github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/src/cmd/compile/internal/gc/syntax.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // “Abstract” syntax representation. 6 7 package gc 8 9 import ( 10 "cmd/compile/internal/syntax" 11 "cmd/internal/src" 12 ) 13 14 // A Node is a single node in the syntax tree. 15 // Actually the syntax tree is a syntax DAG, because there is only one 16 // node with Op=ONAME for a given instance of a variable x. 17 // The same is true for Op=OTYPE and Op=OLITERAL. 18 type Node struct { 19 // Tree structure. 20 // Generic recursive walks should follow these fields. 21 Left *Node 22 Right *Node 23 Ninit Nodes 24 Nbody Nodes 25 List Nodes 26 Rlist Nodes 27 28 // most nodes 29 Type *Type 30 Orig *Node // original form, for printing, and tracking copies of ONAMEs 31 32 // func 33 Func *Func 34 35 // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL 36 Name *Name 37 38 Sym *Sym // various 39 E interface{} // Opt or Val, see methods below 40 41 // Various. Usually an offset into a struct. For example: 42 // - ONAME nodes that refer to local variables use it to identify their stack frame position. 43 // - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address. 44 // - OSTRUCTKEY uses it to store the named field's offset. 45 // - OXCASE and OXFALL use it to validate the use of fallthrough. 46 // - Named OLITERALs use it to to store their ambient iota value. 47 // Possibly still more uses. If you find any, document them. 48 Xoffset int64 49 50 Pos src.XPos 51 52 Esc uint16 // EscXXX 53 54 Op Op 55 Ullman uint8 // sethi/ullman number 56 Addable bool // addressable 57 Etype EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS 58 Bounded bool // bounds check unnecessary 59 NonNil bool // guaranteed to be non-nil 60 Class Class // PPARAM, PAUTO, PEXTERN, etc 61 Embedded uint8 // ODCLFIELD embedded type 62 Colas bool // OAS resulting from := 63 Diag bool // already printed error about this 64 Noescape bool // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) 65 Walkdef uint8 // tracks state during typecheckdef; 2 == loop detected 66 Typecheck uint8 // tracks state during typechecking; 2 == loop detected 67 Local bool // type created in this file (see also Type.Local); TODO(gri): move this into flags 68 IsStatic bool // whether this Node will be converted to purely static data 69 Initorder uint8 70 Used bool // for variable/label declared and not used error 71 Isddd bool // is the argument variadic 72 Implicit bool 73 Addrtaken bool // address taken, even if not moved to heap 74 Assigned bool // is the variable ever assigned to 75 Likely int8 // likeliness of if statement 76 hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set 77 flags uint8 // TODO: store more bool fields in this flag field 78 } 79 80 // IsAutoTmp indicates if n was created by the compiler as a temporary, 81 // based on the setting of the .AutoTemp flag in n's Name. 82 func (n *Node) IsAutoTmp() bool { 83 if n == nil || n.Op != ONAME { 84 return false 85 } 86 return n.Name.AutoTemp 87 } 88 89 const ( 90 hasBreak = 1 << iota 91 isClosureVar 92 isOutputParamHeapAddr 93 noInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only 94 ) 95 96 func (n *Node) HasBreak() bool { 97 return n.flags&hasBreak != 0 98 } 99 func (n *Node) SetHasBreak(b bool) { 100 if b { 101 n.flags |= hasBreak 102 } else { 103 n.flags &^= hasBreak 104 } 105 } 106 func (n *Node) isClosureVar() bool { 107 return n.flags&isClosureVar != 0 108 } 109 func (n *Node) setIsClosureVar(b bool) { 110 if b { 111 n.flags |= isClosureVar 112 } else { 113 n.flags &^= isClosureVar 114 } 115 } 116 func (n *Node) noInline() bool { 117 return n.flags&noInline != 0 118 } 119 func (n *Node) setNoInline(b bool) { 120 if b { 121 n.flags |= noInline 122 } else { 123 n.flags &^= noInline 124 } 125 } 126 127 func (n *Node) IsOutputParamHeapAddr() bool { 128 return n.flags&isOutputParamHeapAddr != 0 129 } 130 func (n *Node) setIsOutputParamHeapAddr(b bool) { 131 if b { 132 n.flags |= isOutputParamHeapAddr 133 } else { 134 n.flags &^= isOutputParamHeapAddr 135 } 136 } 137 138 // Val returns the Val for the node. 139 func (n *Node) Val() Val { 140 if n.hasVal != +1 { 141 return Val{} 142 } 143 return Val{n.E} 144 } 145 146 // SetVal sets the Val for the node, which must not have been used with SetOpt. 147 func (n *Node) SetVal(v Val) { 148 if n.hasVal == -1 { 149 Debug['h'] = 1 150 Dump("have Opt", n) 151 Fatalf("have Opt") 152 } 153 n.hasVal = +1 154 n.E = v.U 155 } 156 157 // Opt returns the optimizer data for the node. 158 func (n *Node) Opt() interface{} { 159 if n.hasVal != -1 { 160 return nil 161 } 162 return n.E 163 } 164 165 // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. 166 // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. 167 func (n *Node) SetOpt(x interface{}) { 168 if x == nil && n.hasVal >= 0 { 169 return 170 } 171 if n.hasVal == +1 { 172 Debug['h'] = 1 173 Dump("have Val", n) 174 Fatalf("have Val") 175 } 176 n.hasVal = -1 177 n.E = x 178 } 179 180 func (n *Node) Iota() int64 { 181 return n.Xoffset 182 } 183 184 func (n *Node) SetIota(x int64) { 185 n.Xoffset = x 186 } 187 188 // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). 189 type Name struct { 190 Pack *Node // real package for import . names 191 Pkg *Pkg // pkg for OPACK nodes 192 Defn *Node // initializing assignment 193 Curfn *Node // function for local variables 194 Param *Param // additional fields for ONAME, OTYPE 195 Decldepth int32 // declaration loop depth, increased for every loop or label 196 Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. 197 Funcdepth int32 198 Readonly bool 199 Captured bool // is the variable captured by a closure 200 Byval bool // is the variable captured by value or by reference 201 Needzero bool // if it contains pointers, needs to be zeroed on function entry 202 Keepalive bool // mark value live across unknown assembly call 203 AutoTemp bool // is the variable a temporary (implies no dwarf info. reset if escapes to heap) 204 } 205 206 type Param struct { 207 Ntype *Node 208 Heapaddr *Node // temp holding heap address of param 209 210 // ONAME PAUTOHEAP 211 Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) 212 213 // ONAME PPARAM 214 Field *Field // TFIELD in arg struct 215 216 // ONAME closure linkage 217 // Consider: 218 // 219 // func f() { 220 // x := 1 // x1 221 // func() { 222 // use(x) // x2 223 // func() { 224 // use(x) // x3 225 // --- parser is here --- 226 // }() 227 // }() 228 // } 229 // 230 // There is an original declaration of x and then a chain of mentions of x 231 // leading into the current function. Each time x is mentioned in a new closure, 232 // we create a variable representing x for use in that specific closure, 233 // since the way you get to x is different in each closure. 234 // 235 // Let's number the specific variables as shown in the code: 236 // x1 is the original x, x2 is when mentioned in the closure, 237 // and x3 is when mentioned in the closure in the closure. 238 // 239 // We keep these linked (assume N > 1): 240 // 241 // - x1.Defn = original declaration statement for x (like most variables) 242 // - x1.Innermost = current innermost closure x (in this case x3), or nil for none 243 // - x1.isClosureVar() = false 244 // 245 // - xN.Defn = x1, N > 1 246 // - xN.isClosureVar() = true, N > 1 247 // - x2.Outer = nil 248 // - xN.Outer = x(N-1), N > 2 249 // 250 // 251 // When we look up x in the symbol table, we always get x1. 252 // Then we can use x1.Innermost (if not nil) to get the x 253 // for the innermost known closure function, 254 // but the first reference in a closure will find either no x1.Innermost 255 // or an x1.Innermost with .Funcdepth < Funcdepth. 256 // In that case, a new xN must be created, linked in with: 257 // 258 // xN.Defn = x1 259 // xN.Outer = x1.Innermost 260 // x1.Innermost = xN 261 // 262 // When we finish the function, we'll process its closure variables 263 // and find xN and pop it off the list using: 264 // 265 // x1 := xN.Defn 266 // x1.Innermost = xN.Outer 267 // 268 // We leave xN.Innermost set so that we can still get to the original 269 // variable quickly. Not shown here, but once we're 270 // done parsing a function and no longer need xN.Outer for the 271 // lexical x reference links as described above, closurebody 272 // recomputes xN.Outer as the semantic x reference link tree, 273 // even filling in x in intermediate closures that might not 274 // have mentioned it along the way to inner closures that did. 275 // See closurebody for details. 276 // 277 // During the eventual compilation, then, for closure variables we have: 278 // 279 // xN.Defn = original variable 280 // xN.Outer = variable captured in next outward scope 281 // to make closure where xN appears 282 // 283 // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn 284 // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. 285 Innermost *Node 286 Outer *Node 287 288 // OTYPE 289 // 290 // TODO: Should Func pragmas also be stored on the Name? 291 Pragma syntax.Pragma 292 Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) 293 } 294 295 // Func holds Node fields used only with function-like nodes. 296 type Func struct { 297 Shortname *Sym 298 Enter Nodes // for example, allocate and initialize memory for escaping parameters 299 Exit Nodes 300 Cvars Nodes // closure params 301 Dcl []*Node // autodcl for this func/closure 302 Inldcl Nodes // copy of dcl for use in inlining 303 Closgen int 304 Outerfunc *Node // outer function (for closure) 305 FieldTrack map[*Sym]struct{} 306 Ntype *Node // signature 307 Top int // top context (Ecall, Eproc, etc) 308 Closure *Node // OCLOSURE <-> ODCLFUNC 309 Nname *Node 310 311 Inl Nodes // copy of the body for use in inlining 312 InlCost int32 313 Depth int32 314 315 Label int32 // largest auto-generated label in this function 316 317 Endlineno src.XPos 318 WBPos src.XPos // position of first write barrier 319 320 Pragma syntax.Pragma // go:xxx function annotations 321 Dupok bool // duplicate definitions ok 322 Wrapper bool // is method wrapper 323 Needctxt bool // function uses context register (has closure variables) 324 ReflectMethod bool // function calls reflect.Type.Method or MethodByName 325 IsHiddenClosure bool 326 NoFramePointer bool // Must not use a frame pointer for this function 327 } 328 329 type Op uint8 330 331 // Node ops. 332 const ( 333 OXXX = Op(iota) 334 335 // names 336 ONAME // var, const or func name 337 ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } 338 OTYPE // type name 339 OPACK // import 340 OLITERAL // literal 341 342 // expressions 343 OADD // Left + Right 344 OSUB // Left - Right 345 OOR // Left | Right 346 OXOR // Left ^ Right 347 OADDSTR // +{List} (string addition, list elements are strings) 348 OADDR // &Left 349 OANDAND // Left && Right 350 OAPPEND // append(List) 351 OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) 352 OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) 353 OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) 354 OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) 355 OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) 356 OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) 357 OAS // Left = Right or (if Colas=true) Left := Right 358 OAS2 // List = Rlist (x, y, z = a, b, c) 359 OAS2FUNC // List = Rlist (x, y = f()) 360 OAS2RECV // List = Rlist (x, ok = <-c) 361 OAS2MAPR // List = Rlist (x, ok = m["foo"]) 362 OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) 363 OASOP // Left Etype= Right (x += y) 364 OCALL // Left(List) (function call, method call or type conversion) 365 OCALLFUNC // Left(List) (function call f(args)) 366 OCALLMETH // Left(List) (direct method call x.Method(args)) 367 OCALLINTER // Left(List) (interface method call x.Method(args)) 368 OCALLPART // Left.Right (method expression x.Method, not called) 369 OCAP // cap(Left) 370 OCLOSE // close(Left) 371 OCLOSURE // func Type { Body } (func literal) 372 OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) 373 OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) 374 OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) 375 OMAPLIT // Type{List} (composite literal, Type is map) 376 OSTRUCTLIT // Type{List} (composite literal, Type is struct) 377 OARRAYLIT // Type{List} (composite literal, Type is array) 378 OSLICELIT // Type{List} (composite literal, Type is slice) 379 OPTRLIT // &Left (left is composite literal) 380 OCONV // Type(Left) (type conversion) 381 OCONVIFACE // Type(Left) (type conversion, to interface) 382 OCONVNOP // Type(Left) (type conversion, no effect) 383 OCOPY // copy(Left, Right) 384 ODCL // var Left (declares Left of type Left.Type) 385 386 // Used during parsing but don't last. 387 ODCLFUNC // func f() or func (r) f() 388 ODCLFIELD // struct field, interface field, or func/method argument/return value. 389 ODCLCONST // const pi = 3.14 390 ODCLTYPE // type Int int or type Int = int 391 392 ODELETE // delete(Left, Right) 393 ODOT // Left.Sym (Left is of struct type) 394 ODOTPTR // Left.Sym (Left is of pointer to struct type) 395 ODOTMETH // Left.Sym (Left is non-interface, Right is method name) 396 ODOTINTER // Left.Sym (Left is interface, Right is method name) 397 OXDOT // Left.Sym (before rewrite to one of the preceding) 398 ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved) 399 ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE) 400 OEQ // Left == Right 401 ONE // Left != Right 402 OLT // Left < Right 403 OLE // Left <= Right 404 OGE // Left >= Right 405 OGT // Left > Right 406 OIND // *Left 407 OINDEX // Left[Right] (index of array or slice) 408 OINDEXMAP // Left[Right] (index of map) 409 OKEY // Left:Right (key:value in struct/array/map literal) 410 OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) 411 OLEN // len(Left) 412 OMAKE // make(List) (before type checking converts to one of the following) 413 OMAKECHAN // make(Type, Left) (type is chan) 414 OMAKEMAP // make(Type, Left) (type is map) 415 OMAKESLICE // make(Type, Left, Right) (type is slice) 416 OMUL // Left * Right 417 ODIV // Left / Right 418 OMOD // Left % Right 419 OLSH // Left << Right 420 ORSH // Left >> Right 421 OAND // Left & Right 422 OANDNOT // Left &^ Right 423 ONEW // new(Left) 424 ONOT // !Left 425 OCOM // ^Left 426 OPLUS // +Left 427 OMINUS // -Left 428 OOROR // Left || Right 429 OPANIC // panic(Left) 430 OPRINT // print(List) 431 OPRINTN // println(List) 432 OPAREN // (Left) 433 OSEND // Left <- Right 434 OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) 435 OSLICEARR // Left[List[0] : List[1]] (Left is array) 436 OSLICESTR // Left[List[0] : List[1]] (Left is string) 437 OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) 438 OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) 439 ORECOVER // recover() 440 ORECV // <-Left 441 ORUNESTR // Type(Left) (Type is string, Left is rune) 442 OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) 443 OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) 444 OIOTA // iota 445 OREAL // real(Left) 446 OIMAG // imag(Left) 447 OCOMPLEX // complex(Left, Right) 448 OALIGNOF // unsafe.Alignof(Left) 449 OOFFSETOF // unsafe.Offsetof(Left) 450 OSIZEOF // unsafe.Sizeof(Left) 451 452 // statements 453 OBLOCK // { List } (block of code) 454 OBREAK // break 455 OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default) 456 OXCASE // case List: Nbody (select case before processing; List==nil means default) 457 OCONTINUE // continue 458 ODEFER // defer Left (Left must be call) 459 OEMPTY // no-op (empty statement) 460 OFALL // fallthrough (after processing) 461 OXFALL // fallthrough (before processing) 462 OFOR // for Ninit; Left; Right { Nbody } 463 OGOTO // goto Left 464 OIF // if Ninit; Left { Nbody } else { Rlist } 465 OLABEL // Left: 466 OPROC // go Left (Left must be call) 467 ORANGE // for List = range Right { Nbody } 468 ORETURN // return List 469 OSELECT // select { List } (List is list of OXCASE or OCASE) 470 OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) 471 OTYPESW // List = Left.(type) (appears as .Left of OSWITCH) 472 473 // types 474 OTCHAN // chan int 475 OTMAP // map[string]int 476 OTSTRUCT // struct{} 477 OTINTER // interface{} 478 OTFUNC // func() 479 OTARRAY // []int, [8]int, [N]int or [...]int 480 481 // misc 482 ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. 483 ODDDARG // func f(args ...int), introduced by escape analysis. 484 OINLCALL // intermediary representation of an inlined call. 485 OEFACE // itable and data words of an empty-interface value. 486 OITAB // itable word of an interface value. 487 OIDATA // data word of an interface value in Left 488 OSPTR // base pointer of a slice or string. 489 OCLOSUREVAR // variable reference at beginning of closure function 490 OCFUNC // reference to c function pointer (not go func value) 491 OCHECKNIL // emit code to ensure pointer/interface not nil 492 OVARKILL // variable is dead 493 OVARLIVE // variable is alive 494 OINDREGSP // offset plus indirect of REGSP, such as 8(SP). 495 496 // arch-specific opcodes 497 OHMUL // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both). 498 ORETJMP // return to other function 499 OGETG // runtime.getg() (read g pointer) 500 501 OEND 502 ) 503 504 // Nodes is a pointer to a slice of *Node. 505 // For fields that are not used in most nodes, this is used instead of 506 // a slice to save space. 507 type Nodes struct{ slice *[]*Node } 508 509 // Slice returns the entries in Nodes as a slice. 510 // Changes to the slice entries (as in s[i] = n) will be reflected in 511 // the Nodes. 512 func (n Nodes) Slice() []*Node { 513 if n.slice == nil { 514 return nil 515 } 516 return *n.slice 517 } 518 519 // Len returns the number of entries in Nodes. 520 func (n Nodes) Len() int { 521 if n.slice == nil { 522 return 0 523 } 524 return len(*n.slice) 525 } 526 527 // Index returns the i'th element of Nodes. 528 // It panics if n does not have at least i+1 elements. 529 func (n Nodes) Index(i int) *Node { 530 return (*n.slice)[i] 531 } 532 533 // First returns the first element of Nodes (same as n.Index(0)). 534 // It panics if n has no elements. 535 func (n Nodes) First() *Node { 536 return (*n.slice)[0] 537 } 538 539 // Second returns the second element of Nodes (same as n.Index(1)). 540 // It panics if n has fewer than two elements. 541 func (n Nodes) Second() *Node { 542 return (*n.slice)[1] 543 } 544 545 // Set sets n to a slice. 546 // This takes ownership of the slice. 547 func (n *Nodes) Set(s []*Node) { 548 if len(s) == 0 { 549 n.slice = nil 550 } else { 551 // Copy s and take address of t rather than s to avoid 552 // allocation in the case where len(s) == 0 (which is 553 // over 3x more common, dynamically, for make.bash). 554 t := s 555 n.slice = &t 556 } 557 } 558 559 // Set1 sets n to a slice containing a single node. 560 func (n *Nodes) Set1(node *Node) { 561 n.slice = &[]*Node{node} 562 } 563 564 // Set2 sets n to a slice containing two nodes. 565 func (n *Nodes) Set2(n1, n2 *Node) { 566 n.slice = &[]*Node{n1, n2} 567 } 568 569 // MoveNodes sets n to the contents of n2, then clears n2. 570 func (n *Nodes) MoveNodes(n2 *Nodes) { 571 n.slice = n2.slice 572 n2.slice = nil 573 } 574 575 // SetIndex sets the i'th element of Nodes to node. 576 // It panics if n does not have at least i+1 elements. 577 func (n Nodes) SetIndex(i int, node *Node) { 578 (*n.slice)[i] = node 579 } 580 581 // Addr returns the address of the i'th element of Nodes. 582 // It panics if n does not have at least i+1 elements. 583 func (n Nodes) Addr(i int) **Node { 584 return &(*n.slice)[i] 585 } 586 587 // Append appends entries to Nodes. 588 // If a slice is passed in, this will take ownership of it. 589 func (n *Nodes) Append(a ...*Node) { 590 if len(a) == 0 { 591 return 592 } 593 if n.slice == nil { 594 n.slice = &a 595 } else { 596 *n.slice = append(*n.slice, a...) 597 } 598 } 599 600 // Prepend prepends entries to Nodes. 601 // If a slice is passed in, this will take ownership of it. 602 func (n *Nodes) Prepend(a ...*Node) { 603 if len(a) == 0 { 604 return 605 } 606 if n.slice == nil { 607 n.slice = &a 608 } else { 609 *n.slice = append(a, *n.slice...) 610 } 611 } 612 613 // AppendNodes appends the contents of *n2 to n, then clears n2. 614 func (n *Nodes) AppendNodes(n2 *Nodes) { 615 switch { 616 case n2.slice == nil: 617 case n.slice == nil: 618 n.slice = n2.slice 619 default: 620 *n.slice = append(*n.slice, *n2.slice...) 621 } 622 n2.slice = nil 623 }