github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/src/net/ip.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // IP address manipulations
     6  //
     7  // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes.
     8  // An IPv4 address can be converted to an IPv6 address by
     9  // adding a canonical prefix (10 zeros, 2 0xFFs).
    10  // This library accepts either size of byte slice but always
    11  // returns 16-byte addresses.
    12  
    13  package net
    14  
    15  import _ "unsafe" // for go:linkname
    16  
    17  // IP address lengths (bytes).
    18  const (
    19  	IPv4len = 4
    20  	IPv6len = 16
    21  )
    22  
    23  // An IP is a single IP address, a slice of bytes.
    24  // Functions in this package accept either 4-byte (IPv4)
    25  // or 16-byte (IPv6) slices as input.
    26  //
    27  // Note that in this documentation, referring to an
    28  // IP address as an IPv4 address or an IPv6 address
    29  // is a semantic property of the address, not just the
    30  // length of the byte slice: a 16-byte slice can still
    31  // be an IPv4 address.
    32  type IP []byte
    33  
    34  // An IP mask is an IP address.
    35  type IPMask []byte
    36  
    37  // An IPNet represents an IP network.
    38  type IPNet struct {
    39  	IP   IP     // network number
    40  	Mask IPMask // network mask
    41  }
    42  
    43  // IPv4 returns the IP address (in 16-byte form) of the
    44  // IPv4 address a.b.c.d.
    45  func IPv4(a, b, c, d byte) IP {
    46  	p := make(IP, IPv6len)
    47  	copy(p, v4InV6Prefix)
    48  	p[12] = a
    49  	p[13] = b
    50  	p[14] = c
    51  	p[15] = d
    52  	return p
    53  }
    54  
    55  var v4InV6Prefix = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}
    56  
    57  // IPv4Mask returns the IP mask (in 4-byte form) of the
    58  // IPv4 mask a.b.c.d.
    59  func IPv4Mask(a, b, c, d byte) IPMask {
    60  	p := make(IPMask, IPv4len)
    61  	p[0] = a
    62  	p[1] = b
    63  	p[2] = c
    64  	p[3] = d
    65  	return p
    66  }
    67  
    68  // CIDRMask returns an IPMask consisting of `ones' 1 bits
    69  // followed by 0s up to a total length of `bits' bits.
    70  // For a mask of this form, CIDRMask is the inverse of IPMask.Size.
    71  func CIDRMask(ones, bits int) IPMask {
    72  	if bits != 8*IPv4len && bits != 8*IPv6len {
    73  		return nil
    74  	}
    75  	if ones < 0 || ones > bits {
    76  		return nil
    77  	}
    78  	l := bits / 8
    79  	m := make(IPMask, l)
    80  	n := uint(ones)
    81  	for i := 0; i < l; i++ {
    82  		if n >= 8 {
    83  			m[i] = 0xff
    84  			n -= 8
    85  			continue
    86  		}
    87  		m[i] = ^byte(0xff >> n)
    88  		n = 0
    89  	}
    90  	return m
    91  }
    92  
    93  // Well-known IPv4 addresses
    94  var (
    95  	IPv4bcast     = IPv4(255, 255, 255, 255) // limited broadcast
    96  	IPv4allsys    = IPv4(224, 0, 0, 1)       // all systems
    97  	IPv4allrouter = IPv4(224, 0, 0, 2)       // all routers
    98  	IPv4zero      = IPv4(0, 0, 0, 0)         // all zeros
    99  )
   100  
   101  // Well-known IPv6 addresses
   102  var (
   103  	IPv6zero                   = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   104  	IPv6unspecified            = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
   105  	IPv6loopback               = IP{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   106  	IPv6interfacelocalallnodes = IP{0xff, 0x01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   107  	IPv6linklocalallnodes      = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01}
   108  	IPv6linklocalallrouters    = IP{0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x02}
   109  )
   110  
   111  // IsUnspecified reports whether ip is an unspecified address.
   112  func (ip IP) IsUnspecified() bool {
   113  	return ip.Equal(IPv4zero) || ip.Equal(IPv6unspecified)
   114  }
   115  
   116  // IsLoopback reports whether ip is a loopback address.
   117  func (ip IP) IsLoopback() bool {
   118  	if ip4 := ip.To4(); ip4 != nil {
   119  		return ip4[0] == 127
   120  	}
   121  	return ip.Equal(IPv6loopback)
   122  }
   123  
   124  // IsMulticast reports whether ip is a multicast address.
   125  func (ip IP) IsMulticast() bool {
   126  	if ip4 := ip.To4(); ip4 != nil {
   127  		return ip4[0]&0xf0 == 0xe0
   128  	}
   129  	return len(ip) == IPv6len && ip[0] == 0xff
   130  }
   131  
   132  // IsInterfaceLocalMulticast reports whether ip is
   133  // an interface-local multicast address.
   134  func (ip IP) IsInterfaceLocalMulticast() bool {
   135  	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x01
   136  }
   137  
   138  // IsLinkLocalMulticast reports whether ip is a link-local
   139  // multicast address.
   140  func (ip IP) IsLinkLocalMulticast() bool {
   141  	if ip4 := ip.To4(); ip4 != nil {
   142  		return ip4[0] == 224 && ip4[1] == 0 && ip4[2] == 0
   143  	}
   144  	return len(ip) == IPv6len && ip[0] == 0xff && ip[1]&0x0f == 0x02
   145  }
   146  
   147  // IsLinkLocalUnicast reports whether ip is a link-local
   148  // unicast address.
   149  func (ip IP) IsLinkLocalUnicast() bool {
   150  	if ip4 := ip.To4(); ip4 != nil {
   151  		return ip4[0] == 169 && ip4[1] == 254
   152  	}
   153  	return len(ip) == IPv6len && ip[0] == 0xfe && ip[1]&0xc0 == 0x80
   154  }
   155  
   156  // IsGlobalUnicast reports whether ip is a global unicast
   157  // address.
   158  //
   159  // The identification of global unicast addresses uses address type
   160  // identification as defined in RFC 1122, RFC 4632 and RFC 4291 with
   161  // the exception of IPv4 directed broadcast addresses.
   162  // It returns true even if ip is in IPv4 private address space or
   163  // local IPv6 unicast address space.
   164  func (ip IP) IsGlobalUnicast() bool {
   165  	return (len(ip) == IPv4len || len(ip) == IPv6len) &&
   166  		!ip.Equal(IPv4bcast) &&
   167  		!ip.IsUnspecified() &&
   168  		!ip.IsLoopback() &&
   169  		!ip.IsMulticast() &&
   170  		!ip.IsLinkLocalUnicast()
   171  }
   172  
   173  // Is p all zeros?
   174  func isZeros(p IP) bool {
   175  	for i := 0; i < len(p); i++ {
   176  		if p[i] != 0 {
   177  			return false
   178  		}
   179  	}
   180  	return true
   181  }
   182  
   183  // To4 converts the IPv4 address ip to a 4-byte representation.
   184  // If ip is not an IPv4 address, To4 returns nil.
   185  func (ip IP) To4() IP {
   186  	if len(ip) == IPv4len {
   187  		return ip
   188  	}
   189  	if len(ip) == IPv6len &&
   190  		isZeros(ip[0:10]) &&
   191  		ip[10] == 0xff &&
   192  		ip[11] == 0xff {
   193  		return ip[12:16]
   194  	}
   195  	return nil
   196  }
   197  
   198  // To16 converts the IP address ip to a 16-byte representation.
   199  // If ip is not an IP address (it is the wrong length), To16 returns nil.
   200  func (ip IP) To16() IP {
   201  	if len(ip) == IPv4len {
   202  		return IPv4(ip[0], ip[1], ip[2], ip[3])
   203  	}
   204  	if len(ip) == IPv6len {
   205  		return ip
   206  	}
   207  	return nil
   208  }
   209  
   210  // Default route masks for IPv4.
   211  var (
   212  	classAMask = IPv4Mask(0xff, 0, 0, 0)
   213  	classBMask = IPv4Mask(0xff, 0xff, 0, 0)
   214  	classCMask = IPv4Mask(0xff, 0xff, 0xff, 0)
   215  )
   216  
   217  // DefaultMask returns the default IP mask for the IP address ip.
   218  // Only IPv4 addresses have default masks; DefaultMask returns
   219  // nil if ip is not a valid IPv4 address.
   220  func (ip IP) DefaultMask() IPMask {
   221  	if ip = ip.To4(); ip == nil {
   222  		return nil
   223  	}
   224  	switch true {
   225  	case ip[0] < 0x80:
   226  		return classAMask
   227  	case ip[0] < 0xC0:
   228  		return classBMask
   229  	default:
   230  		return classCMask
   231  	}
   232  }
   233  
   234  func allFF(b []byte) bool {
   235  	for _, c := range b {
   236  		if c != 0xff {
   237  			return false
   238  		}
   239  	}
   240  	return true
   241  }
   242  
   243  // Mask returns the result of masking the IP address ip with mask.
   244  func (ip IP) Mask(mask IPMask) IP {
   245  	if len(mask) == IPv6len && len(ip) == IPv4len && allFF(mask[:12]) {
   246  		mask = mask[12:]
   247  	}
   248  	if len(mask) == IPv4len && len(ip) == IPv6len && bytesEqual(ip[:12], v4InV6Prefix) {
   249  		ip = ip[12:]
   250  	}
   251  	n := len(ip)
   252  	if n != len(mask) {
   253  		return nil
   254  	}
   255  	out := make(IP, n)
   256  	for i := 0; i < n; i++ {
   257  		out[i] = ip[i] & mask[i]
   258  	}
   259  	return out
   260  }
   261  
   262  // String returns the string form of the IP address ip.
   263  // It returns one of 4 forms:
   264  //   - "<nil>", if ip has length 0
   265  //   - dotted decimal ("192.0.2.1"), if ip is an IPv4 or IP4-mapped IPv6 address
   266  //   - IPv6 ("2001:db8::1"), if ip is a valid IPv6 address
   267  //   - the hexadecimal form of ip, without punctuation, if no other cases apply
   268  func (ip IP) String() string {
   269  	p := ip
   270  
   271  	if len(ip) == 0 {
   272  		return "<nil>"
   273  	}
   274  
   275  	// If IPv4, use dotted notation.
   276  	if p4 := p.To4(); len(p4) == IPv4len {
   277  		return uitoa(uint(p4[0])) + "." +
   278  			uitoa(uint(p4[1])) + "." +
   279  			uitoa(uint(p4[2])) + "." +
   280  			uitoa(uint(p4[3]))
   281  	}
   282  	if len(p) != IPv6len {
   283  		return "?" + hexString(ip)
   284  	}
   285  
   286  	// Find longest run of zeros.
   287  	e0 := -1
   288  	e1 := -1
   289  	for i := 0; i < IPv6len; i += 2 {
   290  		j := i
   291  		for j < IPv6len && p[j] == 0 && p[j+1] == 0 {
   292  			j += 2
   293  		}
   294  		if j > i && j-i > e1-e0 {
   295  			e0 = i
   296  			e1 = j
   297  			i = j
   298  		}
   299  	}
   300  	// The symbol "::" MUST NOT be used to shorten just one 16 bit 0 field.
   301  	if e1-e0 <= 2 {
   302  		e0 = -1
   303  		e1 = -1
   304  	}
   305  
   306  	const maxLen = len("ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff")
   307  	b := make([]byte, 0, maxLen)
   308  
   309  	// Print with possible :: in place of run of zeros
   310  	for i := 0; i < IPv6len; i += 2 {
   311  		if i == e0 {
   312  			b = append(b, ':', ':')
   313  			i = e1
   314  			if i >= IPv6len {
   315  				break
   316  			}
   317  		} else if i > 0 {
   318  			b = append(b, ':')
   319  		}
   320  		b = appendHex(b, (uint32(p[i])<<8)|uint32(p[i+1]))
   321  	}
   322  	return string(b)
   323  }
   324  
   325  func hexString(b []byte) string {
   326  	s := make([]byte, len(b)*2)
   327  	for i, tn := range b {
   328  		s[i*2], s[i*2+1] = hexDigit[tn>>4], hexDigit[tn&0xf]
   329  	}
   330  	return string(s)
   331  }
   332  
   333  // ipEmptyString is like ip.String except that it returns
   334  // an empty string when ip is unset.
   335  func ipEmptyString(ip IP) string {
   336  	if len(ip) == 0 {
   337  		return ""
   338  	}
   339  	return ip.String()
   340  }
   341  
   342  // MarshalText implements the encoding.TextMarshaler interface.
   343  // The encoding is the same as returned by String.
   344  func (ip IP) MarshalText() ([]byte, error) {
   345  	if len(ip) == 0 {
   346  		return []byte(""), nil
   347  	}
   348  	if len(ip) != IPv4len && len(ip) != IPv6len {
   349  		return nil, &AddrError{Err: "invalid IP address", Addr: hexString(ip)}
   350  	}
   351  	return []byte(ip.String()), nil
   352  }
   353  
   354  // UnmarshalText implements the encoding.TextUnmarshaler interface.
   355  // The IP address is expected in a form accepted by ParseIP.
   356  func (ip *IP) UnmarshalText(text []byte) error {
   357  	if len(text) == 0 {
   358  		*ip = nil
   359  		return nil
   360  	}
   361  	s := string(text)
   362  	x := ParseIP(s)
   363  	if x == nil {
   364  		return &ParseError{Type: "IP address", Text: s}
   365  	}
   366  	*ip = x
   367  	return nil
   368  }
   369  
   370  // Equal reports whether ip and x are the same IP address.
   371  // An IPv4 address and that same address in IPv6 form are
   372  // considered to be equal.
   373  func (ip IP) Equal(x IP) bool {
   374  	if len(ip) == len(x) {
   375  		return bytesEqual(ip, x)
   376  	}
   377  	if len(ip) == IPv4len && len(x) == IPv6len {
   378  		return bytesEqual(x[0:12], v4InV6Prefix) && bytesEqual(ip, x[12:])
   379  	}
   380  	if len(ip) == IPv6len && len(x) == IPv4len {
   381  		return bytesEqual(ip[0:12], v4InV6Prefix) && bytesEqual(ip[12:], x)
   382  	}
   383  	return false
   384  }
   385  
   386  // bytes.Equal is implemented in runtime/asm_$goarch.s
   387  //go:linkname bytesEqual bytes.Equal
   388  func bytesEqual(x, y []byte) bool
   389  
   390  func (ip IP) matchAddrFamily(x IP) bool {
   391  	return ip.To4() != nil && x.To4() != nil || ip.To16() != nil && ip.To4() == nil && x.To16() != nil && x.To4() == nil
   392  }
   393  
   394  // If mask is a sequence of 1 bits followed by 0 bits,
   395  // return the number of 1 bits.
   396  func simpleMaskLength(mask IPMask) int {
   397  	var n int
   398  	for i, v := range mask {
   399  		if v == 0xff {
   400  			n += 8
   401  			continue
   402  		}
   403  		// found non-ff byte
   404  		// count 1 bits
   405  		for v&0x80 != 0 {
   406  			n++
   407  			v <<= 1
   408  		}
   409  		// rest must be 0 bits
   410  		if v != 0 {
   411  			return -1
   412  		}
   413  		for i++; i < len(mask); i++ {
   414  			if mask[i] != 0 {
   415  				return -1
   416  			}
   417  		}
   418  		break
   419  	}
   420  	return n
   421  }
   422  
   423  // Size returns the number of leading ones and total bits in the mask.
   424  // If the mask is not in the canonical form--ones followed by zeros--then
   425  // Size returns 0, 0.
   426  func (m IPMask) Size() (ones, bits int) {
   427  	ones, bits = simpleMaskLength(m), len(m)*8
   428  	if ones == -1 {
   429  		return 0, 0
   430  	}
   431  	return
   432  }
   433  
   434  // String returns the hexadecimal form of m, with no punctuation.
   435  func (m IPMask) String() string {
   436  	if len(m) == 0 {
   437  		return "<nil>"
   438  	}
   439  	return hexString(m)
   440  }
   441  
   442  func networkNumberAndMask(n *IPNet) (ip IP, m IPMask) {
   443  	if ip = n.IP.To4(); ip == nil {
   444  		ip = n.IP
   445  		if len(ip) != IPv6len {
   446  			return nil, nil
   447  		}
   448  	}
   449  	m = n.Mask
   450  	switch len(m) {
   451  	case IPv4len:
   452  		if len(ip) != IPv4len {
   453  			return nil, nil
   454  		}
   455  	case IPv6len:
   456  		if len(ip) == IPv4len {
   457  			m = m[12:]
   458  		}
   459  	default:
   460  		return nil, nil
   461  	}
   462  	return
   463  }
   464  
   465  // Contains reports whether the network includes ip.
   466  func (n *IPNet) Contains(ip IP) bool {
   467  	nn, m := networkNumberAndMask(n)
   468  	if x := ip.To4(); x != nil {
   469  		ip = x
   470  	}
   471  	l := len(ip)
   472  	if l != len(nn) {
   473  		return false
   474  	}
   475  	for i := 0; i < l; i++ {
   476  		if nn[i]&m[i] != ip[i]&m[i] {
   477  			return false
   478  		}
   479  	}
   480  	return true
   481  }
   482  
   483  // Network returns the address's network name, "ip+net".
   484  func (n *IPNet) Network() string { return "ip+net" }
   485  
   486  // String returns the CIDR notation of n like "192.0.2.1/24"
   487  // or "2001:db8::/48" as defined in RFC 4632 and RFC 4291.
   488  // If the mask is not in the canonical form, it returns the
   489  // string which consists of an IP address, followed by a slash
   490  // character and a mask expressed as hexadecimal form with no
   491  // punctuation like "198.51.100.1/c000ff00".
   492  func (n *IPNet) String() string {
   493  	nn, m := networkNumberAndMask(n)
   494  	if nn == nil || m == nil {
   495  		return "<nil>"
   496  	}
   497  	l := simpleMaskLength(m)
   498  	if l == -1 {
   499  		return nn.String() + "/" + m.String()
   500  	}
   501  	return nn.String() + "/" + uitoa(uint(l))
   502  }
   503  
   504  // Parse IPv4 address (d.d.d.d).
   505  func parseIPv4(s string) IP {
   506  	var p [IPv4len]byte
   507  	for i := 0; i < IPv4len; i++ {
   508  		if len(s) == 0 {
   509  			// Missing octets.
   510  			return nil
   511  		}
   512  		if i > 0 {
   513  			if s[0] != '.' {
   514  				return nil
   515  			}
   516  			s = s[1:]
   517  		}
   518  		n, c, ok := dtoi(s)
   519  		if !ok || n > 0xFF {
   520  			return nil
   521  		}
   522  		s = s[c:]
   523  		p[i] = byte(n)
   524  	}
   525  	if len(s) != 0 {
   526  		return nil
   527  	}
   528  	return IPv4(p[0], p[1], p[2], p[3])
   529  }
   530  
   531  // parseIPv6 parses s as a literal IPv6 address described in RFC 4291
   532  // and RFC 5952.  It can also parse a literal scoped IPv6 address with
   533  // zone identifier which is described in RFC 4007 when zoneAllowed is
   534  // true.
   535  func parseIPv6(s string, zoneAllowed bool) (ip IP, zone string) {
   536  	ip = make(IP, IPv6len)
   537  	ellipsis := -1 // position of ellipsis in ip
   538  
   539  	if zoneAllowed {
   540  		s, zone = splitHostZone(s)
   541  	}
   542  
   543  	// Might have leading ellipsis
   544  	if len(s) >= 2 && s[0] == ':' && s[1] == ':' {
   545  		ellipsis = 0
   546  		s = s[2:]
   547  		// Might be only ellipsis
   548  		if len(s) == 0 {
   549  			return ip, zone
   550  		}
   551  	}
   552  
   553  	// Loop, parsing hex numbers followed by colon.
   554  	i := 0
   555  	for i < IPv6len {
   556  		// Hex number.
   557  		n, c, ok := xtoi(s)
   558  		if !ok || n > 0xFFFF {
   559  			return nil, zone
   560  		}
   561  
   562  		// If followed by dot, might be in trailing IPv4.
   563  		if c < len(s) && s[c] == '.' {
   564  			if ellipsis < 0 && i != IPv6len-IPv4len {
   565  				// Not the right place.
   566  				return nil, zone
   567  			}
   568  			if i+IPv4len > IPv6len {
   569  				// Not enough room.
   570  				return nil, zone
   571  			}
   572  			ip4 := parseIPv4(s)
   573  			if ip4 == nil {
   574  				return nil, zone
   575  			}
   576  			ip[i] = ip4[12]
   577  			ip[i+1] = ip4[13]
   578  			ip[i+2] = ip4[14]
   579  			ip[i+3] = ip4[15]
   580  			s = ""
   581  			i += IPv4len
   582  			break
   583  		}
   584  
   585  		// Save this 16-bit chunk.
   586  		ip[i] = byte(n >> 8)
   587  		ip[i+1] = byte(n)
   588  		i += 2
   589  
   590  		// Stop at end of string.
   591  		s = s[c:]
   592  		if len(s) == 0 {
   593  			break
   594  		}
   595  
   596  		// Otherwise must be followed by colon and more.
   597  		if s[0] != ':' || len(s) == 1 {
   598  			return nil, zone
   599  		}
   600  		s = s[1:]
   601  
   602  		// Look for ellipsis.
   603  		if s[0] == ':' {
   604  			if ellipsis >= 0 { // already have one
   605  				return nil, zone
   606  			}
   607  			ellipsis = i
   608  			s = s[1:]
   609  			if len(s) == 0 { // can be at end
   610  				break
   611  			}
   612  		}
   613  	}
   614  
   615  	// Must have used entire string.
   616  	if len(s) != 0 {
   617  		return nil, zone
   618  	}
   619  
   620  	// If didn't parse enough, expand ellipsis.
   621  	if i < IPv6len {
   622  		if ellipsis < 0 {
   623  			return nil, zone
   624  		}
   625  		n := IPv6len - i
   626  		for j := i - 1; j >= ellipsis; j-- {
   627  			ip[j+n] = ip[j]
   628  		}
   629  		for j := ellipsis + n - 1; j >= ellipsis; j-- {
   630  			ip[j] = 0
   631  		}
   632  	} else if ellipsis >= 0 {
   633  		// Ellipsis must represent at least one 0 group.
   634  		return nil, zone
   635  	}
   636  	return ip, zone
   637  }
   638  
   639  // ParseIP parses s as an IP address, returning the result.
   640  // The string s can be in dotted decimal ("192.0.2.1")
   641  // or IPv6 ("2001:db8::68") form.
   642  // If s is not a valid textual representation of an IP address,
   643  // ParseIP returns nil.
   644  func ParseIP(s string) IP {
   645  	for i := 0; i < len(s); i++ {
   646  		switch s[i] {
   647  		case '.':
   648  			return parseIPv4(s)
   649  		case ':':
   650  			ip, _ := parseIPv6(s, false)
   651  			return ip
   652  		}
   653  	}
   654  	return nil
   655  }
   656  
   657  // ParseCIDR parses s as a CIDR notation IP address and prefix length,
   658  // like "192.0.2.0/24" or "2001:db8::/32", as defined in
   659  // RFC 4632 and RFC 4291.
   660  //
   661  // It returns the IP address and the network implied by the IP and
   662  // prefix length.
   663  // For example, ParseCIDR("192.0.2.1/24") returns the IP address
   664  // 198.0.2.1 and the network 198.0.2.0/24.
   665  func ParseCIDR(s string) (IP, *IPNet, error) {
   666  	i := byteIndex(s, '/')
   667  	if i < 0 {
   668  		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   669  	}
   670  	addr, mask := s[:i], s[i+1:]
   671  	iplen := IPv4len
   672  	ip := parseIPv4(addr)
   673  	if ip == nil {
   674  		iplen = IPv6len
   675  		ip, _ = parseIPv6(addr, false)
   676  	}
   677  	n, i, ok := dtoi(mask)
   678  	if ip == nil || !ok || i != len(mask) || n < 0 || n > 8*iplen {
   679  		return nil, nil, &ParseError{Type: "CIDR address", Text: s}
   680  	}
   681  	m := CIDRMask(n, 8*iplen)
   682  	return ip, &IPNet{IP: ip.Mask(m), Mask: m}, nil
   683  }