = 0 1928 return false 1929 } 1930 1931 // if pointer receiver in method, 1932 // the method does not exist for value types. 1933 rcvr := tm.Type.Recv().Type 1934 1935 if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) { 1936 if false && Debug['r'] != 0 { 1937 yyerror("interface pointer mismatch") 1938 } 1939 1940 *m = im 1941 *samename = nil 1942 *ptr = 1 1943 return false 1944 } 1945 } 1946 1947 return true 1948 } 1949 1950 func listtreecopy(l []*Node, pos src.XPos) []*Node { 1951 var out []*Node 1952 for _, n := range l { 1953 out = append(out, treecopy(n, pos)) 1954 } 1955 return out 1956 } 1957 1958 func liststmt(l []*Node) *Node { 1959 n := nod(OBLOCK, nil, nil) 1960 n.List.Set(l) 1961 if len(l) != 0 { 1962 n.Pos = l[0].Pos 1963 } 1964 return n 1965 } 1966 1967 // return power of 2 of the constant 1968 // operand. -1 if it is not a power of 2. 1969 // 1000+ if it is a -(power of 2) 1970 func powtwo(n *Node) int { 1971 if n == nil || n.Op != OLITERAL || n.Type == nil { 1972 return -1 1973 } 1974 if !n.Type.IsInteger() { 1975 return -1 1976 } 1977 1978 v := uint64(n.Int64()) 1979 b := uint64(1) 1980 for i := 0; i < 64; i++ { 1981 if b == v { 1982 return i 1983 } 1984 b = b << 1 1985 } 1986 1987 if !n.Type.IsSigned() { 1988 return -1 1989 } 1990 1991 v = -v 1992 b = 1 1993 for i := 0; i < 64; i++ { 1994 if b == v { 1995 return i + 1000 1996 } 1997 b = b << 1 1998 } 1999 2000 return -1 2001 } 2002 2003 func ngotype(n *Node) *Sym { 2004 if n.Type != nil { 2005 return typenamesym(n.Type) 2006 } 2007 return nil 2008 } 2009 2010 // Convert raw string to the prefix that will be used in the symbol 2011 // table. All control characters, space, '%' and '"', as well as 2012 // non-7-bit clean bytes turn into %xx. The period needs escaping 2013 // only in the last segment of the path, and it makes for happier 2014 // users if we escape that as little as possible. 2015 // 2016 // If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too. 2017 func pathtoprefix(s string) string { 2018 slash := strings.LastIndex(s, "/") 2019 for i := 0; i < len(s); i++ { 2020 c := s[i] 2021 if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F { 2022 var buf bytes.Buffer 2023 for i := 0; i < len(s); i++ { 2024 c := s[i] 2025 if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F { 2026 fmt.Fprintf(&buf, "%%%02x", c) 2027 continue 2028 } 2029 buf.WriteByte(c) 2030 } 2031 return buf.String() 2032 } 2033 } 2034 return s 2035 } 2036 2037 var pkgMap = make(map[string]*Pkg) 2038 var pkgs []*Pkg 2039 2040 func mkpkg(path string) *Pkg { 2041 if p := pkgMap[path]; p != nil { 2042 return p 2043 } 2044 2045 p := new(Pkg) 2046 p.Path = path 2047 p.Prefix = pathtoprefix(path) 2048 p.Syms = make(map[string]*Sym) 2049 pkgMap[path] = p 2050 pkgs = append(pkgs, p) 2051 return p 2052 } 2053 2054 // The result of addinit MUST be assigned back to n, e.g. 2055 // n.Left = addinit(n.Left, init) 2056 func addinit(n *Node, init []*Node) *Node { 2057 if len(init) == 0 { 2058 return n 2059 } 2060 2061 switch n.Op { 2062 // There may be multiple refs to this node; 2063 // introduce OCONVNOP to hold init list. 2064 case ONAME, OLITERAL: 2065 n = nod(OCONVNOP, n, nil) 2066 n.Type = n.Left.Type 2067 n.Typecheck = 1 2068 } 2069 2070 n.Ninit.Prepend(init...) 2071 n.Ullman = UINF 2072 return n 2073 } 2074 2075 var reservedimports = []string{ 2076 "go", 2077 "type", 2078 } 2079 2080 func isbadimport(path string) bool { 2081 if strings.Contains(path, "\x00") { 2082 yyerror("import path contains NUL") 2083 return true 2084 } 2085 2086 for _, ri := range reservedimports { 2087 if path == ri { 2088 yyerror("import path %q is reserved and cannot be used", path) 2089 return true 2090 } 2091 } 2092 2093 for _, r := range path { 2094 if r == utf8.RuneError { 2095 yyerror("import path contains invalid UTF-8 sequence: %q", path) 2096 return true 2097 } 2098 2099 if r < 0x20 || r == 0x7f { 2100 yyerror("import path contains control character: %q", path) 2101 return true 2102 } 2103 2104 if r == '\\' { 2105 yyerror("import path contains backslash; use slash: %q", path) 2106 return true 2107 } 2108 2109 if unicode.IsSpace(r) { 2110 yyerror("import path contains space character: %q", path) 2111 return true 2112 } 2113 2114 if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) { 2115 yyerror("import path contains invalid character '%c': %q", r, path) 2116 return true 2117 } 2118 } 2119 2120 return false 2121 } 2122 2123 func checknil(x *Node, init *Nodes) { 2124 x = walkexpr(x, nil) // caller has not done this yet 2125 if x.Type.IsInterface() { 2126 x = nod(OITAB, x, nil) 2127 x = typecheck(x, Erv) 2128 } 2129 2130 n := nod(OCHECKNIL, x, nil) 2131 n.Typecheck = 1 2132 init.Append(n) 2133 } 2134 2135 // Can this type be stored directly in an interface word? 2136 // Yes, if the representation is a single pointer. 2137 func isdirectiface(t *Type) bool { 2138 switch t.Etype { 2139 case TPTR32, 2140 TPTR64, 2141 TCHAN, 2142 TMAP, 2143 TFUNC, 2144 TUNSAFEPTR: 2145 return true 2146 2147 case TARRAY: 2148 // Array of 1 direct iface type can be direct. 2149 return t.NumElem() == 1 && isdirectiface(t.Elem()) 2150 2151 case TSTRUCT: 2152 // Struct with 1 field of direct iface type can be direct. 2153 return t.NumFields() == 1 && isdirectiface(t.Field(0).Type) 2154 } 2155 2156 return false 2157 } 2158 2159 // itabType loads the _type field from a runtime.itab struct. 2160 func itabType(itab *Node) *Node { 2161 typ := nodSym(ODOTPTR, itab, nil) 2162 typ.Type = ptrto(Types[TUINT8]) 2163 typ.Typecheck = 1 2164 typ.Xoffset = int64(Widthptr) // offset of _type in runtime.itab 2165 typ.Bounded = true // guaranteed not to fault 2166 return typ 2167 } 2168 2169 // ifaceData loads the data field from an interface. 2170 // The concrete type must be known to have type t. 2171 // It follows the pointer if !isdirectiface(t). 2172 func ifaceData(n *Node, t *Type) *Node { 2173 ptr := nodSym(OIDATA, n, nil) 2174 if isdirectiface(t) { 2175 ptr.Type = t 2176 ptr.Typecheck = 1 2177 return ptr 2178 } 2179 ptr.Type = ptrto(t) 2180 ptr.Bounded = true 2181 ptr.Typecheck = 1 2182 ind := nod(OIND, ptr, nil) 2183 ind.Type = t 2184 ind.Typecheck = 1 2185 return ind 2186 } 2187 2188 // iet returns 'T' if t is a concrete type, 2189 // 'I' if t is an interface type, and 'E' if t is an empty interface type. 2190 // It is used to build calls to the conv* and assert* runtime routines. 2191 func (t *Type) iet() byte { 2192 if t.IsEmptyInterface() { 2193 return 'E' 2194 } 2195 if t.IsInterface() { 2196 return 'I' 2197 } 2198 return 'T' 2199 }