github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"log"
    35  	"math"
    36  	"sort"
    37  )
    38  
    39  // instruction layout.
    40  const (
    41  	funcAlign = 16
    42  )
    43  
    44  type Optab struct {
    45  	as    obj.As // opcode
    46  	a1    uint8  // From
    47  	a2    uint8  // Reg
    48  	a3    uint8  // From3
    49  	a4    uint8  // To
    50  	type_ int8
    51  	param int16 // REGSP for auto variables
    52  }
    53  
    54  var optab = []Optab{
    55  	// instruction,  From,   Reg,    From3,  To, type, param
    56  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    57  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    58  
    59  	// move register
    60  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    61  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    62  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    63  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    64  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    65  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    66  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    67  
    68  	// load constant
    69  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    70  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    71  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    72  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    73  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    74  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    75  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    76  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    77  
    78  	// store constant
    79  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    80  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    81  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    82  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    83  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    84  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    85  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    86  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    87  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    88  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    89  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    90  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    91  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    92  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    93  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    94  
    95  	// store
    96  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
    97  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
    98  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
    99  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   100  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   101  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   102  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   103  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   104  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   105  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   106  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   107  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   108  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   109  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   110  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   111  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   112  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   113  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   114  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   115  
   116  	// load
   117  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   118  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   119  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   120  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   121  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   122  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   123  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   124  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   125  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   126  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   127  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   128  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   129  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   130  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   131  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   132  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   133  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   134  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   135  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   136  
   137  	// interlocked load and op
   138  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   139  
   140  	// integer arithmetic
   141  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   142  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   143  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   144  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   145  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   146  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   147  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   148  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   149  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   150  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   151  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   152  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   153  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   154  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   155  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   156  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   157  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   158  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   159  
   160  	// integer logical
   161  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   162  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   163  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   164  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   165  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   166  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   167  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   168  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   169  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   170  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   171  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   172  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   173  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   174  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   175  
   176  	// compare and swap
   177  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   178  
   179  	// floating point
   180  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   181  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   182  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   183  	Optab{AFMADD, C_FREG, C_FREG, C_NONE, C_FREG, 34, 0},
   184  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   185  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   186  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   187  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   188  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   189  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   190  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   191  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   192  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   193  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   194  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   195  
   196  	// load symbol address (plus offset)
   197  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   198  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   199  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   200  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   201  
   202  	// system call
   203  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   204  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   205  
   206  	// branch
   207  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   208  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   209  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   210  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   211  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   212  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   213  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   214  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   215  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   216  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   217  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   218  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   219  
   220  	// move on condition
   221  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   222  
   223  	// find leftmost one
   224  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   225  
   226  	// compare
   227  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   228  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   229  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   230  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   231  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   232  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   233  
   234  	// 32-bit access registers
   235  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   236  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   237  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   238  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   239  
   240  	// macros
   241  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   242  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   243  
   244  	// load/store multiple
   245  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   246  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   247  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   248  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   249  
   250  	// bytes
   251  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   252  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   253  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   254  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   255  
   256  	// fast synchronization
   257  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 81, 0},
   258  
   259  	// store clock
   260  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   261  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   262  
   263  	// storage and storage
   264  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LOREG, 84, 0},
   265  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   266  	Optab{AMVC, C_LAUTO, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   267  
   268  	// address
   269  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   270  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   271  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   272  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   273  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   274  
   275  	// misc
   276  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   277  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   278  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   279  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   280  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   281  
   282  	// vector instructions
   283  
   284  	// VRX store
   285  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   286  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   287  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SOREG, 100, 0},
   288  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 100, REGSP},
   289  
   290  	// VRX load
   291  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   292  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   293  	Optab{AVLEG, C_SOREG, C_NONE, C_SCON, C_VREG, 101, 0},
   294  	Optab{AVLEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 101, REGSP},
   295  
   296  	// VRV scatter
   297  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SOREG, 102, 0},
   298  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 102, REGSP},
   299  
   300  	// VRV gather
   301  	Optab{AVGEG, C_SOREG, C_NONE, C_SCON, C_VREG, 103, 0},
   302  	Optab{AVGEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 103, REGSP},
   303  
   304  	// VRS element shift/rotate and load gr to/from vr element
   305  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   306  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   307  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   308  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   309  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   310  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   311  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   312  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   313  
   314  	// VRS store multiple
   315  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   316  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   317  
   318  	// VRS load multiple
   319  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   320  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   321  
   322  	// VRS store with length
   323  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SOREG, 107, 0},
   324  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SAUTO, 107, REGSP},
   325  
   326  	// VRS load with length
   327  	Optab{AVLL, C_SOREG, C_NONE, C_REG, C_VREG, 108, 0},
   328  	Optab{AVLL, C_SAUTO, C_NONE, C_REG, C_VREG, 108, REGSP},
   329  
   330  	// VRI-a
   331  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   332  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   333  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   334  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   335  	Optab{AVLEIG, C_ADDCON, C_NONE, C_SCON, C_VREG, 109, 0},
   336  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   337  
   338  	// VRI-b generate mask
   339  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   340  
   341  	// VRI-c replicate
   342  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   343  
   344  	// VRI-d element rotate and insert under mask and
   345  	// shift left double by byte
   346  	Optab{AVERIMG, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   347  	Optab{AVSLDB, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   348  
   349  	// VRI-d fp test data class immediate
   350  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   351  
   352  	// VRR-a load reg
   353  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   354  
   355  	// VRR-a compare
   356  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   357  
   358  	// VRR-b
   359  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   360  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   361  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   362  
   363  	// VRR-c
   364  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   365  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   366  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   367  	Optab{AVPDI, C_VREG, C_VREG, C_SCON, C_VREG, 123, 0},
   368  
   369  	// VRR-c shifts
   370  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   371  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   372  
   373  	// VRR-d
   374  	//             2       3       1       4
   375  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   376  
   377  	// VRR-e
   378  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   379  
   380  	// VRR-f
   381  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   382  }
   383  
   384  var oprange [ALAST & obj.AMask][]Optab
   385  
   386  var xcmp [C_NCLASS][C_NCLASS]bool
   387  
   388  func spanz(ctxt *obj.Link, cursym *obj.LSym) {
   389  	p := cursym.Text
   390  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   391  		return
   392  	}
   393  	ctxt.Cursym = cursym
   394  	ctxt.Autosize = int32(p.To.Offset)
   395  
   396  	if oprange[AORW&obj.AMask] == nil {
   397  		buildop(ctxt)
   398  	}
   399  
   400  	buffer := make([]byte, 0)
   401  	changed := true
   402  	loop := 0
   403  	for changed {
   404  		if loop > 10 {
   405  			ctxt.Diag("stuck in spanz loop")
   406  			break
   407  		}
   408  		changed = false
   409  		buffer = buffer[:0]
   410  		ctxt.Cursym.R = make([]obj.Reloc, 0)
   411  		for p := cursym.Text; p != nil; p = p.Link {
   412  			pc := int64(len(buffer))
   413  			if pc != p.Pc {
   414  				changed = true
   415  			}
   416  			p.Pc = pc
   417  			ctxt.Pc = p.Pc
   418  			ctxt.Curp = p
   419  			asmout(ctxt, &buffer)
   420  			if pc == int64(len(buffer)) {
   421  				switch p.As {
   422  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   423  					// ok
   424  				default:
   425  					ctxt.Diag("zero-width instruction\n%v", p)
   426  				}
   427  			}
   428  		}
   429  		loop++
   430  	}
   431  
   432  	cursym.Size = int64(len(buffer))
   433  	if cursym.Size%funcAlign != 0 {
   434  		cursym.Size += funcAlign - (cursym.Size % funcAlign)
   435  	}
   436  	cursym.Grow(cursym.Size)
   437  	copy(cursym.P, buffer)
   438  }
   439  
   440  func isint32(v int64) bool {
   441  	return int64(int32(v)) == v
   442  }
   443  
   444  func isuint32(v uint64) bool {
   445  	return uint64(uint32(v)) == v
   446  }
   447  
   448  func aclass(ctxt *obj.Link, a *obj.Addr) int {
   449  	switch a.Type {
   450  	case obj.TYPE_NONE:
   451  		return C_NONE
   452  
   453  	case obj.TYPE_REG:
   454  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   455  			return C_REG
   456  		}
   457  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   458  			return C_FREG
   459  		}
   460  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   461  			return C_AREG
   462  		}
   463  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   464  			return C_VREG
   465  		}
   466  		return C_GOK
   467  
   468  	case obj.TYPE_MEM:
   469  		switch a.Name {
   470  		case obj.NAME_EXTERN,
   471  			obj.NAME_STATIC:
   472  			if a.Sym == nil {
   473  				// must have a symbol
   474  				break
   475  			}
   476  			ctxt.Instoffset = a.Offset
   477  			if a.Sym.Type == obj.STLSBSS {
   478  				if ctxt.Flag_shared {
   479  					return C_TLS_IE // initial exec model
   480  				}
   481  				return C_TLS_LE // local exec model
   482  			}
   483  			return C_ADDR
   484  
   485  		case obj.NAME_GOTREF:
   486  			return C_GOTADDR
   487  
   488  		case obj.NAME_AUTO:
   489  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   490  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   491  				return C_SAUTO
   492  			}
   493  			return C_LAUTO
   494  
   495  		case obj.NAME_PARAM:
   496  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   497  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   498  				return C_SAUTO
   499  			}
   500  			return C_LAUTO
   501  
   502  		case obj.NAME_NONE:
   503  			ctxt.Instoffset = a.Offset
   504  			if ctxt.Instoffset == 0 {
   505  				return C_ZOREG
   506  			}
   507  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   508  				return C_SOREG
   509  			}
   510  			return C_LOREG
   511  		}
   512  
   513  		return C_GOK
   514  
   515  	case obj.TYPE_TEXTSIZE:
   516  		return C_TEXTSIZE
   517  
   518  	case obj.TYPE_FCONST:
   519  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   520  			return C_ZCON
   521  		}
   522  		ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   523  
   524  	case obj.TYPE_CONST,
   525  		obj.TYPE_ADDR:
   526  		switch a.Name {
   527  		case obj.NAME_NONE:
   528  			ctxt.Instoffset = a.Offset
   529  			if a.Reg != 0 {
   530  				if -BIG <= ctxt.Instoffset && ctxt.Instoffset <= BIG {
   531  					return C_SACON
   532  				}
   533  				if isint32(ctxt.Instoffset) {
   534  					return C_LACON
   535  				}
   536  				return C_DACON
   537  			}
   538  			goto consize
   539  
   540  		case obj.NAME_EXTERN,
   541  			obj.NAME_STATIC:
   542  			s := a.Sym
   543  			if s == nil {
   544  				break
   545  			}
   546  			ctxt.Instoffset = a.Offset
   547  			if s.Type == obj.SCONST {
   548  				goto consize
   549  			}
   550  
   551  			return C_SYMADDR
   552  
   553  		case obj.NAME_AUTO:
   554  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   555  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   556  				return C_SACON
   557  			}
   558  			return C_LACON
   559  
   560  		case obj.NAME_PARAM:
   561  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   562  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   563  				return C_SACON
   564  			}
   565  			return C_LACON
   566  		}
   567  
   568  		return C_GOK
   569  
   570  	consize:
   571  		if ctxt.Instoffset == 0 {
   572  			return C_ZCON
   573  		}
   574  		if ctxt.Instoffset >= 0 {
   575  			if ctxt.Instoffset <= 0x7fff {
   576  				return C_SCON
   577  			}
   578  			if ctxt.Instoffset <= 0xffff {
   579  				return C_ANDCON
   580  			}
   581  			if ctxt.Instoffset&0xffff == 0 && isuint32(uint64(ctxt.Instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   582  				return C_UCON
   583  			}
   584  			if isint32(ctxt.Instoffset) || isuint32(uint64(ctxt.Instoffset)) {
   585  				return C_LCON
   586  			}
   587  			return C_DCON
   588  		}
   589  
   590  		if ctxt.Instoffset >= -0x8000 {
   591  			return C_ADDCON
   592  		}
   593  		if ctxt.Instoffset&0xffff == 0 && isint32(ctxt.Instoffset) {
   594  			return C_UCON
   595  		}
   596  		if isint32(ctxt.Instoffset) {
   597  			return C_LCON
   598  		}
   599  		return C_DCON
   600  
   601  	case obj.TYPE_BRANCH:
   602  		return C_SBRA
   603  	}
   604  
   605  	return C_GOK
   606  }
   607  
   608  func oplook(ctxt *obj.Link, p *obj.Prog) *Optab {
   609  	a1 := int(p.Optab)
   610  	if a1 != 0 {
   611  		return &optab[a1-1]
   612  	}
   613  	a1 = int(p.From.Class)
   614  	if a1 == 0 {
   615  		a1 = aclass(ctxt, &p.From) + 1
   616  		p.From.Class = int8(a1)
   617  	}
   618  
   619  	a1--
   620  	a3 := C_NONE + 1
   621  	if p.From3 != nil {
   622  		a3 = int(p.From3.Class)
   623  		if a3 == 0 {
   624  			a3 = aclass(ctxt, p.From3) + 1
   625  			p.From3.Class = int8(a3)
   626  		}
   627  	}
   628  
   629  	a3--
   630  	a4 := int(p.To.Class)
   631  	if a4 == 0 {
   632  		a4 = aclass(ctxt, &p.To) + 1
   633  		p.To.Class = int8(a4)
   634  	}
   635  
   636  	a4--
   637  	a2 := C_NONE
   638  	if p.Reg != 0 {
   639  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   640  			a2 = C_REG
   641  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   642  			a2 = C_VREG
   643  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   644  			a2 = C_FREG
   645  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   646  			a2 = C_AREG
   647  		}
   648  	}
   649  
   650  	ops := oprange[p.As&obj.AMask]
   651  	c1 := &xcmp[a1]
   652  	c2 := &xcmp[a2]
   653  	c3 := &xcmp[a3]
   654  	c4 := &xcmp[a4]
   655  	for i := range ops {
   656  		op := &ops[i]
   657  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   658  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   659  			return op
   660  		}
   661  	}
   662  
   663  	// cannot find a case; abort
   664  	ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   665  	ctxt.Diag("prog: %v\n", p)
   666  	return nil
   667  }
   668  
   669  func cmp(a int, b int) bool {
   670  	if a == b {
   671  		return true
   672  	}
   673  	switch a {
   674  	case C_DCON:
   675  		if b == C_LCON {
   676  			return true
   677  		}
   678  		fallthrough
   679  	case C_LCON:
   680  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   681  			return true
   682  		}
   683  
   684  	case C_ADDCON:
   685  		if b == C_ZCON || b == C_SCON {
   686  			return true
   687  		}
   688  
   689  	case C_ANDCON:
   690  		if b == C_ZCON || b == C_SCON {
   691  			return true
   692  		}
   693  
   694  	case C_UCON:
   695  		if b == C_ZCON || b == C_SCON {
   696  			return true
   697  		}
   698  
   699  	case C_SCON:
   700  		if b == C_ZCON {
   701  			return true
   702  		}
   703  
   704  	case C_LACON:
   705  		if b == C_SACON {
   706  			return true
   707  		}
   708  
   709  	case C_LBRA:
   710  		if b == C_SBRA {
   711  			return true
   712  		}
   713  
   714  	case C_LAUTO:
   715  		if b == C_SAUTO {
   716  			return true
   717  		}
   718  
   719  	case C_LOREG:
   720  		if b == C_ZOREG || b == C_SOREG {
   721  			return true
   722  		}
   723  
   724  	case C_SOREG:
   725  		if b == C_ZOREG {
   726  			return true
   727  		}
   728  
   729  	case C_ANY:
   730  		return true
   731  	}
   732  
   733  	return false
   734  }
   735  
   736  type ocmp []Optab
   737  
   738  func (x ocmp) Len() int {
   739  	return len(x)
   740  }
   741  
   742  func (x ocmp) Swap(i, j int) {
   743  	x[i], x[j] = x[j], x[i]
   744  }
   745  
   746  func (x ocmp) Less(i, j int) bool {
   747  	p1 := &x[i]
   748  	p2 := &x[j]
   749  	n := int(p1.as) - int(p2.as)
   750  	if n != 0 {
   751  		return n < 0
   752  	}
   753  	n = int(p1.a1) - int(p2.a1)
   754  	if n != 0 {
   755  		return n < 0
   756  	}
   757  	n = int(p1.a2) - int(p2.a2)
   758  	if n != 0 {
   759  		return n < 0
   760  	}
   761  	n = int(p1.a3) - int(p2.a3)
   762  	if n != 0 {
   763  		return n < 0
   764  	}
   765  	n = int(p1.a4) - int(p2.a4)
   766  	if n != 0 {
   767  		return n < 0
   768  	}
   769  	return false
   770  }
   771  func opset(a, b obj.As) {
   772  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   773  }
   774  
   775  func buildop(ctxt *obj.Link) {
   776  	for i := 0; i < C_NCLASS; i++ {
   777  		for n := 0; n < C_NCLASS; n++ {
   778  			if cmp(n, i) {
   779  				xcmp[i][n] = true
   780  			}
   781  		}
   782  	}
   783  	sort.Sort(ocmp(optab))
   784  	for i := 0; i < len(optab); i++ {
   785  		r := optab[i].as
   786  		start := i
   787  		for ; i+1 < len(optab); i++ {
   788  			if optab[i+1].as != r {
   789  				break
   790  			}
   791  		}
   792  		oprange[r&obj.AMask] = optab[start : i+1]
   793  
   794  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   795  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   796  		switch r {
   797  		case AADD:
   798  			opset(AADDC, r)
   799  			opset(AADDW, r)
   800  			opset(AMULLD, r)
   801  			opset(AMULLW, r)
   802  		case ADIVW:
   803  			opset(AADDE, r)
   804  			opset(ADIVD, r)
   805  			opset(ADIVDU, r)
   806  			opset(ADIVWU, r)
   807  			opset(AMODD, r)
   808  			opset(AMODDU, r)
   809  			opset(AMODW, r)
   810  			opset(AMODWU, r)
   811  		case AMULHD:
   812  			opset(AMULHDU, r)
   813  		case AMOVBZ:
   814  			opset(AMOVH, r)
   815  			opset(AMOVHZ, r)
   816  		case ALA:
   817  			opset(ALAY, r)
   818  		case AMVC:
   819  			opset(ACLC, r)
   820  			opset(AXC, r)
   821  			opset(AOC, r)
   822  			opset(ANC, r)
   823  		case ASTCK:
   824  			opset(ASTCKC, r)
   825  			opset(ASTCKE, r)
   826  			opset(ASTCKF, r)
   827  		case ALAAG:
   828  			opset(ALAA, r)
   829  			opset(ALAAL, r)
   830  			opset(ALAALG, r)
   831  			opset(ALAN, r)
   832  			opset(ALANG, r)
   833  			opset(ALAX, r)
   834  			opset(ALAXG, r)
   835  			opset(ALAO, r)
   836  			opset(ALAOG, r)
   837  		case ASTMG:
   838  			opset(ASTMY, r)
   839  		case ALMG:
   840  			opset(ALMY, r)
   841  		case ABEQ:
   842  			opset(ABGE, r)
   843  			opset(ABGT, r)
   844  			opset(ABLE, r)
   845  			opset(ABLT, r)
   846  			opset(ABNE, r)
   847  			opset(ABVC, r)
   848  			opset(ABVS, r)
   849  			opset(ABLEU, r)
   850  			opset(ABLTU, r)
   851  		case ABR:
   852  			opset(ABL, r)
   853  		case ABC:
   854  			opset(ABCL, r)
   855  		case AFABS:
   856  			opset(AFNABS, r)
   857  			opset(AFNEG, r)
   858  			opset(AFNEGS, r)
   859  			opset(ALEDBR, r)
   860  			opset(ALDEBR, r)
   861  			opset(AFSQRT, r)
   862  			opset(AFSQRTS, r)
   863  		case AFADD:
   864  			opset(AFADDS, r)
   865  			opset(AFDIV, r)
   866  			opset(AFDIVS, r)
   867  			opset(AFSUB, r)
   868  			opset(AFSUBS, r)
   869  		case AFMADD:
   870  			opset(AFMADDS, r)
   871  			opset(AFMSUB, r)
   872  			opset(AFMSUBS, r)
   873  		case AFMUL:
   874  			opset(AFMULS, r)
   875  		case AFCMPO:
   876  			opset(AFCMPU, r)
   877  			opset(ACEBR, r)
   878  		case AAND:
   879  			opset(AOR, r)
   880  			opset(AXOR, r)
   881  		case AANDW:
   882  			opset(AORW, r)
   883  			opset(AXORW, r)
   884  		case ASLD:
   885  			opset(ASRD, r)
   886  			opset(ASLW, r)
   887  			opset(ASRW, r)
   888  			opset(ASRAD, r)
   889  			opset(ASRAW, r)
   890  			opset(ARLL, r)
   891  			opset(ARLLG, r)
   892  		case ACSG:
   893  			opset(ACS, r)
   894  		case ASUB:
   895  			opset(ASUBC, r)
   896  			opset(ASUBE, r)
   897  			opset(ASUBW, r)
   898  		case ANEG:
   899  			opset(ANEGW, r)
   900  		case AFMOVD:
   901  			opset(AFMOVS, r)
   902  		case AMOVDBR:
   903  			opset(AMOVWBR, r)
   904  		case ACMP:
   905  			opset(ACMPW, r)
   906  		case ACMPU:
   907  			opset(ACMPWU, r)
   908  		case ACEFBRA:
   909  			opset(ACDFBRA, r)
   910  			opset(ACEGBRA, r)
   911  			opset(ACDGBRA, r)
   912  			opset(ACELFBR, r)
   913  			opset(ACDLFBR, r)
   914  			opset(ACELGBR, r)
   915  			opset(ACDLGBR, r)
   916  		case ACFEBRA:
   917  			opset(ACFDBRA, r)
   918  			opset(ACGEBRA, r)
   919  			opset(ACGDBRA, r)
   920  			opset(ACLFEBR, r)
   921  			opset(ACLFDBR, r)
   922  			opset(ACLGEBR, r)
   923  			opset(ACLGDBR, r)
   924  		case AFIEBR:
   925  			opset(AFIDBR, r)
   926  		case ACMPBEQ:
   927  			opset(ACMPBGE, r)
   928  			opset(ACMPBGT, r)
   929  			opset(ACMPBLE, r)
   930  			opset(ACMPBLT, r)
   931  			opset(ACMPBNE, r)
   932  		case ACMPUBEQ:
   933  			opset(ACMPUBGE, r)
   934  			opset(ACMPUBGT, r)
   935  			opset(ACMPUBLE, r)
   936  			opset(ACMPUBLT, r)
   937  			opset(ACMPUBNE, r)
   938  		case AMOVDEQ:
   939  			opset(AMOVDGE, r)
   940  			opset(AMOVDGT, r)
   941  			opset(AMOVDLE, r)
   942  			opset(AMOVDLT, r)
   943  			opset(AMOVDNE, r)
   944  		case AVL:
   945  			opset(AVLLEZB, r)
   946  			opset(AVLLEZH, r)
   947  			opset(AVLLEZF, r)
   948  			opset(AVLLEZG, r)
   949  			opset(AVLREPB, r)
   950  			opset(AVLREPH, r)
   951  			opset(AVLREPF, r)
   952  			opset(AVLREPG, r)
   953  		case AVLEG:
   954  			opset(AVLBB, r)
   955  			opset(AVLEB, r)
   956  			opset(AVLEH, r)
   957  			opset(AVLEF, r)
   958  			opset(AVLEG, r)
   959  			opset(AVLREP, r)
   960  		case AVSTEG:
   961  			opset(AVSTEB, r)
   962  			opset(AVSTEH, r)
   963  			opset(AVSTEF, r)
   964  		case AVSCEG:
   965  			opset(AVSCEF, r)
   966  		case AVGEG:
   967  			opset(AVGEF, r)
   968  		case AVESLG:
   969  			opset(AVESLB, r)
   970  			opset(AVESLH, r)
   971  			opset(AVESLF, r)
   972  			opset(AVERLLB, r)
   973  			opset(AVERLLH, r)
   974  			opset(AVERLLF, r)
   975  			opset(AVERLLG, r)
   976  			opset(AVESRAB, r)
   977  			opset(AVESRAH, r)
   978  			opset(AVESRAF, r)
   979  			opset(AVESRAG, r)
   980  			opset(AVESRLB, r)
   981  			opset(AVESRLH, r)
   982  			opset(AVESRLF, r)
   983  			opset(AVESRLG, r)
   984  		case AVLGVG:
   985  			opset(AVLGVB, r)
   986  			opset(AVLGVH, r)
   987  			opset(AVLGVF, r)
   988  		case AVLVGG:
   989  			opset(AVLVGB, r)
   990  			opset(AVLVGH, r)
   991  			opset(AVLVGF, r)
   992  		case AVZERO:
   993  			opset(AVONE, r)
   994  		case AVREPIG:
   995  			opset(AVREPIB, r)
   996  			opset(AVREPIH, r)
   997  			opset(AVREPIF, r)
   998  		case AVLEIG:
   999  			opset(AVLEIB, r)
  1000  			opset(AVLEIH, r)
  1001  			opset(AVLEIF, r)
  1002  		case AVGMG:
  1003  			opset(AVGMB, r)
  1004  			opset(AVGMH, r)
  1005  			opset(AVGMF, r)
  1006  		case AVREPG:
  1007  			opset(AVREPB, r)
  1008  			opset(AVREPH, r)
  1009  			opset(AVREPF, r)
  1010  		case AVERIMG:
  1011  			opset(AVERIMB, r)
  1012  			opset(AVERIMH, r)
  1013  			opset(AVERIMF, r)
  1014  		case AVFTCIDB:
  1015  			opset(AWFTCIDB, r)
  1016  		case AVLR:
  1017  			opset(AVUPHB, r)
  1018  			opset(AVUPHH, r)
  1019  			opset(AVUPHF, r)
  1020  			opset(AVUPLHB, r)
  1021  			opset(AVUPLHH, r)
  1022  			opset(AVUPLHF, r)
  1023  			opset(AVUPLB, r)
  1024  			opset(AVUPLHW, r)
  1025  			opset(AVUPLF, r)
  1026  			opset(AVUPLLB, r)
  1027  			opset(AVUPLLH, r)
  1028  			opset(AVUPLLF, r)
  1029  			opset(AVCLZB, r)
  1030  			opset(AVCLZH, r)
  1031  			opset(AVCLZF, r)
  1032  			opset(AVCLZG, r)
  1033  			opset(AVCTZB, r)
  1034  			opset(AVCTZH, r)
  1035  			opset(AVCTZF, r)
  1036  			opset(AVCTZG, r)
  1037  			opset(AVLDEB, r)
  1038  			opset(AWLDEB, r)
  1039  			opset(AVFLCDB, r)
  1040  			opset(AWFLCDB, r)
  1041  			opset(AVFLNDB, r)
  1042  			opset(AWFLNDB, r)
  1043  			opset(AVFLPDB, r)
  1044  			opset(AWFLPDB, r)
  1045  			opset(AVFSQDB, r)
  1046  			opset(AWFSQDB, r)
  1047  			opset(AVISTRB, r)
  1048  			opset(AVISTRH, r)
  1049  			opset(AVISTRF, r)
  1050  			opset(AVISTRBS, r)
  1051  			opset(AVISTRHS, r)
  1052  			opset(AVISTRFS, r)
  1053  			opset(AVLCB, r)
  1054  			opset(AVLCH, r)
  1055  			opset(AVLCF, r)
  1056  			opset(AVLCG, r)
  1057  			opset(AVLPB, r)
  1058  			opset(AVLPH, r)
  1059  			opset(AVLPF, r)
  1060  			opset(AVLPG, r)
  1061  			opset(AVPOPCT, r)
  1062  			opset(AVSEGB, r)
  1063  			opset(AVSEGH, r)
  1064  			opset(AVSEGF, r)
  1065  		case AVECG:
  1066  			opset(AVECB, r)
  1067  			opset(AVECH, r)
  1068  			opset(AVECF, r)
  1069  			opset(AVECLB, r)
  1070  			opset(AVECLH, r)
  1071  			opset(AVECLF, r)
  1072  			opset(AVECLG, r)
  1073  			opset(AWFCDB, r)
  1074  			opset(AWFKDB, r)
  1075  		case AVCEQG:
  1076  			opset(AVCEQB, r)
  1077  			opset(AVCEQH, r)
  1078  			opset(AVCEQF, r)
  1079  			opset(AVCEQBS, r)
  1080  			opset(AVCEQHS, r)
  1081  			opset(AVCEQFS, r)
  1082  			opset(AVCEQGS, r)
  1083  			opset(AVCHB, r)
  1084  			opset(AVCHH, r)
  1085  			opset(AVCHF, r)
  1086  			opset(AVCHG, r)
  1087  			opset(AVCHBS, r)
  1088  			opset(AVCHHS, r)
  1089  			opset(AVCHFS, r)
  1090  			opset(AVCHGS, r)
  1091  			opset(AVCHLB, r)
  1092  			opset(AVCHLH, r)
  1093  			opset(AVCHLF, r)
  1094  			opset(AVCHLG, r)
  1095  			opset(AVCHLBS, r)
  1096  			opset(AVCHLHS, r)
  1097  			opset(AVCHLFS, r)
  1098  			opset(AVCHLGS, r)
  1099  		case AVFAEF:
  1100  			opset(AVFAEB, r)
  1101  			opset(AVFAEH, r)
  1102  			opset(AVFAEBS, r)
  1103  			opset(AVFAEHS, r)
  1104  			opset(AVFAEFS, r)
  1105  			opset(AVFAEZB, r)
  1106  			opset(AVFAEZH, r)
  1107  			opset(AVFAEZF, r)
  1108  			opset(AVFAEZBS, r)
  1109  			opset(AVFAEZHS, r)
  1110  			opset(AVFAEZFS, r)
  1111  			opset(AVFEEB, r)
  1112  			opset(AVFEEH, r)
  1113  			opset(AVFEEF, r)
  1114  			opset(AVFEEBS, r)
  1115  			opset(AVFEEHS, r)
  1116  			opset(AVFEEFS, r)
  1117  			opset(AVFEEZB, r)
  1118  			opset(AVFEEZH, r)
  1119  			opset(AVFEEZF, r)
  1120  			opset(AVFEEZBS, r)
  1121  			opset(AVFEEZHS, r)
  1122  			opset(AVFEEZFS, r)
  1123  			opset(AVFENEB, r)
  1124  			opset(AVFENEH, r)
  1125  			opset(AVFENEF, r)
  1126  			opset(AVFENEBS, r)
  1127  			opset(AVFENEHS, r)
  1128  			opset(AVFENEFS, r)
  1129  			opset(AVFENEZB, r)
  1130  			opset(AVFENEZH, r)
  1131  			opset(AVFENEZF, r)
  1132  			opset(AVFENEZBS, r)
  1133  			opset(AVFENEZHS, r)
  1134  			opset(AVFENEZFS, r)
  1135  		case AVPKSG:
  1136  			opset(AVPKSH, r)
  1137  			opset(AVPKSF, r)
  1138  			opset(AVPKSHS, r)
  1139  			opset(AVPKSFS, r)
  1140  			opset(AVPKSGS, r)
  1141  			opset(AVPKLSH, r)
  1142  			opset(AVPKLSF, r)
  1143  			opset(AVPKLSG, r)
  1144  			opset(AVPKLSHS, r)
  1145  			opset(AVPKLSFS, r)
  1146  			opset(AVPKLSGS, r)
  1147  		case AVAQ:
  1148  			opset(AVAB, r)
  1149  			opset(AVAH, r)
  1150  			opset(AVAF, r)
  1151  			opset(AVAG, r)
  1152  			opset(AVACCB, r)
  1153  			opset(AVACCH, r)
  1154  			opset(AVACCF, r)
  1155  			opset(AVACCG, r)
  1156  			opset(AVACCQ, r)
  1157  			opset(AVN, r)
  1158  			opset(AVNC, r)
  1159  			opset(AVAVGB, r)
  1160  			opset(AVAVGH, r)
  1161  			opset(AVAVGF, r)
  1162  			opset(AVAVGG, r)
  1163  			opset(AVAVGLB, r)
  1164  			opset(AVAVGLH, r)
  1165  			opset(AVAVGLF, r)
  1166  			opset(AVAVGLG, r)
  1167  			opset(AVCKSM, r)
  1168  			opset(AVX, r)
  1169  			opset(AVFADB, r)
  1170  			opset(AWFADB, r)
  1171  			opset(AVFCEDB, r)
  1172  			opset(AVFCEDBS, r)
  1173  			opset(AWFCEDB, r)
  1174  			opset(AWFCEDBS, r)
  1175  			opset(AVFCHDB, r)
  1176  			opset(AVFCHDBS, r)
  1177  			opset(AWFCHDB, r)
  1178  			opset(AWFCHDBS, r)
  1179  			opset(AVFCHEDB, r)
  1180  			opset(AVFCHEDBS, r)
  1181  			opset(AWFCHEDB, r)
  1182  			opset(AWFCHEDBS, r)
  1183  			opset(AVFMDB, r)
  1184  			opset(AWFMDB, r)
  1185  			opset(AVGFMB, r)
  1186  			opset(AVGFMH, r)
  1187  			opset(AVGFMF, r)
  1188  			opset(AVGFMG, r)
  1189  			opset(AVMXB, r)
  1190  			opset(AVMXH, r)
  1191  			opset(AVMXF, r)
  1192  			opset(AVMXG, r)
  1193  			opset(AVMXLB, r)
  1194  			opset(AVMXLH, r)
  1195  			opset(AVMXLF, r)
  1196  			opset(AVMXLG, r)
  1197  			opset(AVMNB, r)
  1198  			opset(AVMNH, r)
  1199  			opset(AVMNF, r)
  1200  			opset(AVMNG, r)
  1201  			opset(AVMNLB, r)
  1202  			opset(AVMNLH, r)
  1203  			opset(AVMNLF, r)
  1204  			opset(AVMNLG, r)
  1205  			opset(AVMRHB, r)
  1206  			opset(AVMRHH, r)
  1207  			opset(AVMRHF, r)
  1208  			opset(AVMRHG, r)
  1209  			opset(AVMRLB, r)
  1210  			opset(AVMRLH, r)
  1211  			opset(AVMRLF, r)
  1212  			opset(AVMRLG, r)
  1213  			opset(AVMEB, r)
  1214  			opset(AVMEH, r)
  1215  			opset(AVMEF, r)
  1216  			opset(AVMLEB, r)
  1217  			opset(AVMLEH, r)
  1218  			opset(AVMLEF, r)
  1219  			opset(AVMOB, r)
  1220  			opset(AVMOH, r)
  1221  			opset(AVMOF, r)
  1222  			opset(AVMLOB, r)
  1223  			opset(AVMLOH, r)
  1224  			opset(AVMLOF, r)
  1225  			opset(AVMHB, r)
  1226  			opset(AVMHH, r)
  1227  			opset(AVMHF, r)
  1228  			opset(AVMLHB, r)
  1229  			opset(AVMLHH, r)
  1230  			opset(AVMLHF, r)
  1231  			opset(AVMLH, r)
  1232  			opset(AVMLHW, r)
  1233  			opset(AVMLF, r)
  1234  			opset(AVNO, r)
  1235  			opset(AVO, r)
  1236  			opset(AVPKH, r)
  1237  			opset(AVPKF, r)
  1238  			opset(AVPKG, r)
  1239  			opset(AVSUMGH, r)
  1240  			opset(AVSUMGF, r)
  1241  			opset(AVSUMQF, r)
  1242  			opset(AVSUMQG, r)
  1243  			opset(AVSUMB, r)
  1244  			opset(AVSUMH, r)
  1245  		case AVERLLVG:
  1246  			opset(AVERLLVB, r)
  1247  			opset(AVERLLVH, r)
  1248  			opset(AVERLLVF, r)
  1249  			opset(AVESLVB, r)
  1250  			opset(AVESLVH, r)
  1251  			opset(AVESLVF, r)
  1252  			opset(AVESLVG, r)
  1253  			opset(AVESRAVB, r)
  1254  			opset(AVESRAVH, r)
  1255  			opset(AVESRAVF, r)
  1256  			opset(AVESRAVG, r)
  1257  			opset(AVESRLVB, r)
  1258  			opset(AVESRLVH, r)
  1259  			opset(AVESRLVF, r)
  1260  			opset(AVESRLVG, r)
  1261  			opset(AVFDDB, r)
  1262  			opset(AWFDDB, r)
  1263  			opset(AVFSDB, r)
  1264  			opset(AWFSDB, r)
  1265  			opset(AVSL, r)
  1266  			opset(AVSLB, r)
  1267  			opset(AVSRA, r)
  1268  			opset(AVSRAB, r)
  1269  			opset(AVSRL, r)
  1270  			opset(AVSRLB, r)
  1271  			opset(AVSF, r)
  1272  			opset(AVSG, r)
  1273  			opset(AVSQ, r)
  1274  			opset(AVSCBIB, r)
  1275  			opset(AVSCBIH, r)
  1276  			opset(AVSCBIF, r)
  1277  			opset(AVSCBIG, r)
  1278  			opset(AVSCBIQ, r)
  1279  		case AVACQ:
  1280  			opset(AVACCCQ, r)
  1281  			opset(AVGFMAB, r)
  1282  			opset(AVGFMAH, r)
  1283  			opset(AVGFMAF, r)
  1284  			opset(AVGFMAG, r)
  1285  			opset(AVMALB, r)
  1286  			opset(AVMALHW, r)
  1287  			opset(AVMALF, r)
  1288  			opset(AVMAHB, r)
  1289  			opset(AVMAHH, r)
  1290  			opset(AVMAHF, r)
  1291  			opset(AVMALHB, r)
  1292  			opset(AVMALHH, r)
  1293  			opset(AVMALHF, r)
  1294  			opset(AVMAEB, r)
  1295  			opset(AVMAEH, r)
  1296  			opset(AVMAEF, r)
  1297  			opset(AVMALEB, r)
  1298  			opset(AVMALEH, r)
  1299  			opset(AVMALEF, r)
  1300  			opset(AVMAOB, r)
  1301  			opset(AVMAOH, r)
  1302  			opset(AVMAOF, r)
  1303  			opset(AVMALOB, r)
  1304  			opset(AVMALOH, r)
  1305  			opset(AVMALOF, r)
  1306  			opset(AVSTRCB, r)
  1307  			opset(AVSTRCH, r)
  1308  			opset(AVSTRCF, r)
  1309  			opset(AVSTRCBS, r)
  1310  			opset(AVSTRCHS, r)
  1311  			opset(AVSTRCFS, r)
  1312  			opset(AVSTRCZB, r)
  1313  			opset(AVSTRCZH, r)
  1314  			opset(AVSTRCZF, r)
  1315  			opset(AVSTRCZBS, r)
  1316  			opset(AVSTRCZHS, r)
  1317  			opset(AVSTRCZFS, r)
  1318  			opset(AVSBCBIQ, r)
  1319  			opset(AVSBIQ, r)
  1320  		case AVSEL:
  1321  			opset(AVFMADB, r)
  1322  			opset(AWFMADB, r)
  1323  			opset(AVFMSDB, r)
  1324  			opset(AWFMSDB, r)
  1325  			opset(AVPERM, r)
  1326  		}
  1327  	}
  1328  }
  1329  
  1330  const (
  1331  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1332  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1333  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1334  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1335  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1336  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1337  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1338  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1339  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1340  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1341  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1342  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1343  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1344  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1345  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1346  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1347  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1348  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1349  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1350  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1351  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1352  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1353  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1354  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1355  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1356  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1357  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1358  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1359  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1360  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1361  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1362  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1363  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1364  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1365  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1366  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1367  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1368  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1369  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1370  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1371  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1372  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1373  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1374  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1375  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1376  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1377  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1378  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1379  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1380  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1381  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1382  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1383  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1384  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1385  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1386  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1387  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1388  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1389  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1390  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1391  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1392  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1393  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1394  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1395  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1396  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1397  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1398  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1399  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1400  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1401  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1402  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1403  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1404  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1405  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1406  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1407  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1408  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1409  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1410  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1411  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1412  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1413  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1414  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1415  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1416  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1417  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1418  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1419  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1420  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1421  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1422  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1423  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1424  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1425  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1426  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1427  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1428  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1429  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1430  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1431  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1432  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1433  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1434  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1435  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1436  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1437  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1438  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1439  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1440  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1441  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1442  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1443  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1444  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1445  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1446  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1447  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1448  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1449  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1450  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1451  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1452  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1453  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1454  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1455  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1456  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1457  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1458  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1459  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1460  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1461  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1462  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1463  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1464  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1465  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1466  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1467  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1468  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1469  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1470  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1471  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1472  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1473  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1474  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1475  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1476  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1477  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1478  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1479  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1480  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1481  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1482  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1483  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1484  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1485  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1486  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1487  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1488  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1489  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1490  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1491  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1492  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1493  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1494  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1495  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1496  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1497  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1498  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1499  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1500  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1501  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1502  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1503  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1504  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1505  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1506  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1507  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1508  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1509  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1510  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1511  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1512  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1513  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1514  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1515  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1516  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1517  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1518  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1519  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1520  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1521  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1522  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1523  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1524  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1525  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1526  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1527  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1528  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1529  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1530  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1531  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1532  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1533  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1534  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1535  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1536  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1537  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1538  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1539  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1540  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1541  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1542  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1543  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1544  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1545  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1546  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1547  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1548  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1549  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1550  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1551  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1552  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1553  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1554  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1555  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1556  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1557  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1558  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1559  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1560  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1561  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1562  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1563  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1564  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1565  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1566  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1567  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1568  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1569  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1570  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1571  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1572  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1573  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1574  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1575  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1576  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1577  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1578  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1579  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1580  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1581  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1582  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1583  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1584  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1585  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1586  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1587  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1588  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1589  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1590  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1591  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1592  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1593  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1594  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1595  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1596  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1597  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1598  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1599  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1600  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1601  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1602  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1603  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1604  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1605  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1606  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1607  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1608  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1609  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1610  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1611  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1612  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1613  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1614  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1615  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1616  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1617  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1618  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1619  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1620  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1621  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1622  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1623  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1624  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1625  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1626  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1627  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1628  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1629  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1630  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1631  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1632  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1633  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1634  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1635  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1636  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1637  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1638  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1639  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1640  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1641  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1642  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1643  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1644  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1645  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1646  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1647  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1648  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1649  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1650  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1651  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1652  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1653  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1654  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1655  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1656  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1657  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1658  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1659  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1660  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1661  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1662  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1663  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1664  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1665  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1666  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1667  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1668  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1669  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1670  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1671  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1672  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1673  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1674  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1675  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1676  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1677  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1678  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1679  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1680  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1681  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1682  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1683  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1684  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1685  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1686  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1687  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1688  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1689  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1690  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1691  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1692  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1693  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1694  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1695  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1696  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1697  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1698  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1699  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1700  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1701  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1702  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1703  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1704  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1705  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1706  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1707  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1708  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1709  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1710  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1711  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1712  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1713  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1714  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1715  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1716  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1717  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1718  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1719  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1720  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1721  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1722  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1723  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1724  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1725  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1726  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1727  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1728  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1729  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1730  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1731  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1732  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1733  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1734  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1735  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1736  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1737  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1738  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1739  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1740  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1741  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1742  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1743  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1744  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1745  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1746  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1747  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1748  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1749  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1750  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1751  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1752  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1753  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1754  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1755  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1756  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1757  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1758  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1759  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1760  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1761  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1762  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1763  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1764  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1765  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1766  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1767  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1768  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1769  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1770  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1771  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1772  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1773  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1774  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1775  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1776  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1777  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1778  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1779  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1780  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1781  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1782  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1783  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1784  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1785  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1786  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1787  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1788  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1789  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1790  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1791  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1792  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1793  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1794  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1795  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1796  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1797  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1798  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1799  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1800  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1801  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1802  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1803  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1804  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1805  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1806  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1807  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1808  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1809  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1810  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1811  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1812  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1813  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1814  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1815  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1816  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1817  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1818  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1819  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1820  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1821  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1822  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1823  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1824  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1825  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1826  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1827  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1828  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1829  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1830  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1831  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1832  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1833  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1834  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1835  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1836  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1837  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1838  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1839  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1840  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1841  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1842  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1843  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1844  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1845  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1846  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1847  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1848  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1849  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1850  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1851  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1852  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1853  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1854  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1855  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1856  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1857  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1858  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1859  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1860  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1861  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1862  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1863  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1864  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1865  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1866  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1867  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1868  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1869  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1870  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1871  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1872  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1873  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1874  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1875  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1876  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1877  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1878  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1879  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1880  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1881  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1882  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1883  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1884  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1885  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1886  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1887  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1888  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1889  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1890  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1891  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1892  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1893  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1894  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1895  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1896  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1897  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1898  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1899  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1900  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1901  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1902  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1903  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1904  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1905  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1906  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1907  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1908  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1909  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1910  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1911  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1912  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1913  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1914  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1915  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1916  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1917  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1918  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1919  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1920  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1921  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1922  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1923  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1924  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1925  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1926  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1927  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1928  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1929  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1930  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1931  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1932  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1933  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1934  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1935  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1936  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1937  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1938  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1939  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1940  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1941  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1942  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1943  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1944  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1945  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1946  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1947  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1948  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1949  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1950  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1951  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1952  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1953  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1954  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1955  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1956  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1957  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1958  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1959  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1960  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1961  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1962  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1963  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1964  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1965  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1966  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1967  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1968  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1969  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1970  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1971  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1972  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1973  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1974  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1975  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1976  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  1977  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  1978  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  1979  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  1980  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  1981  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  1982  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  1983  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  1984  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  1985  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  1986  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  1987  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  1988  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  1989  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  1990  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  1991  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  1992  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  1993  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  1994  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  1995  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  1996  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  1997  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  1998  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  1999  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2000  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2001  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2002  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2003  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2004  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2005  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2006  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2007  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2008  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2009  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2010  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2011  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2012  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2013  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2014  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2015  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2016  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2017  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2018  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2019  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2020  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2021  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2022  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2023  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2024  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2025  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2026  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2027  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2028  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2029  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2030  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2031  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2032  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2033  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2034  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2035  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2036  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2037  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2038  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2039  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2040  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2041  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2042  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2043  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2044  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2045  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2046  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2047  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2048  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2049  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2050  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2051  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2052  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2053  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2054  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2055  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2056  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2057  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2058  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2059  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2060  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2061  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2062  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2063  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2064  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2065  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2066  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2067  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2068  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2069  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2070  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2071  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2072  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2073  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2074  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2075  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2076  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2077  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2078  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2079  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2080  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2081  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2082  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2083  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2084  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2085  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2086  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2087  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2088  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2089  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2090  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2091  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2092  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2093  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2094  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2095  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2096  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2097  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2098  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2099  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2100  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2101  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2102  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2103  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2104  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2105  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2106  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2107  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2108  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2109  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2110  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2111  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2112  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2113  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2114  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2115  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2116  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2117  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2118  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2119  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2120  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2121  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2122  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2123  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2124  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2125  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2126  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2127  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2128  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2129  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2130  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2131  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2132  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2133  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2134  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2135  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2136  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2137  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2138  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2139  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2140  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2141  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2142  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2143  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2144  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2145  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2146  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2147  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2148  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2149  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2150  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2151  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2152  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2153  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2154  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2155  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2156  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2157  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2158  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2159  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2160  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2161  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2162  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2163  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2164  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2165  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2166  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2167  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2168  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2169  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2170  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2171  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2172  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2173  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2174  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2175  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2176  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2177  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2178  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2179  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2180  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2181  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2182  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2183  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2184  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2185  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2186  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2187  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2188  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2189  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2190  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2191  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2192  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2193  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2194  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2195  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2196  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2197  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2198  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2199  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2200  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2201  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2202  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2203  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2204  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2205  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2206  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2207  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2208  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2209  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2210  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2211  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2212  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2213  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2214  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2215  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2216  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2217  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2218  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2219  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2220  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2221  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2222  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2223  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2224  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2225  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2226  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2227  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2228  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2229  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2230  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2231  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2232  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2233  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2234  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2235  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2236  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2237  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2238  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2239  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2240  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2241  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2242  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2243  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2244  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2245  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2246  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2247  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2248  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2249  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2250  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2251  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2252  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2253  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2254  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2255  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2256  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2257  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2258  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2259  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2260  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2261  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2262  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2263  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2264  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2265  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2266  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2267  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2268  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2269  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2270  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2271  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2272  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2273  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2274  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2275  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2276  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2277  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2278  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2279  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2280  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2281  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2282  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2283  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2284  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2285  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2286  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2287  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2288  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2289  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2290  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2291  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2292  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2293  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2294  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2295  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2296  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2297  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2298  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2299  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2300  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2301  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2302  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2303  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2304  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2305  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2306  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2307  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2308  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2309  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2310  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2311  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2312  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2313  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2314  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2315  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2316  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2317  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2318  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2319  
  2320  	// added in z13
  2321  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2322  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2323  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2324  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2325  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2326  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2327  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2328  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2329  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2330  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2331  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2332  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2333  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2334  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2335  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2336  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2337  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2338  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2339  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2340  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2341  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2342  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2343  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2344  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2345  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2346  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2347  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2348  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2349  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2350  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2351  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2352  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2353  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2354  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2355  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2356  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2357  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2358  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2359  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2360  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2361  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2362  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2363  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2364  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2365  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2366  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2367  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2368  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2369  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2370  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2371  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2372  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2373  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2374  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2375  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2376  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2377  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2378  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2379  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2380  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2381  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2382  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2383  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2384  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2385  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2386  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2387  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2388  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2389  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2390  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2391  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2392  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2393  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2394  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2395  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2396  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2397  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2398  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2399  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2400  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2401  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2402  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2403  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2404  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2405  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2406  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2407  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2408  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2409  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2410  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2411  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2412  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2413  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2414  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2415  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2416  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2417  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2418  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2419  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2420  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2421  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2422  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2423  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2424  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2425  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2426  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2427  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2428  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2429  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2430  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2431  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2432  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2433  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2434  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2435  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2436  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2437  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2438  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2439  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2440  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2441  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2442  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2443  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2444  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2445  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2446  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2447  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2448  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2449  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2450  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2451  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2452  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2453  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2454  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2455  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2456  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2457  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2458  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2459  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2460  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2461  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2462  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2463  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2464  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2465  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2466  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2467  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2468  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2469  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2470  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2471  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2472  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2473  )
  2474  
  2475  func oclass(a *obj.Addr) int {
  2476  	return int(a.Class) - 1
  2477  }
  2478  
  2479  // Add a relocation for the immediate in a RIL style instruction.
  2480  // The addend will be adjusted as required.
  2481  func addrilreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2482  	if sym == nil {
  2483  		ctxt.Diag("require symbol to apply relocation")
  2484  	}
  2485  	offset := int64(2) // relocation offset from start of instruction
  2486  	rel := obj.Addrel(ctxt.Cursym)
  2487  	rel.Off = int32(ctxt.Pc + offset)
  2488  	rel.Siz = 4
  2489  	rel.Sym = sym
  2490  	rel.Add = add + offset + int64(rel.Siz)
  2491  	rel.Type = obj.R_PCRELDBL
  2492  	return rel
  2493  }
  2494  
  2495  func addrilrelocoffset(ctxt *obj.Link, sym *obj.LSym, add, offset int64) *obj.Reloc {
  2496  	if sym == nil {
  2497  		ctxt.Diag("require symbol to apply relocation")
  2498  	}
  2499  	offset += int64(2) // relocation offset from start of instruction
  2500  	rel := obj.Addrel(ctxt.Cursym)
  2501  	rel.Off = int32(ctxt.Pc + offset)
  2502  	rel.Siz = 4
  2503  	rel.Sym = sym
  2504  	rel.Add = add + offset + int64(rel.Siz)
  2505  	rel.Type = obj.R_PCRELDBL
  2506  	return rel
  2507  }
  2508  
  2509  // Add a CALL relocation for the immediate in a RIL style instruction.
  2510  // The addend will be adjusted as required.
  2511  func addcallreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2512  	if sym == nil {
  2513  		ctxt.Diag("require symbol to apply relocation")
  2514  	}
  2515  	offset := int64(2) // relocation offset from start of instruction
  2516  	rel := obj.Addrel(ctxt.Cursym)
  2517  	rel.Off = int32(ctxt.Pc + offset)
  2518  	rel.Siz = 4
  2519  	rel.Sym = sym
  2520  	rel.Add = add + offset + int64(rel.Siz)
  2521  	rel.Type = obj.R_CALL
  2522  	return rel
  2523  }
  2524  
  2525  func branchMask(ctxt *obj.Link, p *obj.Prog) uint32 {
  2526  	switch p.As {
  2527  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2528  		return 0x8
  2529  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2530  		return 0xA
  2531  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2532  		return 0x2
  2533  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2534  		return 0xC
  2535  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2536  		return 0x4
  2537  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2538  		return 0x7
  2539  	case ABLEU: // LE or unordered
  2540  		return 0xD
  2541  	case ABLTU: // LT or unordered
  2542  		return 0x5
  2543  	case ABVC:
  2544  		return 0x0 // needs extra instruction
  2545  	case ABVS:
  2546  		return 0x1 // unordered
  2547  	}
  2548  	ctxt.Diag("unknown conditional branch %v", p.As)
  2549  	return 0xF
  2550  }
  2551  
  2552  func asmout(ctxt *obj.Link, asm *[]byte) {
  2553  	p := ctxt.Curp
  2554  	o := oplook(ctxt, p)
  2555  	ctxt.Printp = p
  2556  
  2557  	switch o.type_ {
  2558  	default:
  2559  		ctxt.Diag("unknown type %d", o.type_)
  2560  
  2561  	case 0: // PSEUDO OPS
  2562  		break
  2563  
  2564  	case 1: // mov reg reg
  2565  		switch p.As {
  2566  		default:
  2567  			ctxt.Diag("unhandled operation: %v", p.As)
  2568  		case AMOVD:
  2569  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2570  		// sign extend
  2571  		case AMOVW:
  2572  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2573  		case AMOVH:
  2574  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2575  		case AMOVB:
  2576  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2577  		// zero extend
  2578  		case AMOVWZ:
  2579  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2580  		case AMOVHZ:
  2581  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2582  		case AMOVBZ:
  2583  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2584  		// reverse bytes
  2585  		case AMOVDBR:
  2586  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2587  		case AMOVWBR:
  2588  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2589  		// floating point
  2590  		case AFMOVD, AFMOVS:
  2591  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2592  		}
  2593  
  2594  	case 2: // arithmetic op reg [reg] reg
  2595  		r := p.Reg
  2596  		if r == 0 {
  2597  			r = p.To.Reg
  2598  		}
  2599  
  2600  		var opcode uint32
  2601  
  2602  		switch p.As {
  2603  		default:
  2604  			ctxt.Diag("invalid opcode")
  2605  		case AADD:
  2606  			opcode = op_AGRK
  2607  		case AADDC:
  2608  			opcode = op_ALGRK
  2609  		case AADDE:
  2610  			opcode = op_ALCGR
  2611  		case AADDW:
  2612  			opcode = op_ARK
  2613  		case AMULLW:
  2614  			opcode = op_MSGFR
  2615  		case AMULLD:
  2616  			opcode = op_MSGR
  2617  		case ADIVW, AMODW:
  2618  			opcode = op_DSGFR
  2619  		case ADIVWU, AMODWU:
  2620  			opcode = op_DLR
  2621  		case ADIVD, AMODD:
  2622  			opcode = op_DSGR
  2623  		case ADIVDU, AMODDU:
  2624  			opcode = op_DLGR
  2625  		}
  2626  
  2627  		switch p.As {
  2628  		default:
  2629  
  2630  		case AADD, AADDC, AADDW:
  2631  			if p.As == AADDW && r == p.To.Reg {
  2632  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2633  			} else {
  2634  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2635  			}
  2636  
  2637  		case AADDE, AMULLW, AMULLD:
  2638  			if r == p.To.Reg {
  2639  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2640  			} else if p.From.Reg == p.To.Reg {
  2641  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2642  			} else {
  2643  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2644  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2645  			}
  2646  
  2647  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2648  			if p.As == ADIVWU || p.As == ADIVDU {
  2649  				zRI(op_LGHI, REGTMP, 0, asm)
  2650  			}
  2651  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2652  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2653  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2654  
  2655  		case AMODW, AMODWU, AMODD, AMODDU:
  2656  			if p.As == AMODWU || p.As == AMODDU {
  2657  				zRI(op_LGHI, REGTMP, 0, asm)
  2658  			}
  2659  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2660  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2661  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2662  
  2663  		}
  2664  
  2665  	case 3: // mov $constant reg
  2666  		v := vregoff(ctxt, &p.From)
  2667  		switch p.As {
  2668  		case AMOVBZ:
  2669  			v = int64(uint8(v))
  2670  		case AMOVHZ:
  2671  			v = int64(uint16(v))
  2672  		case AMOVWZ:
  2673  			v = int64(uint32(v))
  2674  		case AMOVB:
  2675  			v = int64(int8(v))
  2676  		case AMOVH:
  2677  			v = int64(int16(v))
  2678  		case AMOVW:
  2679  			v = int64(int32(v))
  2680  		}
  2681  		if int64(int16(v)) == v {
  2682  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2683  		} else if v&0xffff0000 == v {
  2684  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2685  		} else if v&0xffff00000000 == v {
  2686  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2687  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2688  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2689  		} else if int64(int32(v)) == v {
  2690  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2691  		} else if int64(uint32(v)) == v {
  2692  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2693  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2694  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2695  		} else {
  2696  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2697  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2698  		}
  2699  
  2700  	case 4: // multiply high (a*b)>>64
  2701  		r := p.Reg
  2702  		if r == 0 {
  2703  			r = p.To.Reg
  2704  		}
  2705  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2706  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2707  		switch p.As {
  2708  		case AMULHDU:
  2709  			// Unsigned: move result into correct register.
  2710  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2711  		case AMULHD:
  2712  			// Signed: need to convert result.
  2713  			// See Hacker's Delight 8-3.
  2714  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2715  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2716  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2717  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2718  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2719  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2720  		}
  2721  
  2722  	case 5: // syscall
  2723  		zI(op_SVC, 0, asm)
  2724  
  2725  	case 6: // logical op reg [reg] reg
  2726  		var oprr, oprre, oprrf uint32
  2727  		switch p.As {
  2728  		case AAND:
  2729  			oprre = op_NGR
  2730  			oprrf = op_NGRK
  2731  		case AANDW:
  2732  			oprr = op_NR
  2733  			oprrf = op_NRK
  2734  		case AOR:
  2735  			oprre = op_OGR
  2736  			oprrf = op_OGRK
  2737  		case AORW:
  2738  			oprr = op_OR
  2739  			oprrf = op_ORK
  2740  		case AXOR:
  2741  			oprre = op_XGR
  2742  			oprrf = op_XGRK
  2743  		case AXORW:
  2744  			oprr = op_XR
  2745  			oprrf = op_XRK
  2746  		}
  2747  		if p.Reg == 0 {
  2748  			if oprr != 0 {
  2749  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2750  			} else {
  2751  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2752  			}
  2753  		} else {
  2754  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2755  		}
  2756  
  2757  	case 7: // shift/rotate reg [reg] reg
  2758  		d2 := vregoff(ctxt, &p.From)
  2759  		b2 := p.From.Reg
  2760  		r3 := p.Reg
  2761  		if r3 == 0 {
  2762  			r3 = p.To.Reg
  2763  		}
  2764  		r1 := p.To.Reg
  2765  		var opcode uint32
  2766  		switch p.As {
  2767  		default:
  2768  		case ASLD:
  2769  			opcode = op_SLLG
  2770  		case ASRD:
  2771  			opcode = op_SRLG
  2772  		case ASLW:
  2773  			opcode = op_SLLK
  2774  		case ASRW:
  2775  			opcode = op_SRLK
  2776  		case ARLL:
  2777  			opcode = op_RLL
  2778  		case ARLLG:
  2779  			opcode = op_RLLG
  2780  		case ASRAW:
  2781  			opcode = op_SRAK
  2782  		case ASRAD:
  2783  			opcode = op_SRAG
  2784  		}
  2785  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2786  
  2787  	case 8: // find leftmost one
  2788  		if p.To.Reg&1 != 0 {
  2789  			ctxt.Diag("target must be an even-numbered register")
  2790  		}
  2791  		// FLOGR also writes a mask to p.To.Reg+1.
  2792  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2793  
  2794  	case 10: // subtract reg [reg] reg
  2795  		r := int(p.Reg)
  2796  
  2797  		switch p.As {
  2798  		default:
  2799  		case ASUB:
  2800  			if r == 0 {
  2801  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2802  			} else {
  2803  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2804  			}
  2805  		case ASUBC:
  2806  			if r == 0 {
  2807  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2808  			} else {
  2809  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2810  			}
  2811  		case ASUBE:
  2812  			if r == 0 {
  2813  				r = int(p.To.Reg)
  2814  			}
  2815  			if r == int(p.To.Reg) {
  2816  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2817  			} else if p.From.Reg == p.To.Reg {
  2818  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2819  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2820  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2821  			} else {
  2822  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2823  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2824  			}
  2825  		case ASUBW:
  2826  			if r == 0 {
  2827  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2828  			} else {
  2829  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2830  			}
  2831  		}
  2832  
  2833  	case 11: // br/bl
  2834  		v := int32(0)
  2835  
  2836  		if p.Pcond != nil {
  2837  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2838  		}
  2839  
  2840  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2841  			zRI(op_BRC, 0xF, uint32(v), asm)
  2842  		} else {
  2843  			if p.As == ABL {
  2844  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2845  			} else {
  2846  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2847  			}
  2848  			if p.To.Sym != nil {
  2849  				addcallreloc(ctxt, p.To.Sym, p.To.Offset)
  2850  			}
  2851  		}
  2852  
  2853  	case 12:
  2854  		r1 := p.To.Reg
  2855  		d2 := vregoff(ctxt, &p.From)
  2856  		b2 := p.From.Reg
  2857  		if b2 == 0 {
  2858  			b2 = o.param
  2859  		}
  2860  		x2 := p.From.Index
  2861  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2862  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2863  			if x2 != 0 {
  2864  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2865  			}
  2866  			x2 = REGTMP
  2867  			d2 = 0
  2868  		}
  2869  		var opx, opxy uint32
  2870  		switch p.As {
  2871  		case AADD:
  2872  			opxy = op_AG
  2873  		case AADDC:
  2874  			opxy = op_ALG
  2875  		case AADDW:
  2876  			opx = op_A
  2877  			opxy = op_AY
  2878  		case AMULLW:
  2879  			opx = op_MS
  2880  			opxy = op_MSY
  2881  		case AMULLD:
  2882  			opxy = op_MSG
  2883  		case ASUB:
  2884  			opxy = op_SG
  2885  		case ASUBC:
  2886  			opxy = op_SLG
  2887  		case ASUBE:
  2888  			opxy = op_SLBG
  2889  		case ASUBW:
  2890  			opx = op_S
  2891  			opxy = op_SY
  2892  		case AAND:
  2893  			opxy = op_NG
  2894  		case AANDW:
  2895  			opx = op_N
  2896  			opxy = op_NY
  2897  		case AOR:
  2898  			opxy = op_OG
  2899  		case AORW:
  2900  			opx = op_O
  2901  			opxy = op_OY
  2902  		case AXOR:
  2903  			opxy = op_XG
  2904  		case AXORW:
  2905  			opx = op_X
  2906  			opxy = op_XY
  2907  		}
  2908  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2909  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2910  		} else {
  2911  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2912  		}
  2913  
  2914  	case 15: // br/bl (reg)
  2915  		r := p.To.Reg
  2916  		if p.As == ABCL || p.As == ABL {
  2917  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2918  		} else {
  2919  			zRR(op_BCR, 0xF, uint32(r), asm)
  2920  		}
  2921  
  2922  	case 16: // conditional branch
  2923  		v := int32(0)
  2924  		if p.Pcond != nil {
  2925  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2926  		}
  2927  		mask := branchMask(ctxt, p)
  2928  		if p.To.Sym == nil && int32(int16(v)) == v {
  2929  			zRI(op_BRC, mask, uint32(v), asm)
  2930  		} else {
  2931  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2932  		}
  2933  		if p.To.Sym != nil {
  2934  			addrilreloc(ctxt, p.To.Sym, p.To.Offset)
  2935  		}
  2936  
  2937  	case 17: // move on condition
  2938  		m3 := branchMask(ctxt, p)
  2939  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2940  
  2941  	case 18: // br/bl reg
  2942  		if p.As == ABL {
  2943  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2944  		} else {
  2945  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2946  		}
  2947  
  2948  	case 19: // mov $sym+n(SB) reg
  2949  		d := vregoff(ctxt, &p.From)
  2950  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2951  		if d&1 != 0 {
  2952  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2953  			d -= 1
  2954  		}
  2955  		addrilreloc(ctxt, p.From.Sym, d)
  2956  
  2957  	case 21: // subtract $constant [reg] reg
  2958  		v := vregoff(ctxt, &p.From)
  2959  		r := p.Reg
  2960  		if r == 0 {
  2961  			r = p.To.Reg
  2962  		}
  2963  		switch p.As {
  2964  		case ASUB:
  2965  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  2966  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  2967  		case ASUBC:
  2968  			if r != p.To.Reg {
  2969  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2970  			}
  2971  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  2972  		case ASUBW:
  2973  			if r != p.To.Reg {
  2974  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  2975  			}
  2976  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  2977  		}
  2978  
  2979  	case 22: // add/multiply $constant [reg] reg
  2980  		v := vregoff(ctxt, &p.From)
  2981  		r := p.Reg
  2982  		if r == 0 {
  2983  			r = p.To.Reg
  2984  		}
  2985  		var opri, opril, oprie uint32
  2986  		switch p.As {
  2987  		case AADD:
  2988  			opri = op_AGHI
  2989  			opril = op_AGFI
  2990  			oprie = op_AGHIK
  2991  		case AADDC:
  2992  			opril = op_ALGFI
  2993  			oprie = op_ALGHSIK
  2994  		case AADDW:
  2995  			opri = op_AHI
  2996  			opril = op_AFI
  2997  			oprie = op_AHIK
  2998  		case AMULLW:
  2999  			opri = op_MHI
  3000  			opril = op_MSFI
  3001  		case AMULLD:
  3002  			opri = op_MGHI
  3003  			opril = op_MSGFI
  3004  		}
  3005  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3006  			switch p.As {
  3007  			case AADD, AADDC, AMULLD:
  3008  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3009  			case AADDW, AMULLW:
  3010  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3011  			}
  3012  			r = p.To.Reg
  3013  		}
  3014  		if r == p.To.Reg {
  3015  			if opri != 0 && int64(int16(v)) == v {
  3016  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3017  			} else {
  3018  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3019  			}
  3020  		} else {
  3021  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3022  		}
  3023  
  3024  	case 23: // 64-bit logical op $constant reg
  3025  		// TODO(mundaym): merge with case 24.
  3026  		v := vregoff(ctxt, &p.From)
  3027  		switch p.As {
  3028  		default:
  3029  			ctxt.Diag("%v is not supported", p)
  3030  		case AAND:
  3031  			if v >= 0 { // needs zero extend
  3032  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3033  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3034  			} else if int64(int16(v)) == v {
  3035  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3036  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3037  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3038  			}
  3039  		case AOR:
  3040  			if int64(uint32(v)) != v { // needs sign extend
  3041  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3042  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3043  			} else if int64(uint16(v)) == v {
  3044  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3045  			} else {
  3046  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3047  			}
  3048  		case AXOR:
  3049  			if int64(uint32(v)) != v { // needs sign extend
  3050  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3051  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3052  			} else {
  3053  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3054  			}
  3055  		}
  3056  
  3057  	case 24: // 32-bit logical op $constant reg
  3058  		v := vregoff(ctxt, &p.From)
  3059  		switch p.As {
  3060  		case AANDW:
  3061  			if uint32(v&0xffff0000) == 0xffff0000 {
  3062  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3063  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3064  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3065  			} else {
  3066  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3067  			}
  3068  		case AORW:
  3069  			if uint32(v&0xffff0000) == 0 {
  3070  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3071  			} else if uint32(v&0x0000ffff) == 0 {
  3072  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3073  			} else {
  3074  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3075  			}
  3076  		case AXORW:
  3077  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3078  		}
  3079  
  3080  	case 26: // MOVD $offset(base)(index), reg
  3081  		v := regoff(ctxt, &p.From)
  3082  		r := p.From.Reg
  3083  		if r == 0 {
  3084  			r = o.param
  3085  		}
  3086  		i := p.From.Index
  3087  		if v >= 0 && v < DISP12 {
  3088  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3089  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3090  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3091  		} else {
  3092  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3093  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3094  		}
  3095  
  3096  	case 31: // dword
  3097  		wd := uint64(vregoff(ctxt, &p.From))
  3098  		*asm = append(*asm,
  3099  			uint8(wd>>56),
  3100  			uint8(wd>>48),
  3101  			uint8(wd>>40),
  3102  			uint8(wd>>32),
  3103  			uint8(wd>>24),
  3104  			uint8(wd>>16),
  3105  			uint8(wd>>8),
  3106  			uint8(wd))
  3107  
  3108  	case 32: // float op freg freg
  3109  		var opcode uint32
  3110  		switch p.As {
  3111  		default:
  3112  			ctxt.Diag("invalid opcode")
  3113  		case AFADD:
  3114  			opcode = op_ADBR
  3115  		case AFADDS:
  3116  			opcode = op_AEBR
  3117  		case AFDIV:
  3118  			opcode = op_DDBR
  3119  		case AFDIVS:
  3120  			opcode = op_DEBR
  3121  		case AFMUL:
  3122  			opcode = op_MDBR
  3123  		case AFMULS:
  3124  			opcode = op_MEEBR
  3125  		case AFSUB:
  3126  			opcode = op_SDBR
  3127  		case AFSUBS:
  3128  			opcode = op_SEBR
  3129  		}
  3130  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3131  
  3132  	case 33: // float op [freg] freg
  3133  		r := p.From.Reg
  3134  		if oclass(&p.From) == C_NONE {
  3135  			r = p.To.Reg
  3136  		}
  3137  		var opcode uint32
  3138  		switch p.As {
  3139  		default:
  3140  		case AFABS:
  3141  			opcode = op_LPDBR
  3142  		case AFNABS:
  3143  			opcode = op_LNDBR
  3144  		case AFNEG:
  3145  			opcode = op_LCDFR
  3146  		case AFNEGS:
  3147  			opcode = op_LCEBR
  3148  		case ALEDBR:
  3149  			opcode = op_LEDBR
  3150  		case ALDEBR:
  3151  			opcode = op_LDEBR
  3152  		case AFSQRT:
  3153  			opcode = op_SQDBR
  3154  		case AFSQRTS:
  3155  			opcode = op_SQEBR
  3156  		}
  3157  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3158  
  3159  	case 34: // float multiply-add freg freg freg
  3160  		var opcode uint32
  3161  		switch p.As {
  3162  		default:
  3163  			ctxt.Diag("invalid opcode")
  3164  		case AFMADD:
  3165  			opcode = op_MADBR
  3166  		case AFMADDS:
  3167  			opcode = op_MAEBR
  3168  		case AFMSUB:
  3169  			opcode = op_MSDBR
  3170  		case AFMSUBS:
  3171  			opcode = op_MSEBR
  3172  		}
  3173  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3174  
  3175  	case 35: // mov reg mem (no relocation)
  3176  		d2 := regoff(ctxt, &p.To)
  3177  		b2 := p.To.Reg
  3178  		if b2 == 0 {
  3179  			b2 = o.param
  3180  		}
  3181  		x2 := p.To.Index
  3182  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3183  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3184  			if x2 != 0 {
  3185  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3186  			}
  3187  			x2 = REGTMP
  3188  			d2 = 0
  3189  		}
  3190  		zRXY(zopstore(ctxt, p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3191  
  3192  	case 36: // mov mem reg (no relocation)
  3193  		d2 := regoff(ctxt, &p.From)
  3194  		b2 := p.From.Reg
  3195  		if b2 == 0 {
  3196  			b2 = o.param
  3197  		}
  3198  		x2 := p.From.Index
  3199  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3200  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3201  			if x2 != 0 {
  3202  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3203  			}
  3204  			x2 = REGTMP
  3205  			d2 = 0
  3206  		}
  3207  		zRXY(zopload(ctxt, p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3208  
  3209  	case 40: // word/byte
  3210  		wd := uint32(regoff(ctxt, &p.From))
  3211  		if p.As == AWORD { //WORD
  3212  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3213  		} else { //BYTE
  3214  			*asm = append(*asm, uint8(wd))
  3215  		}
  3216  
  3217  	case 47: // negate [reg] reg
  3218  		r := p.From.Reg
  3219  		if r == 0 {
  3220  			r = p.To.Reg
  3221  		}
  3222  		switch p.As {
  3223  		case ANEG:
  3224  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3225  		case ANEGW:
  3226  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3227  		}
  3228  
  3229  	case 48: // floating-point round to integer
  3230  		m3 := vregoff(ctxt, &p.From)
  3231  		if 0 > m3 || m3 > 7 {
  3232  			ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3233  		}
  3234  		var opcode uint32
  3235  		switch p.As {
  3236  		case AFIEBR:
  3237  			opcode = op_FIEBR
  3238  		case AFIDBR:
  3239  			opcode = op_FIDBR
  3240  		}
  3241  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3242  
  3243  	case 67: // fmov $0 freg
  3244  		var opcode uint32
  3245  		switch p.As {
  3246  		case AFMOVS:
  3247  			opcode = op_LZER
  3248  		case AFMOVD:
  3249  			opcode = op_LZDR
  3250  		}
  3251  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3252  
  3253  	case 68: // movw areg reg
  3254  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3255  
  3256  	case 69: // movw reg areg
  3257  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3258  
  3259  	case 70: // cmp reg reg
  3260  		if p.As == ACMPW || p.As == ACMPWU {
  3261  			zRR(zoprr(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3262  		} else {
  3263  			zRRE(zoprre(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3264  		}
  3265  
  3266  	case 71: // cmp reg $constant
  3267  		v := vregoff(ctxt, &p.To)
  3268  		switch p.As {
  3269  		case ACMP, ACMPW:
  3270  			if int64(int32(v)) != v {
  3271  				ctxt.Diag("%v overflows an int32", v)
  3272  			}
  3273  		case ACMPU, ACMPWU:
  3274  			if int64(uint32(v)) != v {
  3275  				ctxt.Diag("%v overflows a uint32", v)
  3276  			}
  3277  		}
  3278  		if p.As == ACMP && int64(int16(v)) == v {
  3279  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3280  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3281  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3282  		} else {
  3283  			zRIL(_a, zopril(ctxt, p.As), uint32(p.From.Reg), uint32(v), asm)
  3284  		}
  3285  
  3286  	case 72: // mov $constant mem
  3287  		v := regoff(ctxt, &p.From)
  3288  		d := regoff(ctxt, &p.To)
  3289  		r := p.To.Reg
  3290  		x := p.To.Index
  3291  		if r == 0 {
  3292  			r = o.param
  3293  		}
  3294  		if int32(int16(v)) == v && x == 0 {
  3295  			if d < 0 || d >= DISP12 {
  3296  				if r == REGTMP || r == REGTMP2 {
  3297  					zRIL(_a, op_AGFI, uint32(r), uint32(d), asm)
  3298  				} else {
  3299  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3300  					zRRE(op_AGR, REGTMP, uint32(r), asm)
  3301  					r = REGTMP
  3302  				}
  3303  				d = 0
  3304  			}
  3305  			var opcode uint32
  3306  			switch p.As {
  3307  			case AMOVD:
  3308  				opcode = op_MVGHI
  3309  			case AMOVW, AMOVWZ:
  3310  				opcode = op_MVHI
  3311  			case AMOVH, AMOVHZ:
  3312  				opcode = op_MVHHI
  3313  			case AMOVB, AMOVBZ:
  3314  				opcode = op_MVI
  3315  			}
  3316  			if opcode == op_MVI {
  3317  				zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3318  			} else {
  3319  				zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3320  			}
  3321  		} else {
  3322  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3323  			if d < -DISP20/2 || d >= DISP20/2 {
  3324  				if r == REGTMP {
  3325  					zRIL(_a, op_AGFI, REGTMP, uint32(d), asm)
  3326  				} else {
  3327  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3328  					if x != 0 {
  3329  						zRRE(op_AGR, REGTMP, uint32(x), asm)
  3330  					}
  3331  					x = REGTMP
  3332  				}
  3333  				d = 0
  3334  			}
  3335  			zRXY(zopstore(ctxt, p.As), REGTMP2, uint32(x), uint32(r), uint32(d), asm)
  3336  		}
  3337  
  3338  	case 73: // mov $constant addr (including relocation)
  3339  		v := regoff(ctxt, &p.From)
  3340  		d := regoff(ctxt, &p.To)
  3341  		a := uint32(0)
  3342  		if d&1 != 0 {
  3343  			d -= 1
  3344  			a = 1
  3345  		}
  3346  		zRIL(_b, op_LARL, REGTMP, uint32(d), asm)
  3347  		addrilreloc(ctxt, p.To.Sym, int64(d))
  3348  		if int32(int16(v)) == v {
  3349  			var opcode uint32
  3350  			switch p.As {
  3351  			case AMOVD:
  3352  				opcode = op_MVGHI
  3353  			case AMOVW, AMOVWZ:
  3354  				opcode = op_MVHI
  3355  			case AMOVH, AMOVHZ:
  3356  				opcode = op_MVHHI
  3357  			case AMOVB, AMOVBZ:
  3358  				opcode = op_MVI
  3359  			}
  3360  			if opcode == op_MVI {
  3361  				zSI(opcode, uint32(v), REGTMP, a, asm)
  3362  			} else {
  3363  				zSIL(opcode, REGTMP, a, uint32(v), asm)
  3364  			}
  3365  		} else {
  3366  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3367  			zRXY(zopstore(ctxt, p.As), REGTMP2, 0, REGTMP, a, asm)
  3368  		}
  3369  
  3370  	case 74: // mov reg addr (including relocation)
  3371  		i2 := regoff(ctxt, &p.To)
  3372  		switch p.As {
  3373  		case AMOVD:
  3374  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3375  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3376  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3377  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3378  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3379  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3380  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3381  			adj := uint32(0) // adjustment needed for odd addresses
  3382  			if i2&1 != 0 {
  3383  				i2 -= 1
  3384  				adj = 1
  3385  			}
  3386  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3387  		case AFMOVD:
  3388  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3389  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3390  		case AFMOVS:
  3391  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3392  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3393  		}
  3394  		addrilreloc(ctxt, p.To.Sym, int64(i2))
  3395  
  3396  	case 75: // mov addr reg (including relocation)
  3397  		i2 := regoff(ctxt, &p.From)
  3398  		switch p.As {
  3399  		case AMOVD:
  3400  			if i2&1 != 0 {
  3401  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3402  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3403  				i2 -= 1
  3404  			} else {
  3405  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3406  			}
  3407  		case AMOVW:
  3408  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3409  		case AMOVWZ:
  3410  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3411  		case AMOVH:
  3412  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3413  		case AMOVHZ:
  3414  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3415  		case AMOVB, AMOVBZ:
  3416  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3417  			adj := uint32(0) // adjustment needed for odd addresses
  3418  			if i2&1 != 0 {
  3419  				i2 -= 1
  3420  				adj = 1
  3421  			}
  3422  			switch p.As {
  3423  			case AMOVB:
  3424  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3425  			case AMOVBZ:
  3426  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3427  			}
  3428  		case AFMOVD:
  3429  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3430  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3431  		case AFMOVS:
  3432  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3433  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3434  		}
  3435  		addrilreloc(ctxt, p.From.Sym, int64(i2))
  3436  
  3437  	case 77: // syscall $constant
  3438  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3439  			ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3440  			zE(op_TRAP2, asm) // trap always
  3441  		} else {
  3442  			zI(op_SVC, uint32(p.From.Offset), asm)
  3443  		}
  3444  
  3445  	case 78: // undef
  3446  		// "An instruction consisting entirely of binary 0s is guaranteed
  3447  		// always to be an illegal instruction."
  3448  		*asm = append(*asm, 0, 0, 0, 0)
  3449  
  3450  	case 79: // compare and swap reg reg reg
  3451  		v := regoff(ctxt, &p.To)
  3452  		if v < 0 {
  3453  			v = 0
  3454  		}
  3455  		if p.As == ACS {
  3456  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3457  		} else if p.As == ACSG {
  3458  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3459  		}
  3460  
  3461  	case 81: // sync
  3462  		zRR(op_BCR, 0xE, 0, asm)
  3463  
  3464  	case 82: // fixed to float conversion
  3465  		var opcode uint32
  3466  		switch p.As {
  3467  		default:
  3468  			log.Fatalf("unexpected opcode %v", p.As)
  3469  		case ACEFBRA:
  3470  			opcode = op_CEFBRA
  3471  		case ACDFBRA:
  3472  			opcode = op_CDFBRA
  3473  		case ACEGBRA:
  3474  			opcode = op_CEGBRA
  3475  		case ACDGBRA:
  3476  			opcode = op_CDGBRA
  3477  		case ACELFBR:
  3478  			opcode = op_CELFBR
  3479  		case ACDLFBR:
  3480  			opcode = op_CDLFBR
  3481  		case ACELGBR:
  3482  			opcode = op_CELGBR
  3483  		case ACDLGBR:
  3484  			opcode = op_CDLGBR
  3485  		}
  3486  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3487  		// (usually round to nearest, ties to even)
  3488  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3489  		// M4 is reserved and must be 0
  3490  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3491  
  3492  	case 83: // float to fixed conversion
  3493  		var opcode uint32
  3494  		switch p.As {
  3495  		default:
  3496  			log.Fatalf("unexpected opcode %v", p.As)
  3497  		case ACFEBRA:
  3498  			opcode = op_CFEBRA
  3499  		case ACFDBRA:
  3500  			opcode = op_CFDBRA
  3501  		case ACGEBRA:
  3502  			opcode = op_CGEBRA
  3503  		case ACGDBRA:
  3504  			opcode = op_CGDBRA
  3505  		case ACLFEBR:
  3506  			opcode = op_CLFEBR
  3507  		case ACLFDBR:
  3508  			opcode = op_CLFDBR
  3509  		case ACLGEBR:
  3510  			opcode = op_CLGEBR
  3511  		case ACLGDBR:
  3512  			opcode = op_CLGDBR
  3513  		}
  3514  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3515  		// M4 is reserved and must be 0
  3516  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3517  
  3518  	case 84: // storage-and-storage operations $length mem mem (length in From3)
  3519  		l := regoff(ctxt, p.From3)
  3520  		if l < 1 || l > 256 {
  3521  			ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3522  		}
  3523  		if p.From.Index != 0 || p.To.Index != 0 {
  3524  			ctxt.Diag("cannot use index reg")
  3525  		}
  3526  		b1 := p.To.Reg
  3527  		b2 := p.From.Reg
  3528  		if b1 == 0 {
  3529  			b1 = o.param
  3530  		}
  3531  		if b2 == 0 {
  3532  			b2 = o.param
  3533  		}
  3534  		d1 := regoff(ctxt, &p.To)
  3535  		d2 := regoff(ctxt, &p.From)
  3536  		if d1 < 0 || d1 >= DISP12 {
  3537  			if b2 == REGTMP {
  3538  				ctxt.Diag("REGTMP conflict")
  3539  			}
  3540  			if b1 != REGTMP {
  3541  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3542  			}
  3543  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3544  			if d1 == d2 && b1 == b2 {
  3545  				d2 = 0
  3546  				b2 = REGTMP
  3547  			}
  3548  			d1 = 0
  3549  			b1 = REGTMP
  3550  		}
  3551  		if d2 < 0 || d2 >= DISP12 {
  3552  			if b1 == REGTMP2 {
  3553  				ctxt.Diag("REGTMP2 conflict")
  3554  			}
  3555  			if b2 != REGTMP2 {
  3556  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3557  			}
  3558  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3559  			d2 = 0
  3560  			b2 = REGTMP2
  3561  		}
  3562  		var opcode uint32
  3563  		switch p.As {
  3564  		default:
  3565  			ctxt.Diag("unexpected opcode %v", p.As)
  3566  		case AMVC:
  3567  			opcode = op_MVC
  3568  		case ACLC:
  3569  			opcode = op_CLC
  3570  			// swap operand order for CLC so that it matches CMP
  3571  			b1, b2 = b2, b1
  3572  			d1, d2 = d2, d1
  3573  		case AXC:
  3574  			opcode = op_XC
  3575  		case AOC:
  3576  			opcode = op_OC
  3577  		case ANC:
  3578  			opcode = op_NC
  3579  		}
  3580  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3581  
  3582  	case 85: // load address relative long
  3583  		v := regoff(ctxt, &p.From)
  3584  		if p.From.Sym == nil {
  3585  			if (v & 1) != 0 {
  3586  				ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3587  			}
  3588  		} else {
  3589  			addrilreloc(ctxt, p.From.Sym, int64(v))
  3590  			v = 0
  3591  		}
  3592  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3593  
  3594  	case 86: // load address
  3595  		d := vregoff(ctxt, &p.From)
  3596  		x := p.From.Index
  3597  		b := p.From.Reg
  3598  		if b == 0 {
  3599  			b = o.param
  3600  		}
  3601  		switch p.As {
  3602  		case ALA:
  3603  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3604  		case ALAY:
  3605  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3606  		}
  3607  
  3608  	case 87: // execute relative long
  3609  		v := vregoff(ctxt, &p.From)
  3610  		if p.From.Sym == nil {
  3611  			if v&1 != 0 {
  3612  				ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3613  			}
  3614  		} else {
  3615  			addrilreloc(ctxt, p.From.Sym, v)
  3616  			v = 0
  3617  		}
  3618  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3619  
  3620  	case 88: // store clock
  3621  		var opcode uint32
  3622  		switch p.As {
  3623  		case ASTCK:
  3624  			opcode = op_STCK
  3625  		case ASTCKC:
  3626  			opcode = op_STCKC
  3627  		case ASTCKE:
  3628  			opcode = op_STCKE
  3629  		case ASTCKF:
  3630  			opcode = op_STCKF
  3631  		}
  3632  		v := vregoff(ctxt, &p.To)
  3633  		r := int(p.To.Reg)
  3634  		if r == 0 {
  3635  			r = int(o.param)
  3636  		}
  3637  		zS(opcode, uint32(r), uint32(v), asm)
  3638  
  3639  	case 89: // compare and branch reg reg
  3640  		var v int32
  3641  		if p.Pcond != nil {
  3642  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3643  		}
  3644  		var opcode, opcode2 uint32
  3645  		switch p.As {
  3646  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3647  			opcode = op_CGRJ
  3648  			opcode2 = op_CGR
  3649  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3650  			opcode = op_CLGRJ
  3651  			opcode2 = op_CLGR
  3652  		}
  3653  		mask := branchMask(ctxt, p)
  3654  		if int32(int16(v)) != v {
  3655  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3656  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3657  		} else {
  3658  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3659  		}
  3660  
  3661  	case 90: // compare and branch reg $constant
  3662  		var v int32
  3663  		if p.Pcond != nil {
  3664  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3665  		}
  3666  		var opcode, opcode2 uint32
  3667  		switch p.As {
  3668  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3669  			opcode = op_CGIJ
  3670  			opcode2 = op_CGFI
  3671  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3672  			opcode = op_CLGIJ
  3673  			opcode2 = op_CLGFI
  3674  		}
  3675  		mask := branchMask(ctxt, p)
  3676  		if int32(int16(v)) != v {
  3677  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(regoff(ctxt, p.From3)), asm)
  3678  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3679  		} else {
  3680  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(regoff(ctxt, p.From3)), asm)
  3681  		}
  3682  
  3683  	case 93: // GOT lookup
  3684  		v := vregoff(ctxt, &p.To)
  3685  		if v != 0 {
  3686  			ctxt.Diag("invalid offset against GOT slot %v", p)
  3687  		}
  3688  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3689  		rel := obj.Addrel(ctxt.Cursym)
  3690  		rel.Off = int32(ctxt.Pc + 2)
  3691  		rel.Siz = 4
  3692  		rel.Sym = p.From.Sym
  3693  		rel.Type = obj.R_GOTPCREL
  3694  		rel.Add = 2 + int64(rel.Siz)
  3695  
  3696  	case 94: // TLS local exec model
  3697  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3698  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3699  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3700  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3701  		rel := obj.Addrel(ctxt.Cursym)
  3702  		rel.Off = int32(ctxt.Pc + sizeRIL + sizeRXY + sizeRI)
  3703  		rel.Siz = 8
  3704  		rel.Sym = p.From.Sym
  3705  		rel.Type = obj.R_TLS_LE
  3706  		rel.Add = 0
  3707  
  3708  	case 95: // TLS initial exec model
  3709  		// Assembly                   | Relocation symbol    | Done Here?
  3710  		// --------------------------------------------------------------
  3711  		// ear  %r11, %a0             |                      |
  3712  		// sllg %r11, %r11, 32        |                      |
  3713  		// ear  %r11, %a1             |                      |
  3714  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3715  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3716  		// la   %r10, 0(%r10, %r11)   |                      |
  3717  		// --------------------------------------------------------------
  3718  
  3719  		// R_390_TLS_IEENT
  3720  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3721  		ieent := obj.Addrel(ctxt.Cursym)
  3722  		ieent.Off = int32(ctxt.Pc + 2)
  3723  		ieent.Siz = 4
  3724  		ieent.Sym = p.From.Sym
  3725  		ieent.Type = obj.R_TLS_IE
  3726  		ieent.Add = 2 + int64(ieent.Siz)
  3727  
  3728  		// R_390_TLS_LOAD
  3729  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3730  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3731  		// not strictly required but might allow the linker to optimize
  3732  
  3733  	case 96: // clear macro
  3734  		length := vregoff(ctxt, &p.From)
  3735  		offset := vregoff(ctxt, &p.To)
  3736  		reg := p.To.Reg
  3737  		if reg == 0 {
  3738  			reg = o.param
  3739  		}
  3740  		if length <= 0 {
  3741  			ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3742  		}
  3743  		for length > 0 {
  3744  			if offset < 0 || offset >= DISP12 {
  3745  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3746  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3747  				} else {
  3748  					if reg != REGTMP {
  3749  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3750  					}
  3751  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3752  				}
  3753  				reg = REGTMP
  3754  				offset = 0
  3755  			}
  3756  			size := length
  3757  			if size > 256 {
  3758  				size = 256
  3759  			}
  3760  
  3761  			switch size {
  3762  			case 1:
  3763  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3764  			case 2:
  3765  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3766  			case 4:
  3767  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3768  			case 8:
  3769  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3770  			default:
  3771  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3772  			}
  3773  
  3774  			length -= size
  3775  			offset += size
  3776  		}
  3777  
  3778  	case 97: // store multiple
  3779  		rstart := p.From.Reg
  3780  		rend := p.Reg
  3781  		offset := regoff(ctxt, &p.To)
  3782  		reg := p.To.Reg
  3783  		if reg == 0 {
  3784  			reg = o.param
  3785  		}
  3786  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3787  			if reg != REGTMP {
  3788  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3789  			}
  3790  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3791  			reg = REGTMP
  3792  			offset = 0
  3793  		}
  3794  		switch p.As {
  3795  		case ASTMY:
  3796  			if offset >= 0 && offset < DISP12 {
  3797  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3798  			} else {
  3799  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3800  			}
  3801  		case ASTMG:
  3802  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3803  		}
  3804  
  3805  	case 98: // load multiple
  3806  		rstart := p.Reg
  3807  		rend := p.To.Reg
  3808  		offset := regoff(ctxt, &p.From)
  3809  		reg := p.From.Reg
  3810  		if reg == 0 {
  3811  			reg = o.param
  3812  		}
  3813  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3814  			if reg != REGTMP {
  3815  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3816  			}
  3817  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3818  			reg = REGTMP
  3819  			offset = 0
  3820  		}
  3821  		switch p.As {
  3822  		case ALMY:
  3823  			if offset >= 0 && offset < DISP12 {
  3824  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3825  			} else {
  3826  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3827  			}
  3828  		case ALMG:
  3829  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3830  		}
  3831  
  3832  	case 99: // interlocked load and op
  3833  		if p.To.Index != 0 {
  3834  			ctxt.Diag("cannot use indexed address")
  3835  		}
  3836  		offset := regoff(ctxt, &p.To)
  3837  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3838  			ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3839  		}
  3840  		var opcode uint32
  3841  		switch p.As {
  3842  		case ALAA:
  3843  			opcode = op_LAA
  3844  		case ALAAG:
  3845  			opcode = op_LAAG
  3846  		case ALAAL:
  3847  			opcode = op_LAAL
  3848  		case ALAALG:
  3849  			opcode = op_LAALG
  3850  		case ALAN:
  3851  			opcode = op_LAN
  3852  		case ALANG:
  3853  			opcode = op_LANG
  3854  		case ALAX:
  3855  			opcode = op_LAX
  3856  		case ALAXG:
  3857  			opcode = op_LAXG
  3858  		case ALAO:
  3859  			opcode = op_LAO
  3860  		case ALAOG:
  3861  			opcode = op_LAOG
  3862  		}
  3863  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3864  
  3865  	case 100: // VRX STORE
  3866  		op, m3, _ := vop(p.As)
  3867  		if p.From3 != nil {
  3868  			m3 = uint32(vregoff(ctxt, p.From3))
  3869  		}
  3870  		b2 := p.To.Reg
  3871  		if b2 == 0 {
  3872  			b2 = o.param
  3873  		}
  3874  		d2 := uint32(vregoff(ctxt, &p.To))
  3875  		zVRX(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3876  
  3877  	case 101: // VRX LOAD
  3878  		op, m3, _ := vop(p.As)
  3879  		if p.From3 != nil {
  3880  			m3 = uint32(vregoff(ctxt, p.From3))
  3881  		}
  3882  		b2 := p.From.Reg
  3883  		if b2 == 0 {
  3884  			b2 = o.param
  3885  		}
  3886  		d2 := uint32(vregoff(ctxt, &p.From))
  3887  		zVRX(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3888  
  3889  	case 102: // VRV SCATTER
  3890  		op, m3, _ := vop(p.As)
  3891  		if p.From3 != nil {
  3892  			m3 = uint32(vregoff(ctxt, p.From3))
  3893  		}
  3894  		b2 := p.To.Reg
  3895  		if b2 == 0 {
  3896  			b2 = o.param
  3897  		}
  3898  		d2 := uint32(vregoff(ctxt, &p.To))
  3899  		zVRV(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3900  
  3901  	case 103: // VRV GATHER
  3902  		op, m3, _ := vop(p.As)
  3903  		if p.From3 != nil {
  3904  			m3 = uint32(vregoff(ctxt, p.From3))
  3905  		}
  3906  		b2 := p.From.Reg
  3907  		if b2 == 0 {
  3908  			b2 = o.param
  3909  		}
  3910  		d2 := uint32(vregoff(ctxt, &p.From))
  3911  		zVRV(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3912  
  3913  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3914  		op, m4, _ := vop(p.As)
  3915  		fr := p.Reg
  3916  		if fr == 0 {
  3917  			fr = p.To.Reg
  3918  		}
  3919  		bits := uint32(vregoff(ctxt, &p.From))
  3920  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3921  
  3922  	case 105: // VRS STORE MULTIPLE
  3923  		op, _, _ := vop(p.As)
  3924  		offset := uint32(vregoff(ctxt, &p.To))
  3925  		reg := p.To.Reg
  3926  		if reg == 0 {
  3927  			reg = o.param
  3928  		}
  3929  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3930  
  3931  	case 106: // VRS LOAD MULTIPLE
  3932  		op, _, _ := vop(p.As)
  3933  		offset := uint32(vregoff(ctxt, &p.From))
  3934  		reg := p.From.Reg
  3935  		if reg == 0 {
  3936  			reg = o.param
  3937  		}
  3938  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3939  
  3940  	case 107: // VRS STORE WITH LENGTH
  3941  		op, _, _ := vop(p.As)
  3942  		offset := uint32(vregoff(ctxt, &p.To))
  3943  		reg := p.To.Reg
  3944  		if reg == 0 {
  3945  			reg = o.param
  3946  		}
  3947  		zVRS(op, uint32(p.From.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3948  
  3949  	case 108: // VRS LOAD WITH LENGTH
  3950  		op, _, _ := vop(p.As)
  3951  		offset := uint32(vregoff(ctxt, &p.From))
  3952  		reg := p.From.Reg
  3953  		if reg == 0 {
  3954  			reg = o.param
  3955  		}
  3956  		zVRS(op, uint32(p.To.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3957  
  3958  	case 109: // VRI-a
  3959  		op, m3, _ := vop(p.As)
  3960  		i2 := uint32(vregoff(ctxt, &p.From))
  3961  		switch p.As {
  3962  		case AVZERO:
  3963  			i2 = 0
  3964  		case AVONE:
  3965  			i2 = 0xffff
  3966  		}
  3967  		if p.From3 != nil {
  3968  			m3 = uint32(vregoff(ctxt, p.From3))
  3969  		}
  3970  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3971  
  3972  	case 110:
  3973  		op, m4, _ := vop(p.As)
  3974  		i2 := uint32(vregoff(ctxt, p.From3))
  3975  		i3 := uint32(vregoff(ctxt, &p.From))
  3976  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  3977  
  3978  	case 111:
  3979  		op, m4, _ := vop(p.As)
  3980  		i2 := uint32(vregoff(ctxt, &p.From))
  3981  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  3982  
  3983  	case 112:
  3984  		op, m5, _ := vop(p.As)
  3985  		i4 := uint32(vregoff(ctxt, p.From3))
  3986  		zVRId(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), i4, m5, asm)
  3987  
  3988  	case 113:
  3989  		op, m4, _ := vop(p.As)
  3990  		m5 := singleElementMask(p.As)
  3991  		i3 := uint32(vregoff(ctxt, &p.From))
  3992  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  3993  
  3994  	case 114: // VRR-a
  3995  		op, m3, m5 := vop(p.As)
  3996  		m4 := singleElementMask(p.As)
  3997  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  3998  
  3999  	case 115: // VRR-a COMPARE
  4000  		op, m3, m5 := vop(p.As)
  4001  		m4 := singleElementMask(p.As)
  4002  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4003  
  4004  	case 116: // VRR-a
  4005  
  4006  	case 117: // VRR-b
  4007  		op, m4, m5 := vop(p.As)
  4008  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4009  
  4010  	case 118: // VRR-c
  4011  		op, m4, m6 := vop(p.As)
  4012  		m5 := singleElementMask(p.As)
  4013  		v3 := p.Reg
  4014  		if v3 == 0 {
  4015  			v3 = p.To.Reg
  4016  		}
  4017  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4018  
  4019  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4020  		op, m4, m6 := vop(p.As)
  4021  		m5 := singleElementMask(p.As)
  4022  		v2 := p.Reg
  4023  		if v2 == 0 {
  4024  			v2 = p.To.Reg
  4025  		}
  4026  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4027  
  4028  	case 120: // VRR-d
  4029  		op, m6, _ := vop(p.As)
  4030  		m5 := singleElementMask(p.As)
  4031  		v1 := uint32(p.To.Reg)
  4032  		v2 := uint32(p.From3.Reg)
  4033  		v3 := uint32(p.From.Reg)
  4034  		v4 := uint32(p.Reg)
  4035  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4036  
  4037  	case 121: // VRR-e
  4038  		op, m6, _ := vop(p.As)
  4039  		m5 := singleElementMask(p.As)
  4040  		v1 := uint32(p.To.Reg)
  4041  		v2 := uint32(p.From3.Reg)
  4042  		v3 := uint32(p.From.Reg)
  4043  		v4 := uint32(p.Reg)
  4044  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4045  
  4046  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4047  		op, _, _ := vop(p.As)
  4048  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4049  
  4050  	case 123: // VPDI $m4, V2, V3, V1
  4051  		op, _, _ := vop(p.As)
  4052  		m4 := regoff(ctxt, p.From3)
  4053  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), 0, 0, uint32(m4), asm)
  4054  	}
  4055  }
  4056  
  4057  func vregoff(ctxt *obj.Link, a *obj.Addr) int64 {
  4058  	ctxt.Instoffset = 0
  4059  	if a != nil {
  4060  		aclass(ctxt, a)
  4061  	}
  4062  	return ctxt.Instoffset
  4063  }
  4064  
  4065  func regoff(ctxt *obj.Link, a *obj.Addr) int32 {
  4066  	return int32(vregoff(ctxt, a))
  4067  }
  4068  
  4069  // zopload returns the RXY op for the given load
  4070  func zopload(ctxt *obj.Link, a obj.As) uint32 {
  4071  	switch a {
  4072  	// fixed point load
  4073  	case AMOVD:
  4074  		return op_LG
  4075  	case AMOVW:
  4076  		return op_LGF
  4077  	case AMOVWZ:
  4078  		return op_LLGF
  4079  	case AMOVH:
  4080  		return op_LGH
  4081  	case AMOVHZ:
  4082  		return op_LLGH
  4083  	case AMOVB:
  4084  		return op_LGB
  4085  	case AMOVBZ:
  4086  		return op_LLGC
  4087  
  4088  	// floating point load
  4089  	case AFMOVD:
  4090  		return op_LDY
  4091  	case AFMOVS:
  4092  		return op_LEY
  4093  
  4094  	// byte reversed load
  4095  	case AMOVDBR:
  4096  		return op_LRVG
  4097  	case AMOVWBR:
  4098  		return op_LRV
  4099  	case AMOVHBR:
  4100  		return op_LRVH
  4101  	}
  4102  
  4103  	ctxt.Diag("unknown store opcode %v", a)
  4104  	return 0
  4105  }
  4106  
  4107  // zopstore returns the RXY op for the given store
  4108  func zopstore(ctxt *obj.Link, a obj.As) uint32 {
  4109  	switch a {
  4110  	// fixed point store
  4111  	case AMOVD:
  4112  		return op_STG
  4113  	case AMOVW, AMOVWZ:
  4114  		return op_STY
  4115  	case AMOVH, AMOVHZ:
  4116  		return op_STHY
  4117  	case AMOVB, AMOVBZ:
  4118  		return op_STCY
  4119  
  4120  	// floating point store
  4121  	case AFMOVD:
  4122  		return op_STDY
  4123  	case AFMOVS:
  4124  		return op_STEY
  4125  
  4126  	// byte reversed store
  4127  	case AMOVDBR:
  4128  		return op_STRVG
  4129  	case AMOVWBR:
  4130  		return op_STRV
  4131  	case AMOVHBR:
  4132  		return op_STRVH
  4133  	}
  4134  
  4135  	ctxt.Diag("unknown store opcode %v", a)
  4136  	return 0
  4137  }
  4138  
  4139  // zoprre returns the RRE op for the given a
  4140  func zoprre(ctxt *obj.Link, a obj.As) uint32 {
  4141  	switch a {
  4142  	case ACMP:
  4143  		return op_CGR
  4144  	case ACMPU:
  4145  		return op_CLGR
  4146  	case AFCMPO: //ordered
  4147  		return op_KDBR
  4148  	case AFCMPU: //unordered
  4149  		return op_CDBR
  4150  	case ACEBR:
  4151  		return op_CEBR
  4152  	}
  4153  	ctxt.Diag("unknown rre opcode %v", a)
  4154  	return 0
  4155  }
  4156  
  4157  // zoprr returns the RR op for the given a
  4158  func zoprr(ctxt *obj.Link, a obj.As) uint32 {
  4159  	switch a {
  4160  	case ACMPW:
  4161  		return op_CR
  4162  	case ACMPWU:
  4163  		return op_CLR
  4164  	}
  4165  	ctxt.Diag("unknown rr opcode %v", a)
  4166  	return 0
  4167  }
  4168  
  4169  // zopril returns the RIL op for the given a
  4170  func zopril(ctxt *obj.Link, a obj.As) uint32 {
  4171  	switch a {
  4172  	case ACMP:
  4173  		return op_CGFI
  4174  	case ACMPU:
  4175  		return op_CLGFI
  4176  	case ACMPW:
  4177  		return op_CFI
  4178  	case ACMPWU:
  4179  		return op_CLFI
  4180  	}
  4181  	ctxt.Diag("unknown ril opcode %v", a)
  4182  	return 0
  4183  }
  4184  
  4185  // z instructions sizes
  4186  const (
  4187  	sizeE    = 2
  4188  	sizeI    = 2
  4189  	sizeIE   = 4
  4190  	sizeMII  = 6
  4191  	sizeRI   = 4
  4192  	sizeRI1  = 4
  4193  	sizeRI2  = 4
  4194  	sizeRI3  = 4
  4195  	sizeRIE  = 6
  4196  	sizeRIE1 = 6
  4197  	sizeRIE2 = 6
  4198  	sizeRIE3 = 6
  4199  	sizeRIE4 = 6
  4200  	sizeRIE5 = 6
  4201  	sizeRIE6 = 6
  4202  	sizeRIL  = 6
  4203  	sizeRIL1 = 6
  4204  	sizeRIL2 = 6
  4205  	sizeRIL3 = 6
  4206  	sizeRIS  = 6
  4207  	sizeRR   = 2
  4208  	sizeRRD  = 4
  4209  	sizeRRE  = 4
  4210  	sizeRRF  = 4
  4211  	sizeRRF1 = 4
  4212  	sizeRRF2 = 4
  4213  	sizeRRF3 = 4
  4214  	sizeRRF4 = 4
  4215  	sizeRRF5 = 4
  4216  	sizeRRR  = 2
  4217  	sizeRRS  = 6
  4218  	sizeRS   = 4
  4219  	sizeRS1  = 4
  4220  	sizeRS2  = 4
  4221  	sizeRSI  = 4
  4222  	sizeRSL  = 6
  4223  	sizeRSY  = 6
  4224  	sizeRSY1 = 6
  4225  	sizeRSY2 = 6
  4226  	sizeRX   = 4
  4227  	sizeRX1  = 4
  4228  	sizeRX2  = 4
  4229  	sizeRXE  = 6
  4230  	sizeRXF  = 6
  4231  	sizeRXY  = 6
  4232  	sizeRXY1 = 6
  4233  	sizeRXY2 = 6
  4234  	sizeS    = 4
  4235  	sizeSI   = 4
  4236  	sizeSIL  = 6
  4237  	sizeSIY  = 6
  4238  	sizeSMI  = 6
  4239  	sizeSS   = 6
  4240  	sizeSS1  = 6
  4241  	sizeSS2  = 6
  4242  	sizeSS3  = 6
  4243  	sizeSS4  = 6
  4244  	sizeSS5  = 6
  4245  	sizeSS6  = 6
  4246  	sizeSSE  = 6
  4247  	sizeSSF  = 6
  4248  )
  4249  
  4250  // instruction format variations
  4251  type form int
  4252  
  4253  const (
  4254  	_a form = iota
  4255  	_b
  4256  	_c
  4257  	_d
  4258  	_e
  4259  	_f
  4260  )
  4261  
  4262  func zE(op uint32, asm *[]byte) {
  4263  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4264  }
  4265  
  4266  func zI(op, i1 uint32, asm *[]byte) {
  4267  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4268  }
  4269  
  4270  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4271  	*asm = append(*asm,
  4272  		uint8(op>>8),
  4273  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4274  		uint8(ri2),
  4275  		uint8(ri3>>16),
  4276  		uint8(ri3>>8),
  4277  		uint8(ri3))
  4278  }
  4279  
  4280  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4281  	*asm = append(*asm,
  4282  		uint8(op>>8),
  4283  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4284  		uint8(i2_ri2>>8),
  4285  		uint8(i2_ri2))
  4286  }
  4287  
  4288  // Expected argument values for the instruction formats.
  4289  //
  4290  // Format    a1  a2   a3  a4  a5  a6  a7
  4291  // ------------------------------------
  4292  // a         r1,  0,  i2,  0,  0, m3,  0
  4293  // b         r1, r2, ri4,  0,  0, m3,  0
  4294  // c         r1, m3, ri4,  0,  0,  0, i2
  4295  // d         r1, r3,  i2,  0,  0,  0,  0
  4296  // e         r1, r3, ri2,  0,  0,  0,  0
  4297  // f         r1, r2,   0, i3, i4,  0, i5
  4298  // g         r1, m3,  i2,  0,  0,  0,  0
  4299  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4300  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4301  
  4302  	switch f {
  4303  	default:
  4304  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4305  	case _f:
  4306  		*asm = append(*asm, uint8(i3), uint8(i4))
  4307  	}
  4308  
  4309  	switch f {
  4310  	case _a, _b:
  4311  		*asm = append(*asm, uint8(m3)<<4)
  4312  	default:
  4313  		*asm = append(*asm, uint8(i2_i5))
  4314  	}
  4315  
  4316  	*asm = append(*asm, uint8(op))
  4317  }
  4318  
  4319  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4320  	if f == _a || f == _b {
  4321  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4322  	}
  4323  	*asm = append(*asm,
  4324  		uint8(op>>8),
  4325  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4326  		uint8(i2_ri2>>24),
  4327  		uint8(i2_ri2>>16),
  4328  		uint8(i2_ri2>>8),
  4329  		uint8(i2_ri2))
  4330  }
  4331  
  4332  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4333  	*asm = append(*asm,
  4334  		uint8(op>>8),
  4335  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4336  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4337  		uint8(d4),
  4338  		uint8(i2),
  4339  		uint8(op))
  4340  }
  4341  
  4342  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4343  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4344  }
  4345  
  4346  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4347  	*asm = append(*asm,
  4348  		uint8(op>>8),
  4349  		uint8(op),
  4350  		uint8(r1)<<4,
  4351  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4352  }
  4353  
  4354  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4355  	*asm = append(*asm,
  4356  		uint8(op>>8),
  4357  		uint8(op),
  4358  		0,
  4359  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4360  }
  4361  
  4362  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4363  	*asm = append(*asm,
  4364  		uint8(op>>8),
  4365  		uint8(op),
  4366  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4367  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4368  }
  4369  
  4370  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4371  	*asm = append(*asm,
  4372  		uint8(op>>8),
  4373  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4374  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4375  		uint8(d4),
  4376  		uint8(m3)<<4,
  4377  		uint8(op))
  4378  }
  4379  
  4380  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4381  	*asm = append(*asm,
  4382  		uint8(op>>8),
  4383  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4384  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4385  		uint8(d2))
  4386  }
  4387  
  4388  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4389  	*asm = append(*asm,
  4390  		uint8(op>>8),
  4391  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4392  		uint8(ri2>>8),
  4393  		uint8(ri2))
  4394  }
  4395  
  4396  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4397  	*asm = append(*asm,
  4398  		uint8(op>>8),
  4399  		uint8(l1),
  4400  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4401  		uint8(d2),
  4402  		uint8(op))
  4403  }
  4404  
  4405  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4406  	dl2 := uint16(d2) & 0x0FFF
  4407  	*asm = append(*asm,
  4408  		uint8(op>>8),
  4409  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4410  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4411  		uint8(dl2),
  4412  		uint8(d2>>12),
  4413  		uint8(op))
  4414  }
  4415  
  4416  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4417  	*asm = append(*asm,
  4418  		uint8(op>>8),
  4419  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4420  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4421  		uint8(d2))
  4422  }
  4423  
  4424  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4425  	*asm = append(*asm,
  4426  		uint8(op>>8),
  4427  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4428  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4429  		uint8(d2),
  4430  		uint8(m3)<<4,
  4431  		uint8(op))
  4432  }
  4433  
  4434  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4435  	*asm = append(*asm,
  4436  		uint8(op>>8),
  4437  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4438  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4439  		uint8(d2),
  4440  		uint8(m1)<<4,
  4441  		uint8(op))
  4442  }
  4443  
  4444  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4445  	dl2 := uint16(d2) & 0x0FFF
  4446  	*asm = append(*asm,
  4447  		uint8(op>>8),
  4448  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4449  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4450  		uint8(dl2),
  4451  		uint8(d2>>12),
  4452  		uint8(op))
  4453  }
  4454  
  4455  func zS(op, b2, d2 uint32, asm *[]byte) {
  4456  	*asm = append(*asm,
  4457  		uint8(op>>8),
  4458  		uint8(op),
  4459  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4460  		uint8(d2))
  4461  }
  4462  
  4463  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4464  	*asm = append(*asm,
  4465  		uint8(op>>8),
  4466  		uint8(i2),
  4467  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4468  		uint8(d1))
  4469  }
  4470  
  4471  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4472  	*asm = append(*asm,
  4473  		uint8(op>>8),
  4474  		uint8(op),
  4475  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4476  		uint8(d1),
  4477  		uint8(i2>>8),
  4478  		uint8(i2))
  4479  }
  4480  
  4481  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4482  	dl1 := uint16(d1) & 0x0FFF
  4483  	*asm = append(*asm,
  4484  		uint8(op>>8),
  4485  		uint8(i2),
  4486  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4487  		uint8(dl1),
  4488  		uint8(d1>>12),
  4489  		uint8(op))
  4490  }
  4491  
  4492  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4493  	*asm = append(*asm,
  4494  		uint8(op>>8),
  4495  		uint8(m1)<<4,
  4496  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4497  		uint8(d3),
  4498  		uint8(ri2>>8),
  4499  		uint8(ri2))
  4500  }
  4501  
  4502  // Expected argument values for the instruction formats.
  4503  //
  4504  // Format    a1  a2  a3  a4  a5  a6
  4505  // -------------------------------
  4506  // a         l1,  0, b1, d1, b2, d2
  4507  // b         l1, l2, b1, d1, b2, d2
  4508  // c         l1, i3, b1, d1, b2, d2
  4509  // d         r1, r3, b1, d1, b2, d2
  4510  // e         r1, r3, b2, d2, b4, d4
  4511  // f          0, l2, b1, d1, b2, d2
  4512  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4513  	*asm = append(*asm, uint8(op>>8))
  4514  
  4515  	switch f {
  4516  	case _a:
  4517  		*asm = append(*asm, uint8(l1_r1))
  4518  	case _b, _c, _d, _e:
  4519  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4520  	case _f:
  4521  		*asm = append(*asm, uint8(l2_i3_r3))
  4522  	}
  4523  
  4524  	*asm = append(*asm,
  4525  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4526  		uint8(d1_d2),
  4527  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4528  		uint8(d2_d4))
  4529  }
  4530  
  4531  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4532  	*asm = append(*asm,
  4533  		uint8(op>>8),
  4534  		uint8(op),
  4535  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4536  		uint8(d1),
  4537  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4538  		uint8(d2))
  4539  }
  4540  
  4541  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4542  	*asm = append(*asm,
  4543  		uint8(op>>8),
  4544  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4545  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4546  		uint8(d1),
  4547  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4548  		uint8(d2))
  4549  }
  4550  
  4551  func rxb(va, vb, vc, vd uint32) uint8 {
  4552  	mask := uint8(0)
  4553  	if va >= REG_V16 && va <= REG_V31 {
  4554  		mask |= 0x8
  4555  	}
  4556  	if vb >= REG_V16 && vb <= REG_V31 {
  4557  		mask |= 0x4
  4558  	}
  4559  	if vc >= REG_V16 && vc <= REG_V31 {
  4560  		mask |= 0x2
  4561  	}
  4562  	if vd >= REG_V16 && vd <= REG_V31 {
  4563  		mask |= 0x1
  4564  	}
  4565  	return mask
  4566  }
  4567  
  4568  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4569  	*asm = append(*asm,
  4570  		uint8(op>>8),
  4571  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4572  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4573  		uint8(d2),
  4574  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4575  		uint8(op))
  4576  }
  4577  
  4578  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4579  	*asm = append(*asm,
  4580  		uint8(op>>8),
  4581  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4582  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4583  		uint8(d2),
  4584  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4585  		uint8(op))
  4586  }
  4587  
  4588  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4589  	*asm = append(*asm,
  4590  		uint8(op>>8),
  4591  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4592  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4593  		uint8(d2),
  4594  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4595  		uint8(op))
  4596  }
  4597  
  4598  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4599  	*asm = append(*asm,
  4600  		uint8(op>>8),
  4601  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4602  		0,
  4603  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4604  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4605  		uint8(op))
  4606  }
  4607  
  4608  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4609  	*asm = append(*asm,
  4610  		uint8(op>>8),
  4611  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4612  		uint8(v3)<<4,
  4613  		uint8(m5)<<4,
  4614  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4615  		uint8(op))
  4616  }
  4617  
  4618  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4619  	*asm = append(*asm,
  4620  		uint8(op>>8),
  4621  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4622  		uint8(v3)<<4,
  4623  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4624  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4625  		uint8(op))
  4626  }
  4627  
  4628  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4629  	*asm = append(*asm,
  4630  		uint8(op>>8),
  4631  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4632  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4633  		uint8(m6)<<4,
  4634  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4635  		uint8(op))
  4636  }
  4637  
  4638  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4639  	*asm = append(*asm,
  4640  		uint8(op>>8),
  4641  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4642  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4643  		uint8(m5),
  4644  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4645  		uint8(op))
  4646  }
  4647  
  4648  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4649  	*asm = append(*asm,
  4650  		uint8(op>>8),
  4651  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4652  		uint8(r3)<<4,
  4653  		0,
  4654  		rxb(v1, 0, 0, 0),
  4655  		uint8(op))
  4656  }
  4657  
  4658  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4659  	*asm = append(*asm,
  4660  		uint8(op>>8),
  4661  		uint8(v1)<<4,
  4662  		uint8(i2>>8),
  4663  		uint8(i2),
  4664  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4665  		uint8(op))
  4666  }
  4667  
  4668  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4669  	*asm = append(*asm,
  4670  		uint8(op>>8),
  4671  		uint8(v1)<<4,
  4672  		uint8(i2),
  4673  		uint8(i3),
  4674  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4675  		uint8(op))
  4676  }
  4677  
  4678  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4679  	*asm = append(*asm,
  4680  		uint8(op>>8),
  4681  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4682  		uint8(i2>>8),
  4683  		uint8(i2),
  4684  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4685  		uint8(op))
  4686  }
  4687  
  4688  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4689  	*asm = append(*asm,
  4690  		uint8(op>>8),
  4691  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4692  		uint8(v3)<<4,
  4693  		uint8(i4),
  4694  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4695  		uint8(op))
  4696  }
  4697  
  4698  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4699  	*asm = append(*asm,
  4700  		uint8(op>>8),
  4701  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4702  		uint8(i3>>4),
  4703  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4704  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4705  		uint8(op))
  4706  }