github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/src/go/constant/value.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package constant implements Values representing untyped
     6  // Go constants and their corresponding operations.
     7  //
     8  // A special Unknown value may be used when a value
     9  // is unknown due to an error. Operations on unknown
    10  // values produce unknown values unless specified
    11  // otherwise.
    12  //
    13  package constant // import "go/constant"
    14  
    15  import (
    16  	"fmt"
    17  	"go/token"
    18  	"math"
    19  	"math/big"
    20  	"strconv"
    21  	"unicode/utf8"
    22  )
    23  
    24  // Kind specifies the kind of value represented by a Value.
    25  type Kind int
    26  
    27  const (
    28  	// unknown values
    29  	Unknown Kind = iota
    30  
    31  	// non-numeric values
    32  	Bool
    33  	String
    34  
    35  	// numeric values
    36  	Int
    37  	Float
    38  	Complex
    39  )
    40  
    41  // A Value represents the value of a Go constant.
    42  type Value interface {
    43  	// Kind returns the value kind.
    44  	Kind() Kind
    45  
    46  	// String returns a short, quoted (human-readable) form of the value.
    47  	// For numeric values, the result may be an approximation;
    48  	// for String values the result may be a shortened string.
    49  	// Use ExactString for a string representing a value exactly.
    50  	String() string
    51  
    52  	// ExactString returns an exact, quoted (human-readable) form of the value.
    53  	// If the Value is of Kind String, use StringVal to obtain the unquoted string.
    54  	ExactString() string
    55  
    56  	// Prevent external implementations.
    57  	implementsValue()
    58  }
    59  
    60  // ----------------------------------------------------------------------------
    61  // Implementations
    62  
    63  // Maximum supported mantissa precision.
    64  // The spec requires at least 256 bits; typical implementations use 512 bits.
    65  const prec = 512
    66  
    67  type (
    68  	unknownVal struct{}
    69  	boolVal    bool
    70  	stringVal  string
    71  	int64Val   int64                    // Int values representable as an int64
    72  	intVal     struct{ val *big.Int }   // Int values not representable as an int64
    73  	ratVal     struct{ val *big.Rat }   // Float values representable as a fraction
    74  	floatVal   struct{ val *big.Float } // Float values not representable as a fraction
    75  	complexVal struct{ re, im Value }
    76  )
    77  
    78  func (unknownVal) Kind() Kind { return Unknown }
    79  func (boolVal) Kind() Kind    { return Bool }
    80  func (stringVal) Kind() Kind  { return String }
    81  func (int64Val) Kind() Kind   { return Int }
    82  func (intVal) Kind() Kind     { return Int }
    83  func (ratVal) Kind() Kind     { return Float }
    84  func (floatVal) Kind() Kind   { return Float }
    85  func (complexVal) Kind() Kind { return Complex }
    86  
    87  func (unknownVal) String() string { return "unknown" }
    88  func (x boolVal) String() string  { return strconv.FormatBool(bool(x)) }
    89  
    90  // String returns a possibly shortened quoted form of the String value.
    91  func (x stringVal) String() string {
    92  	const maxLen = 72 // a reasonable length
    93  	s := strconv.Quote(string(x))
    94  	if utf8.RuneCountInString(s) > maxLen {
    95  		// The string without the enclosing quotes is greater than maxLen-2 runes
    96  		// long. Remove the last 3 runes (including the closing '"') by keeping
    97  		// only the first maxLen-3 runes; then add "...".
    98  		i := 0
    99  		for n := 0; n < maxLen-3; n++ {
   100  			_, size := utf8.DecodeRuneInString(s[i:])
   101  			i += size
   102  		}
   103  		s = s[:i] + "..."
   104  	}
   105  	return s
   106  }
   107  
   108  func (x int64Val) String() string { return strconv.FormatInt(int64(x), 10) }
   109  func (x intVal) String() string   { return x.val.String() }
   110  func (x ratVal) String() string   { return rtof(x).String() }
   111  
   112  // String returns returns a decimal approximation of the Float value.
   113  func (x floatVal) String() string {
   114  	f := x.val
   115  
   116  	// Don't try to convert infinities (will not terminate).
   117  	if f.IsInf() {
   118  		return f.String()
   119  	}
   120  
   121  	// Use exact fmt formatting if in float64 range (common case):
   122  	// proceed if f doesn't underflow to 0 or overflow to inf.
   123  	if x, _ := f.Float64(); f.Sign() == 0 == (x == 0) && !math.IsInf(x, 0) {
   124  		return fmt.Sprintf("%.6g", x)
   125  	}
   126  
   127  	// Out of float64 range. Do approximate manual to decimal
   128  	// conversion to avoid precise but possibly slow Float
   129  	// formatting.
   130  	// f = mant * 2**exp
   131  	var mant big.Float
   132  	exp := f.MantExp(&mant) // 0.5 <= |mant| < 1.0
   133  
   134  	// approximate float64 mantissa m and decimal exponent d
   135  	// f ~ m * 10**d
   136  	m, _ := mant.Float64()                     // 0.5 <= |m| < 1.0
   137  	d := float64(exp) * (math.Ln2 / math.Ln10) // log_10(2)
   138  
   139  	// adjust m for truncated (integer) decimal exponent e
   140  	e := int64(d)
   141  	m *= math.Pow(10, d-float64(e))
   142  
   143  	// ensure 1 <= |m| < 10
   144  	switch am := math.Abs(m); {
   145  	case am < 1-0.5e-6:
   146  		// The %.6g format below rounds m to 5 digits after the
   147  		// decimal point. Make sure that m*10 < 10 even after
   148  		// rounding up: m*10 + 0.5e-5 < 10 => m < 1 - 0.5e6.
   149  		m *= 10
   150  		e--
   151  	case am >= 10:
   152  		m /= 10
   153  		e++
   154  	}
   155  
   156  	return fmt.Sprintf("%.6ge%+d", m, e)
   157  }
   158  
   159  func (x complexVal) String() string { return fmt.Sprintf("(%s + %si)", x.re, x.im) }
   160  
   161  func (x unknownVal) ExactString() string { return x.String() }
   162  func (x boolVal) ExactString() string    { return x.String() }
   163  func (x stringVal) ExactString() string  { return strconv.Quote(string(x)) }
   164  func (x int64Val) ExactString() string   { return x.String() }
   165  func (x intVal) ExactString() string     { return x.String() }
   166  
   167  func (x ratVal) ExactString() string {
   168  	r := x.val
   169  	if r.IsInt() {
   170  		return r.Num().String()
   171  	}
   172  	return r.String()
   173  }
   174  
   175  func (x floatVal) ExactString() string { return x.val.Text('p', 0) }
   176  
   177  func (x complexVal) ExactString() string {
   178  	return fmt.Sprintf("(%s + %si)", x.re.ExactString(), x.im.ExactString())
   179  }
   180  
   181  func (unknownVal) implementsValue() {}
   182  func (boolVal) implementsValue()    {}
   183  func (stringVal) implementsValue()  {}
   184  func (int64Val) implementsValue()   {}
   185  func (ratVal) implementsValue()     {}
   186  func (intVal) implementsValue()     {}
   187  func (floatVal) implementsValue()   {}
   188  func (complexVal) implementsValue() {}
   189  
   190  func newInt() *big.Int     { return new(big.Int) }
   191  func newRat() *big.Rat     { return new(big.Rat) }
   192  func newFloat() *big.Float { return new(big.Float).SetPrec(prec) }
   193  
   194  func i64toi(x int64Val) intVal   { return intVal{newInt().SetInt64(int64(x))} }
   195  func i64tor(x int64Val) ratVal   { return ratVal{newRat().SetInt64(int64(x))} }
   196  func i64tof(x int64Val) floatVal { return floatVal{newFloat().SetInt64(int64(x))} }
   197  func itor(x intVal) ratVal       { return ratVal{newRat().SetInt(x.val)} }
   198  func itof(x intVal) floatVal     { return floatVal{newFloat().SetInt(x.val)} }
   199  
   200  func rtof(x ratVal) floatVal {
   201  	a := newFloat().SetInt(x.val.Num())
   202  	b := newFloat().SetInt(x.val.Denom())
   203  	return floatVal{a.Quo(a, b)}
   204  }
   205  
   206  func vtoc(x Value) complexVal { return complexVal{x, int64Val(0)} }
   207  
   208  func makeInt(x *big.Int) Value {
   209  	if x.IsInt64() {
   210  		return int64Val(x.Int64())
   211  	}
   212  	return intVal{x}
   213  }
   214  
   215  // Permit fractions with component sizes up to maxExp
   216  // before switching to using floating-point numbers.
   217  const maxExp = 4 << 10
   218  
   219  func makeRat(x *big.Rat) Value {
   220  	a := x.Num()
   221  	b := x.Denom()
   222  	if a.BitLen() < maxExp && b.BitLen() < maxExp {
   223  		// ok to remain fraction
   224  		return ratVal{x}
   225  	}
   226  	// components too large => switch to float
   227  	fa := newFloat().SetInt(a)
   228  	fb := newFloat().SetInt(b)
   229  	return floatVal{fa.Quo(fa, fb)}
   230  }
   231  
   232  var floatVal0 = floatVal{newFloat()}
   233  
   234  func makeFloat(x *big.Float) Value {
   235  	// convert -0
   236  	if x.Sign() == 0 {
   237  		return floatVal0
   238  	}
   239  	return floatVal{x}
   240  }
   241  
   242  func makeComplex(re, im Value) Value {
   243  	return complexVal{re, im}
   244  }
   245  
   246  func makeFloatFromLiteral(lit string) Value {
   247  	if f, ok := newFloat().SetString(lit); ok {
   248  		if smallRat(f) {
   249  			// ok to use rationals
   250  			r, _ := newRat().SetString(lit)
   251  			return ratVal{r}
   252  		}
   253  		// otherwise use floats
   254  		return makeFloat(f)
   255  	}
   256  	return nil
   257  }
   258  
   259  // smallRat reports whether x would lead to "reasonably"-sized fraction
   260  // if converted to a *big.Rat.
   261  func smallRat(x *big.Float) bool {
   262  	if !x.IsInf() {
   263  		e := x.MantExp(nil)
   264  		return -maxExp < e && e < maxExp
   265  	}
   266  	return false
   267  }
   268  
   269  // ----------------------------------------------------------------------------
   270  // Factories
   271  
   272  // MakeUnknown returns the Unknown value.
   273  func MakeUnknown() Value { return unknownVal{} }
   274  
   275  // MakeBool returns the Bool value for b.
   276  func MakeBool(b bool) Value { return boolVal(b) }
   277  
   278  // MakeString returns the String value for s.
   279  func MakeString(s string) Value { return stringVal(s) }
   280  
   281  // MakeInt64 returns the Int value for x.
   282  func MakeInt64(x int64) Value { return int64Val(x) }
   283  
   284  // MakeUint64 returns the Int value for x.
   285  func MakeUint64(x uint64) Value {
   286  	if x < 1<<63 {
   287  		return int64Val(int64(x))
   288  	}
   289  	return intVal{newInt().SetUint64(x)}
   290  }
   291  
   292  // MakeFloat64 returns the Float value for x.
   293  // If x is not finite, the result is an Unknown.
   294  func MakeFloat64(x float64) Value {
   295  	if math.IsInf(x, 0) || math.IsNaN(x) {
   296  		return unknownVal{}
   297  	}
   298  	// convert -0 to 0
   299  	if x == 0 {
   300  		return int64Val(0)
   301  	}
   302  	return ratVal{newRat().SetFloat64(x)}
   303  }
   304  
   305  // MakeFromLiteral returns the corresponding integer, floating-point,
   306  // imaginary, character, or string value for a Go literal string. The
   307  // tok value must be one of token.INT, token.FLOAT, token.IMAG,
   308  // token.CHAR, or token.STRING. The final argument must be zero.
   309  // If the literal string syntax is invalid, the result is an Unknown.
   310  func MakeFromLiteral(lit string, tok token.Token, zero uint) Value {
   311  	if zero != 0 {
   312  		panic("MakeFromLiteral called with non-zero last argument")
   313  	}
   314  
   315  	switch tok {
   316  	case token.INT:
   317  		if x, err := strconv.ParseInt(lit, 0, 64); err == nil {
   318  			return int64Val(x)
   319  		}
   320  		if x, ok := newInt().SetString(lit, 0); ok {
   321  			return intVal{x}
   322  		}
   323  
   324  	case token.FLOAT:
   325  		if x := makeFloatFromLiteral(lit); x != nil {
   326  			return x
   327  		}
   328  
   329  	case token.IMAG:
   330  		if n := len(lit); n > 0 && lit[n-1] == 'i' {
   331  			if im := makeFloatFromLiteral(lit[:n-1]); im != nil {
   332  				return makeComplex(int64Val(0), im)
   333  			}
   334  		}
   335  
   336  	case token.CHAR:
   337  		if n := len(lit); n >= 2 {
   338  			if code, _, _, err := strconv.UnquoteChar(lit[1:n-1], '\''); err == nil {
   339  				return MakeInt64(int64(code))
   340  			}
   341  		}
   342  
   343  	case token.STRING:
   344  		if s, err := strconv.Unquote(lit); err == nil {
   345  			return MakeString(s)
   346  		}
   347  
   348  	default:
   349  		panic(fmt.Sprintf("%v is not a valid token", tok))
   350  	}
   351  
   352  	return unknownVal{}
   353  }
   354  
   355  // ----------------------------------------------------------------------------
   356  // Accessors
   357  //
   358  // For unknown arguments the result is the zero value for the respective
   359  // accessor type, except for Sign, where the result is 1.
   360  
   361  // BoolVal returns the Go boolean value of x, which must be a Bool or an Unknown.
   362  // If x is Unknown, the result is false.
   363  func BoolVal(x Value) bool {
   364  	switch x := x.(type) {
   365  	case boolVal:
   366  		return bool(x)
   367  	case unknownVal:
   368  		return false
   369  	default:
   370  		panic(fmt.Sprintf("%v not a Bool", x))
   371  	}
   372  }
   373  
   374  // StringVal returns the Go string value of x, which must be a String or an Unknown.
   375  // If x is Unknown, the result is "".
   376  func StringVal(x Value) string {
   377  	switch x := x.(type) {
   378  	case stringVal:
   379  		return string(x)
   380  	case unknownVal:
   381  		return ""
   382  	default:
   383  		panic(fmt.Sprintf("%v not a String", x))
   384  	}
   385  }
   386  
   387  // Int64Val returns the Go int64 value of x and whether the result is exact;
   388  // x must be an Int or an Unknown. If the result is not exact, its value is undefined.
   389  // If x is Unknown, the result is (0, false).
   390  func Int64Val(x Value) (int64, bool) {
   391  	switch x := x.(type) {
   392  	case int64Val:
   393  		return int64(x), true
   394  	case intVal:
   395  		return x.val.Int64(), false // not an int64Val and thus not exact
   396  	case unknownVal:
   397  		return 0, false
   398  	default:
   399  		panic(fmt.Sprintf("%v not an Int", x))
   400  	}
   401  }
   402  
   403  // Uint64Val returns the Go uint64 value of x and whether the result is exact;
   404  // x must be an Int or an Unknown. If the result is not exact, its value is undefined.
   405  // If x is Unknown, the result is (0, false).
   406  func Uint64Val(x Value) (uint64, bool) {
   407  	switch x := x.(type) {
   408  	case int64Val:
   409  		return uint64(x), x >= 0
   410  	case intVal:
   411  		return x.val.Uint64(), x.val.IsUint64()
   412  	case unknownVal:
   413  		return 0, false
   414  	default:
   415  		panic(fmt.Sprintf("%v not an Int", x))
   416  	}
   417  }
   418  
   419  // Float32Val is like Float64Val but for float32 instead of float64.
   420  func Float32Val(x Value) (float32, bool) {
   421  	switch x := x.(type) {
   422  	case int64Val:
   423  		f := float32(x)
   424  		return f, int64Val(f) == x
   425  	case intVal:
   426  		f, acc := newFloat().SetInt(x.val).Float32()
   427  		return f, acc == big.Exact
   428  	case ratVal:
   429  		return x.val.Float32()
   430  	case floatVal:
   431  		f, acc := x.val.Float32()
   432  		return f, acc == big.Exact
   433  	case unknownVal:
   434  		return 0, false
   435  	default:
   436  		panic(fmt.Sprintf("%v not a Float", x))
   437  	}
   438  }
   439  
   440  // Float64Val returns the nearest Go float64 value of x and whether the result is exact;
   441  // x must be numeric or an Unknown, but not Complex. For values too small (too close to 0)
   442  // to represent as float64, Float64Val silently underflows to 0. The result sign always
   443  // matches the sign of x, even for 0.
   444  // If x is Unknown, the result is (0, false).
   445  func Float64Val(x Value) (float64, bool) {
   446  	switch x := x.(type) {
   447  	case int64Val:
   448  		f := float64(int64(x))
   449  		return f, int64Val(f) == x
   450  	case intVal:
   451  		f, acc := newFloat().SetInt(x.val).Float64()
   452  		return f, acc == big.Exact
   453  	case ratVal:
   454  		return x.val.Float64()
   455  	case floatVal:
   456  		f, acc := x.val.Float64()
   457  		return f, acc == big.Exact
   458  	case unknownVal:
   459  		return 0, false
   460  	default:
   461  		panic(fmt.Sprintf("%v not a Float", x))
   462  	}
   463  }
   464  
   465  // BitLen returns the number of bits required to represent
   466  // the absolute value x in binary representation; x must be an Int or an Unknown.
   467  // If x is Unknown, the result is 0.
   468  func BitLen(x Value) int {
   469  	switch x := x.(type) {
   470  	case int64Val:
   471  		return i64toi(x).val.BitLen()
   472  	case intVal:
   473  		return x.val.BitLen()
   474  	case unknownVal:
   475  		return 0
   476  	default:
   477  		panic(fmt.Sprintf("%v not an Int", x))
   478  	}
   479  }
   480  
   481  // Sign returns -1, 0, or 1 depending on whether x < 0, x == 0, or x > 0;
   482  // x must be numeric or Unknown. For complex values x, the sign is 0 if x == 0,
   483  // otherwise it is != 0. If x is Unknown, the result is 1.
   484  func Sign(x Value) int {
   485  	switch x := x.(type) {
   486  	case int64Val:
   487  		switch {
   488  		case x < 0:
   489  			return -1
   490  		case x > 0:
   491  			return 1
   492  		}
   493  		return 0
   494  	case intVal:
   495  		return x.val.Sign()
   496  	case ratVal:
   497  		return x.val.Sign()
   498  	case floatVal:
   499  		return x.val.Sign()
   500  	case complexVal:
   501  		return Sign(x.re) | Sign(x.im)
   502  	case unknownVal:
   503  		return 1 // avoid spurious division by zero errors
   504  	default:
   505  		panic(fmt.Sprintf("%v not numeric", x))
   506  	}
   507  }
   508  
   509  // ----------------------------------------------------------------------------
   510  // Support for assembling/disassembling numeric values
   511  
   512  const (
   513  	// Compute the size of a Word in bytes.
   514  	_m       = ^big.Word(0)
   515  	_log     = _m>>8&1 + _m>>16&1 + _m>>32&1
   516  	wordSize = 1 << _log
   517  )
   518  
   519  // Bytes returns the bytes for the absolute value of x in little-
   520  // endian binary representation; x must be an Int.
   521  func Bytes(x Value) []byte {
   522  	var t intVal
   523  	switch x := x.(type) {
   524  	case int64Val:
   525  		t = i64toi(x)
   526  	case intVal:
   527  		t = x
   528  	default:
   529  		panic(fmt.Sprintf("%v not an Int", x))
   530  	}
   531  
   532  	words := t.val.Bits()
   533  	bytes := make([]byte, len(words)*wordSize)
   534  
   535  	i := 0
   536  	for _, w := range words {
   537  		for j := 0; j < wordSize; j++ {
   538  			bytes[i] = byte(w)
   539  			w >>= 8
   540  			i++
   541  		}
   542  	}
   543  	// remove leading 0's
   544  	for i > 0 && bytes[i-1] == 0 {
   545  		i--
   546  	}
   547  
   548  	return bytes[:i]
   549  }
   550  
   551  // MakeFromBytes returns the Int value given the bytes of its little-endian
   552  // binary representation. An empty byte slice argument represents 0.
   553  func MakeFromBytes(bytes []byte) Value {
   554  	words := make([]big.Word, (len(bytes)+(wordSize-1))/wordSize)
   555  
   556  	i := 0
   557  	var w big.Word
   558  	var s uint
   559  	for _, b := range bytes {
   560  		w |= big.Word(b) << s
   561  		if s += 8; s == wordSize*8 {
   562  			words[i] = w
   563  			i++
   564  			w = 0
   565  			s = 0
   566  		}
   567  	}
   568  	// store last word
   569  	if i < len(words) {
   570  		words[i] = w
   571  		i++
   572  	}
   573  	// remove leading 0's
   574  	for i > 0 && words[i-1] == 0 {
   575  		i--
   576  	}
   577  
   578  	return makeInt(newInt().SetBits(words[:i]))
   579  }
   580  
   581  // Num returns the numerator of x; x must be Int, Float, or Unknown.
   582  // If x is Unknown, or if it is too large or small to represent as a
   583  // fraction, the result is Unknown. Otherwise the result is an Int
   584  // with the same sign as x.
   585  func Num(x Value) Value {
   586  	switch x := x.(type) {
   587  	case int64Val, intVal:
   588  		return x
   589  	case ratVal:
   590  		return makeInt(x.val.Num())
   591  	case floatVal:
   592  		if smallRat(x.val) {
   593  			r, _ := x.val.Rat(nil)
   594  			return makeInt(r.Num())
   595  		}
   596  	case unknownVal:
   597  		break
   598  	default:
   599  		panic(fmt.Sprintf("%v not Int or Float", x))
   600  	}
   601  	return unknownVal{}
   602  }
   603  
   604  // Denom returns the denominator of x; x must be Int, Float, or Unknown.
   605  // If x is Unknown, or if it is too large or small to represent as a
   606  // fraction, the result is Unknown. Otherwise the result is an Int >= 1.
   607  func Denom(x Value) Value {
   608  	switch x := x.(type) {
   609  	case int64Val, intVal:
   610  		return int64Val(1)
   611  	case ratVal:
   612  		return makeInt(x.val.Denom())
   613  	case floatVal:
   614  		if smallRat(x.val) {
   615  			r, _ := x.val.Rat(nil)
   616  			return makeInt(r.Denom())
   617  		}
   618  	case unknownVal:
   619  		break
   620  	default:
   621  		panic(fmt.Sprintf("%v not Int or Float", x))
   622  	}
   623  	return unknownVal{}
   624  }
   625  
   626  // MakeImag returns the Complex value x*i;
   627  // x must be Int, Float, or Unknown.
   628  // If x is Unknown, the result is Unknown.
   629  func MakeImag(x Value) Value {
   630  	switch x.(type) {
   631  	case unknownVal:
   632  		return x
   633  	case int64Val, intVal, ratVal, floatVal:
   634  		return makeComplex(int64Val(0), x)
   635  	default:
   636  		panic(fmt.Sprintf("%v not Int or Float", x))
   637  	}
   638  }
   639  
   640  // Real returns the real part of x, which must be a numeric or unknown value.
   641  // If x is Unknown, the result is Unknown.
   642  func Real(x Value) Value {
   643  	switch x := x.(type) {
   644  	case unknownVal, int64Val, intVal, ratVal, floatVal:
   645  		return x
   646  	case complexVal:
   647  		return x.re
   648  	default:
   649  		panic(fmt.Sprintf("%v not numeric", x))
   650  	}
   651  }
   652  
   653  // Imag returns the imaginary part of x, which must be a numeric or unknown value.
   654  // If x is Unknown, the result is Unknown.
   655  func Imag(x Value) Value {
   656  	switch x := x.(type) {
   657  	case unknownVal:
   658  		return x
   659  	case int64Val, intVal, ratVal, floatVal:
   660  		return int64Val(0)
   661  	case complexVal:
   662  		return x.im
   663  	default:
   664  		panic(fmt.Sprintf("%v not numeric", x))
   665  	}
   666  }
   667  
   668  // ----------------------------------------------------------------------------
   669  // Numeric conversions
   670  
   671  // ToInt converts x to an Int value if x is representable as an Int.
   672  // Otherwise it returns an Unknown.
   673  func ToInt(x Value) Value {
   674  	switch x := x.(type) {
   675  	case int64Val, intVal:
   676  		return x
   677  
   678  	case ratVal:
   679  		if x.val.IsInt() {
   680  			return makeInt(x.val.Num())
   681  		}
   682  
   683  	case floatVal:
   684  		// avoid creation of huge integers
   685  		// (Existing tests require permitting exponents of at least 1024;
   686  		// allow any value that would also be permissible as a fraction.)
   687  		if smallRat(x.val) {
   688  			i := newInt()
   689  			if _, acc := x.val.Int(i); acc == big.Exact {
   690  				return makeInt(i)
   691  			}
   692  
   693  			// If we can get an integer by rounding up or down,
   694  			// assume x is not an integer because of rounding
   695  			// errors in prior computations.
   696  
   697  			const delta = 4 // a small number of bits > 0
   698  			var t big.Float
   699  			t.SetPrec(prec - delta)
   700  
   701  			// try rounding down a little
   702  			t.SetMode(big.ToZero)
   703  			t.Set(x.val)
   704  			if _, acc := t.Int(i); acc == big.Exact {
   705  				return makeInt(i)
   706  			}
   707  
   708  			// try rounding up a little
   709  			t.SetMode(big.AwayFromZero)
   710  			t.Set(x.val)
   711  			if _, acc := t.Int(i); acc == big.Exact {
   712  				return makeInt(i)
   713  			}
   714  		}
   715  
   716  	case complexVal:
   717  		if re := ToFloat(x); re.Kind() == Float {
   718  			return ToInt(re)
   719  		}
   720  	}
   721  
   722  	return unknownVal{}
   723  }
   724  
   725  // ToFloat converts x to a Float value if x is representable as a Float.
   726  // Otherwise it returns an Unknown.
   727  func ToFloat(x Value) Value {
   728  	switch x := x.(type) {
   729  	case int64Val:
   730  		return i64tof(x)
   731  	case intVal:
   732  		return itof(x)
   733  	case ratVal, floatVal:
   734  		return x
   735  	case complexVal:
   736  		if im := ToInt(x.im); im.Kind() == Int && Sign(im) == 0 {
   737  			// imaginary component is 0
   738  			return ToFloat(x.re)
   739  		}
   740  	}
   741  	return unknownVal{}
   742  }
   743  
   744  // ToComplex converts x to a Complex value if x is representable as a Complex.
   745  // Otherwise it returns an Unknown.
   746  func ToComplex(x Value) Value {
   747  	switch x := x.(type) {
   748  	case int64Val:
   749  		return vtoc(i64tof(x))
   750  	case intVal:
   751  		return vtoc(itof(x))
   752  	case ratVal:
   753  		return vtoc(x)
   754  	case floatVal:
   755  		return vtoc(x)
   756  	case complexVal:
   757  		return x
   758  	}
   759  	return unknownVal{}
   760  }
   761  
   762  // ----------------------------------------------------------------------------
   763  // Operations
   764  
   765  // is32bit reports whether x can be represented using 32 bits.
   766  func is32bit(x int64) bool {
   767  	const s = 32
   768  	return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   769  }
   770  
   771  // is63bit reports whether x can be represented using 63 bits.
   772  func is63bit(x int64) bool {
   773  	const s = 63
   774  	return -1<<(s-1) <= x && x <= 1<<(s-1)-1
   775  }
   776  
   777  // UnaryOp returns the result of the unary expression op y.
   778  // The operation must be defined for the operand.
   779  // If prec > 0 it specifies the ^ (xor) result size in bits.
   780  // If y is Unknown, the result is Unknown.
   781  //
   782  func UnaryOp(op token.Token, y Value, prec uint) Value {
   783  	switch op {
   784  	case token.ADD:
   785  		switch y.(type) {
   786  		case unknownVal, int64Val, intVal, ratVal, floatVal, complexVal:
   787  			return y
   788  		}
   789  
   790  	case token.SUB:
   791  		switch y := y.(type) {
   792  		case unknownVal:
   793  			return y
   794  		case int64Val:
   795  			if z := -y; z != y {
   796  				return z // no overflow
   797  			}
   798  			return makeInt(newInt().Neg(big.NewInt(int64(y))))
   799  		case intVal:
   800  			return makeInt(newInt().Neg(y.val))
   801  		case ratVal:
   802  			return makeRat(newRat().Neg(y.val))
   803  		case floatVal:
   804  			return makeFloat(newFloat().Neg(y.val))
   805  		case complexVal:
   806  			re := UnaryOp(token.SUB, y.re, 0)
   807  			im := UnaryOp(token.SUB, y.im, 0)
   808  			return makeComplex(re, im)
   809  		}
   810  
   811  	case token.XOR:
   812  		z := newInt()
   813  		switch y := y.(type) {
   814  		case unknownVal:
   815  			return y
   816  		case int64Val:
   817  			z.Not(big.NewInt(int64(y)))
   818  		case intVal:
   819  			z.Not(y.val)
   820  		default:
   821  			goto Error
   822  		}
   823  		// For unsigned types, the result will be negative and
   824  		// thus "too large": We must limit the result precision
   825  		// to the type's precision.
   826  		if prec > 0 {
   827  			z.AndNot(z, newInt().Lsh(big.NewInt(-1), prec)) // z &^= (-1)<<prec
   828  		}
   829  		return makeInt(z)
   830  
   831  	case token.NOT:
   832  		switch y := y.(type) {
   833  		case unknownVal:
   834  			return y
   835  		case boolVal:
   836  			return !y
   837  		}
   838  	}
   839  
   840  Error:
   841  	panic(fmt.Sprintf("invalid unary operation %s%v", op, y))
   842  }
   843  
   844  func ord(x Value) int {
   845  	switch x.(type) {
   846  	default:
   847  		// force invalid value into "x position" in match
   848  		// (don't panic here so that callers can provide a better error message)
   849  		return -1
   850  	case unknownVal:
   851  		return 0
   852  	case boolVal, stringVal:
   853  		return 1
   854  	case int64Val:
   855  		return 2
   856  	case intVal:
   857  		return 3
   858  	case ratVal:
   859  		return 4
   860  	case floatVal:
   861  		return 5
   862  	case complexVal:
   863  		return 6
   864  	}
   865  }
   866  
   867  // match returns the matching representation (same type) with the
   868  // smallest complexity for two values x and y. If one of them is
   869  // numeric, both of them must be numeric. If one of them is Unknown
   870  // or invalid (say, nil) both results are that value.
   871  //
   872  func match(x, y Value) (_, _ Value) {
   873  	if ord(x) > ord(y) {
   874  		y, x = match(y, x)
   875  		return x, y
   876  	}
   877  	// ord(x) <= ord(y)
   878  
   879  	switch x := x.(type) {
   880  	case boolVal, stringVal, complexVal:
   881  		return x, y
   882  
   883  	case int64Val:
   884  		switch y := y.(type) {
   885  		case int64Val:
   886  			return x, y
   887  		case intVal:
   888  			return i64toi(x), y
   889  		case ratVal:
   890  			return i64tor(x), y
   891  		case floatVal:
   892  			return i64tof(x), y
   893  		case complexVal:
   894  			return vtoc(x), y
   895  		}
   896  
   897  	case intVal:
   898  		switch y := y.(type) {
   899  		case intVal:
   900  			return x, y
   901  		case ratVal:
   902  			return itor(x), y
   903  		case floatVal:
   904  			return itof(x), y
   905  		case complexVal:
   906  			return vtoc(x), y
   907  		}
   908  
   909  	case ratVal:
   910  		switch y := y.(type) {
   911  		case ratVal:
   912  			return x, y
   913  		case floatVal:
   914  			return rtof(x), y
   915  		case complexVal:
   916  			return vtoc(x), y
   917  		}
   918  
   919  	case floatVal:
   920  		switch y := y.(type) {
   921  		case floatVal:
   922  			return x, y
   923  		case complexVal:
   924  			return vtoc(x), y
   925  		}
   926  	}
   927  
   928  	// force unknown and invalid values into "x position" in callers of match
   929  	// (don't panic here so that callers can provide a better error message)
   930  	return x, x
   931  }
   932  
   933  // BinaryOp returns the result of the binary expression x op y.
   934  // The operation must be defined for the operands. If one of the
   935  // operands is Unknown, the result is Unknown.
   936  // BinaryOp doesn't handle comparisons or shifts; use Compare
   937  // or Shift instead.
   938  //
   939  // To force integer division of Int operands, use op == token.QUO_ASSIGN
   940  // instead of token.QUO; the result is guaranteed to be Int in this case.
   941  // Division by zero leads to a run-time panic.
   942  //
   943  func BinaryOp(x_ Value, op token.Token, y_ Value) Value {
   944  	x, y := match(x_, y_)
   945  
   946  	switch x := x.(type) {
   947  	case unknownVal:
   948  		return x
   949  
   950  	case boolVal:
   951  		y := y.(boolVal)
   952  		switch op {
   953  		case token.LAND:
   954  			return x && y
   955  		case token.LOR:
   956  			return x || y
   957  		}
   958  
   959  	case int64Val:
   960  		a := int64(x)
   961  		b := int64(y.(int64Val))
   962  		var c int64
   963  		switch op {
   964  		case token.ADD:
   965  			if !is63bit(a) || !is63bit(b) {
   966  				return makeInt(newInt().Add(big.NewInt(a), big.NewInt(b)))
   967  			}
   968  			c = a + b
   969  		case token.SUB:
   970  			if !is63bit(a) || !is63bit(b) {
   971  				return makeInt(newInt().Sub(big.NewInt(a), big.NewInt(b)))
   972  			}
   973  			c = a - b
   974  		case token.MUL:
   975  			if !is32bit(a) || !is32bit(b) {
   976  				return makeInt(newInt().Mul(big.NewInt(a), big.NewInt(b)))
   977  			}
   978  			c = a * b
   979  		case token.QUO:
   980  			return makeRat(big.NewRat(a, b))
   981  		case token.QUO_ASSIGN: // force integer division
   982  			c = a / b
   983  		case token.REM:
   984  			c = a % b
   985  		case token.AND:
   986  			c = a & b
   987  		case token.OR:
   988  			c = a | b
   989  		case token.XOR:
   990  			c = a ^ b
   991  		case token.AND_NOT:
   992  			c = a &^ b
   993  		default:
   994  			goto Error
   995  		}
   996  		return int64Val(c)
   997  
   998  	case intVal:
   999  		a := x.val
  1000  		b := y.(intVal).val
  1001  		c := newInt()
  1002  		switch op {
  1003  		case token.ADD:
  1004  			c.Add(a, b)
  1005  		case token.SUB:
  1006  			c.Sub(a, b)
  1007  		case token.MUL:
  1008  			c.Mul(a, b)
  1009  		case token.QUO:
  1010  			return makeRat(newRat().SetFrac(a, b))
  1011  		case token.QUO_ASSIGN: // force integer division
  1012  			c.Quo(a, b)
  1013  		case token.REM:
  1014  			c.Rem(a, b)
  1015  		case token.AND:
  1016  			c.And(a, b)
  1017  		case token.OR:
  1018  			c.Or(a, b)
  1019  		case token.XOR:
  1020  			c.Xor(a, b)
  1021  		case token.AND_NOT:
  1022  			c.AndNot(a, b)
  1023  		default:
  1024  			goto Error
  1025  		}
  1026  		return makeInt(c)
  1027  
  1028  	case ratVal:
  1029  		a := x.val
  1030  		b := y.(ratVal).val
  1031  		c := newRat()
  1032  		switch op {
  1033  		case token.ADD:
  1034  			c.Add(a, b)
  1035  		case token.SUB:
  1036  			c.Sub(a, b)
  1037  		case token.MUL:
  1038  			c.Mul(a, b)
  1039  		case token.QUO:
  1040  			c.Quo(a, b)
  1041  		default:
  1042  			goto Error
  1043  		}
  1044  		return makeRat(c)
  1045  
  1046  	case floatVal:
  1047  		a := x.val
  1048  		b := y.(floatVal).val
  1049  		c := newFloat()
  1050  		switch op {
  1051  		case token.ADD:
  1052  			c.Add(a, b)
  1053  		case token.SUB:
  1054  			c.Sub(a, b)
  1055  		case token.MUL:
  1056  			c.Mul(a, b)
  1057  		case token.QUO:
  1058  			c.Quo(a, b)
  1059  		default:
  1060  			goto Error
  1061  		}
  1062  		return makeFloat(c)
  1063  
  1064  	case complexVal:
  1065  		y := y.(complexVal)
  1066  		a, b := x.re, x.im
  1067  		c, d := y.re, y.im
  1068  		var re, im Value
  1069  		switch op {
  1070  		case token.ADD:
  1071  			// (a+c) + i(b+d)
  1072  			re = add(a, c)
  1073  			im = add(b, d)
  1074  		case token.SUB:
  1075  			// (a-c) + i(b-d)
  1076  			re = sub(a, c)
  1077  			im = sub(b, d)
  1078  		case token.MUL:
  1079  			// (ac-bd) + i(bc+ad)
  1080  			ac := mul(a, c)
  1081  			bd := mul(b, d)
  1082  			bc := mul(b, c)
  1083  			ad := mul(a, d)
  1084  			re = sub(ac, bd)
  1085  			im = add(bc, ad)
  1086  		case token.QUO:
  1087  			// (ac+bd)/s + i(bc-ad)/s, with s = cc + dd
  1088  			ac := mul(a, c)
  1089  			bd := mul(b, d)
  1090  			bc := mul(b, c)
  1091  			ad := mul(a, d)
  1092  			cc := mul(c, c)
  1093  			dd := mul(d, d)
  1094  			s := add(cc, dd)
  1095  			re = add(ac, bd)
  1096  			re = quo(re, s)
  1097  			im = sub(bc, ad)
  1098  			im = quo(im, s)
  1099  		default:
  1100  			goto Error
  1101  		}
  1102  		return makeComplex(re, im)
  1103  
  1104  	case stringVal:
  1105  		if op == token.ADD {
  1106  			return x + y.(stringVal)
  1107  		}
  1108  	}
  1109  
  1110  Error:
  1111  	panic(fmt.Sprintf("invalid binary operation %v %s %v", x_, op, y_))
  1112  }
  1113  
  1114  func add(x, y Value) Value { return BinaryOp(x, token.ADD, y) }
  1115  func sub(x, y Value) Value { return BinaryOp(x, token.SUB, y) }
  1116  func mul(x, y Value) Value { return BinaryOp(x, token.MUL, y) }
  1117  func quo(x, y Value) Value { return BinaryOp(x, token.QUO, y) }
  1118  
  1119  // Shift returns the result of the shift expression x op s
  1120  // with op == token.SHL or token.SHR (<< or >>). x must be
  1121  // an Int or an Unknown. If x is Unknown, the result is x.
  1122  //
  1123  func Shift(x Value, op token.Token, s uint) Value {
  1124  	switch x := x.(type) {
  1125  	case unknownVal:
  1126  		return x
  1127  
  1128  	case int64Val:
  1129  		if s == 0 {
  1130  			return x
  1131  		}
  1132  		switch op {
  1133  		case token.SHL:
  1134  			z := i64toi(x).val
  1135  			return makeInt(z.Lsh(z, s))
  1136  		case token.SHR:
  1137  			return x >> s
  1138  		}
  1139  
  1140  	case intVal:
  1141  		if s == 0 {
  1142  			return x
  1143  		}
  1144  		z := newInt()
  1145  		switch op {
  1146  		case token.SHL:
  1147  			return makeInt(z.Lsh(x.val, s))
  1148  		case token.SHR:
  1149  			return makeInt(z.Rsh(x.val, s))
  1150  		}
  1151  	}
  1152  
  1153  	panic(fmt.Sprintf("invalid shift %v %s %d", x, op, s))
  1154  }
  1155  
  1156  func cmpZero(x int, op token.Token) bool {
  1157  	switch op {
  1158  	case token.EQL:
  1159  		return x == 0
  1160  	case token.NEQ:
  1161  		return x != 0
  1162  	case token.LSS:
  1163  		return x < 0
  1164  	case token.LEQ:
  1165  		return x <= 0
  1166  	case token.GTR:
  1167  		return x > 0
  1168  	case token.GEQ:
  1169  		return x >= 0
  1170  	}
  1171  	panic(fmt.Sprintf("invalid comparison %v %s 0", x, op))
  1172  }
  1173  
  1174  // Compare returns the result of the comparison x op y.
  1175  // The comparison must be defined for the operands.
  1176  // If one of the operands is Unknown, the result is
  1177  // false.
  1178  //
  1179  func Compare(x_ Value, op token.Token, y_ Value) bool {
  1180  	x, y := match(x_, y_)
  1181  
  1182  	switch x := x.(type) {
  1183  	case unknownVal:
  1184  		return false
  1185  
  1186  	case boolVal:
  1187  		y := y.(boolVal)
  1188  		switch op {
  1189  		case token.EQL:
  1190  			return x == y
  1191  		case token.NEQ:
  1192  			return x != y
  1193  		}
  1194  
  1195  	case int64Val:
  1196  		y := y.(int64Val)
  1197  		switch op {
  1198  		case token.EQL:
  1199  			return x == y
  1200  		case token.NEQ:
  1201  			return x != y
  1202  		case token.LSS:
  1203  			return x < y
  1204  		case token.LEQ:
  1205  			return x <= y
  1206  		case token.GTR:
  1207  			return x > y
  1208  		case token.GEQ:
  1209  			return x >= y
  1210  		}
  1211  
  1212  	case intVal:
  1213  		return cmpZero(x.val.Cmp(y.(intVal).val), op)
  1214  
  1215  	case ratVal:
  1216  		return cmpZero(x.val.Cmp(y.(ratVal).val), op)
  1217  
  1218  	case floatVal:
  1219  		return cmpZero(x.val.Cmp(y.(floatVal).val), op)
  1220  
  1221  	case complexVal:
  1222  		y := y.(complexVal)
  1223  		re := Compare(x.re, token.EQL, y.re)
  1224  		im := Compare(x.im, token.EQL, y.im)
  1225  		switch op {
  1226  		case token.EQL:
  1227  			return re && im
  1228  		case token.NEQ:
  1229  			return !re || !im
  1230  		}
  1231  
  1232  	case stringVal:
  1233  		y := y.(stringVal)
  1234  		switch op {
  1235  		case token.EQL:
  1236  			return x == y
  1237  		case token.NEQ:
  1238  			return x != y
  1239  		case token.LSS:
  1240  			return x < y
  1241  		case token.LEQ:
  1242  			return x <= y
  1243  		case token.GTR:
  1244  			return x > y
  1245  		case token.GEQ:
  1246  			return x >= y
  1247  		}
  1248  	}
  1249  
  1250  	panic(fmt.Sprintf("invalid comparison %v %s %v", x_, op, y_))
  1251  }