github.com/rakyll/go@v0.0.0-20170216000551-64c02460d703/src/regexp/regexp.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package regexp implements regular expression search.
     6  //
     7  // The syntax of the regular expressions accepted is the same
     8  // general syntax used by Perl, Python, and other languages.
     9  // More precisely, it is the syntax accepted by RE2 and described at
    10  // https://golang.org/s/re2syntax, except for \C.
    11  // For an overview of the syntax, run
    12  //   go doc regexp/syntax
    13  //
    14  // The regexp implementation provided by this package is
    15  // guaranteed to run in time linear in the size of the input.
    16  // (This is a property not guaranteed by most open source
    17  // implementations of regular expressions.) For more information
    18  // about this property, see
    19  //	http://swtch.com/~rsc/regexp/regexp1.html
    20  // or any book about automata theory.
    21  //
    22  // All characters are UTF-8-encoded code points.
    23  //
    24  // There are 16 methods of Regexp that match a regular expression and identify
    25  // the matched text. Their names are matched by this regular expression:
    26  //
    27  //	Find(All)?(String)?(Submatch)?(Index)?
    28  //
    29  // If 'All' is present, the routine matches successive non-overlapping
    30  // matches of the entire expression. Empty matches abutting a preceding
    31  // match are ignored. The return value is a slice containing the successive
    32  // return values of the corresponding non-'All' routine. These routines take
    33  // an extra integer argument, n; if n >= 0, the function returns at most n
    34  // matches/submatches.
    35  //
    36  // If 'String' is present, the argument is a string; otherwise it is a slice
    37  // of bytes; return values are adjusted as appropriate.
    38  //
    39  // If 'Submatch' is present, the return value is a slice identifying the
    40  // successive submatches of the expression. Submatches are matches of
    41  // parenthesized subexpressions (also known as capturing groups) within the
    42  // regular expression, numbered from left to right in order of opening
    43  // parenthesis. Submatch 0 is the match of the entire expression, submatch 1
    44  // the match of the first parenthesized subexpression, and so on.
    45  //
    46  // If 'Index' is present, matches and submatches are identified by byte index
    47  // pairs within the input string: result[2*n:2*n+1] identifies the indexes of
    48  // the nth submatch. The pair for n==0 identifies the match of the entire
    49  // expression. If 'Index' is not present, the match is identified by the
    50  // text of the match/submatch. If an index is negative, it means that
    51  // subexpression did not match any string in the input.
    52  //
    53  // There is also a subset of the methods that can be applied to text read
    54  // from a RuneReader:
    55  //
    56  //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
    57  //
    58  // This set may grow. Note that regular expression matches may need to
    59  // examine text beyond the text returned by a match, so the methods that
    60  // match text from a RuneReader may read arbitrarily far into the input
    61  // before returning.
    62  //
    63  // (There are a few other methods that do not match this pattern.)
    64  //
    65  package regexp
    66  
    67  import (
    68  	"bytes"
    69  	"io"
    70  	"regexp/syntax"
    71  	"strconv"
    72  	"strings"
    73  	"sync"
    74  	"unicode"
    75  	"unicode/utf8"
    76  )
    77  
    78  // Regexp is the representation of a compiled regular expression.
    79  // A Regexp is safe for concurrent use by multiple goroutines.
    80  type Regexp struct {
    81  	// read-only after Compile
    82  	regexpRO
    83  
    84  	// cache of machines for running regexp
    85  	mu      sync.Mutex
    86  	machine []*machine
    87  }
    88  
    89  type regexpRO struct {
    90  	expr           string         // as passed to Compile
    91  	prog           *syntax.Prog   // compiled program
    92  	onepass        *onePassProg   // onepass program or nil
    93  	prefix         string         // required prefix in unanchored matches
    94  	prefixBytes    []byte         // prefix, as a []byte
    95  	prefixComplete bool           // prefix is the entire regexp
    96  	prefixRune     rune           // first rune in prefix
    97  	prefixEnd      uint32         // pc for last rune in prefix
    98  	cond           syntax.EmptyOp // empty-width conditions required at start of match
    99  	numSubexp      int
   100  	subexpNames    []string
   101  	longest        bool
   102  }
   103  
   104  // String returns the source text used to compile the regular expression.
   105  func (re *Regexp) String() string {
   106  	return re.expr
   107  }
   108  
   109  // Copy returns a new Regexp object copied from re.
   110  //
   111  // When using a Regexp in multiple goroutines, giving each goroutine
   112  // its own copy helps to avoid lock contention.
   113  func (re *Regexp) Copy() *Regexp {
   114  	// It is not safe to copy Regexp by value
   115  	// since it contains a sync.Mutex.
   116  	return &Regexp{
   117  		regexpRO: re.regexpRO,
   118  	}
   119  }
   120  
   121  // Compile parses a regular expression and returns, if successful,
   122  // a Regexp object that can be used to match against text.
   123  //
   124  // When matching against text, the regexp returns a match that
   125  // begins as early as possible in the input (leftmost), and among those
   126  // it chooses the one that a backtracking search would have found first.
   127  // This so-called leftmost-first matching is the same semantics
   128  // that Perl, Python, and other implementations use, although this
   129  // package implements it without the expense of backtracking.
   130  // For POSIX leftmost-longest matching, see CompilePOSIX.
   131  func Compile(expr string) (*Regexp, error) {
   132  	return compile(expr, syntax.Perl, false)
   133  }
   134  
   135  // CompilePOSIX is like Compile but restricts the regular expression
   136  // to POSIX ERE (egrep) syntax and changes the match semantics to
   137  // leftmost-longest.
   138  //
   139  // That is, when matching against text, the regexp returns a match that
   140  // begins as early as possible in the input (leftmost), and among those
   141  // it chooses a match that is as long as possible.
   142  // This so-called leftmost-longest matching is the same semantics
   143  // that early regular expression implementations used and that POSIX
   144  // specifies.
   145  //
   146  // However, there can be multiple leftmost-longest matches, with different
   147  // submatch choices, and here this package diverges from POSIX.
   148  // Among the possible leftmost-longest matches, this package chooses
   149  // the one that a backtracking search would have found first, while POSIX
   150  // specifies that the match be chosen to maximize the length of the first
   151  // subexpression, then the second, and so on from left to right.
   152  // The POSIX rule is computationally prohibitive and not even well-defined.
   153  // See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
   154  func CompilePOSIX(expr string) (*Regexp, error) {
   155  	return compile(expr, syntax.POSIX, true)
   156  }
   157  
   158  // Longest makes future searches prefer the leftmost-longest match.
   159  // That is, when matching against text, the regexp returns a match that
   160  // begins as early as possible in the input (leftmost), and among those
   161  // it chooses a match that is as long as possible.
   162  func (re *Regexp) Longest() {
   163  	re.longest = true
   164  }
   165  
   166  func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
   167  	re, err := syntax.Parse(expr, mode)
   168  	if err != nil {
   169  		return nil, err
   170  	}
   171  	maxCap := re.MaxCap()
   172  	capNames := re.CapNames()
   173  
   174  	re = re.Simplify()
   175  	prog, err := syntax.Compile(re)
   176  	if err != nil {
   177  		return nil, err
   178  	}
   179  	regexp := &Regexp{
   180  		regexpRO: regexpRO{
   181  			expr:        expr,
   182  			prog:        prog,
   183  			onepass:     compileOnePass(prog),
   184  			numSubexp:   maxCap,
   185  			subexpNames: capNames,
   186  			cond:        prog.StartCond(),
   187  			longest:     longest,
   188  		},
   189  	}
   190  	if regexp.onepass == notOnePass {
   191  		regexp.prefix, regexp.prefixComplete = prog.Prefix()
   192  	} else {
   193  		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
   194  	}
   195  	if regexp.prefix != "" {
   196  		// TODO(rsc): Remove this allocation by adding
   197  		// IndexString to package bytes.
   198  		regexp.prefixBytes = []byte(regexp.prefix)
   199  		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
   200  	}
   201  	return regexp, nil
   202  }
   203  
   204  // get returns a machine to use for matching re.
   205  // It uses the re's machine cache if possible, to avoid
   206  // unnecessary allocation.
   207  func (re *Regexp) get() *machine {
   208  	re.mu.Lock()
   209  	if n := len(re.machine); n > 0 {
   210  		z := re.machine[n-1]
   211  		re.machine = re.machine[:n-1]
   212  		re.mu.Unlock()
   213  		return z
   214  	}
   215  	re.mu.Unlock()
   216  	z := progMachine(re.prog, re.onepass)
   217  	z.re = re
   218  	return z
   219  }
   220  
   221  // put returns a machine to the re's machine cache.
   222  // There is no attempt to limit the size of the cache, so it will
   223  // grow to the maximum number of simultaneous matches
   224  // run using re.  (The cache empties when re gets garbage collected.)
   225  func (re *Regexp) put(z *machine) {
   226  	re.mu.Lock()
   227  	re.machine = append(re.machine, z)
   228  	re.mu.Unlock()
   229  }
   230  
   231  // MustCompile is like Compile but panics if the expression cannot be parsed.
   232  // It simplifies safe initialization of global variables holding compiled regular
   233  // expressions.
   234  func MustCompile(str string) *Regexp {
   235  	regexp, error := Compile(str)
   236  	if error != nil {
   237  		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
   238  	}
   239  	return regexp
   240  }
   241  
   242  // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
   243  // It simplifies safe initialization of global variables holding compiled regular
   244  // expressions.
   245  func MustCompilePOSIX(str string) *Regexp {
   246  	regexp, error := CompilePOSIX(str)
   247  	if error != nil {
   248  		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
   249  	}
   250  	return regexp
   251  }
   252  
   253  func quote(s string) string {
   254  	if strconv.CanBackquote(s) {
   255  		return "`" + s + "`"
   256  	}
   257  	return strconv.Quote(s)
   258  }
   259  
   260  // NumSubexp returns the number of parenthesized subexpressions in this Regexp.
   261  func (re *Regexp) NumSubexp() int {
   262  	return re.numSubexp
   263  }
   264  
   265  // SubexpNames returns the names of the parenthesized subexpressions
   266  // in this Regexp. The name for the first sub-expression is names[1],
   267  // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
   268  // Since the Regexp as a whole cannot be named, names[0] is always
   269  // the empty string. The slice should not be modified.
   270  func (re *Regexp) SubexpNames() []string {
   271  	return re.subexpNames
   272  }
   273  
   274  const endOfText rune = -1
   275  
   276  // input abstracts different representations of the input text. It provides
   277  // one-character lookahead.
   278  type input interface {
   279  	step(pos int) (r rune, width int) // advance one rune
   280  	canCheckPrefix() bool             // can we look ahead without losing info?
   281  	hasPrefix(re *Regexp) bool
   282  	index(re *Regexp, pos int) int
   283  	context(pos int) syntax.EmptyOp
   284  }
   285  
   286  // inputString scans a string.
   287  type inputString struct {
   288  	str string
   289  }
   290  
   291  func (i *inputString) step(pos int) (rune, int) {
   292  	if pos < len(i.str) {
   293  		c := i.str[pos]
   294  		if c < utf8.RuneSelf {
   295  			return rune(c), 1
   296  		}
   297  		return utf8.DecodeRuneInString(i.str[pos:])
   298  	}
   299  	return endOfText, 0
   300  }
   301  
   302  func (i *inputString) canCheckPrefix() bool {
   303  	return true
   304  }
   305  
   306  func (i *inputString) hasPrefix(re *Regexp) bool {
   307  	return strings.HasPrefix(i.str, re.prefix)
   308  }
   309  
   310  func (i *inputString) index(re *Regexp, pos int) int {
   311  	return strings.Index(i.str[pos:], re.prefix)
   312  }
   313  
   314  func (i *inputString) context(pos int) syntax.EmptyOp {
   315  	r1, r2 := endOfText, endOfText
   316  	if pos > 0 && pos <= len(i.str) {
   317  		r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
   318  	}
   319  	if pos < len(i.str) {
   320  		r2, _ = utf8.DecodeRuneInString(i.str[pos:])
   321  	}
   322  	return syntax.EmptyOpContext(r1, r2)
   323  }
   324  
   325  // inputBytes scans a byte slice.
   326  type inputBytes struct {
   327  	str []byte
   328  }
   329  
   330  func (i *inputBytes) step(pos int) (rune, int) {
   331  	if pos < len(i.str) {
   332  		c := i.str[pos]
   333  		if c < utf8.RuneSelf {
   334  			return rune(c), 1
   335  		}
   336  		return utf8.DecodeRune(i.str[pos:])
   337  	}
   338  	return endOfText, 0
   339  }
   340  
   341  func (i *inputBytes) canCheckPrefix() bool {
   342  	return true
   343  }
   344  
   345  func (i *inputBytes) hasPrefix(re *Regexp) bool {
   346  	return bytes.HasPrefix(i.str, re.prefixBytes)
   347  }
   348  
   349  func (i *inputBytes) index(re *Regexp, pos int) int {
   350  	return bytes.Index(i.str[pos:], re.prefixBytes)
   351  }
   352  
   353  func (i *inputBytes) context(pos int) syntax.EmptyOp {
   354  	r1, r2 := endOfText, endOfText
   355  	if pos > 0 && pos <= len(i.str) {
   356  		r1, _ = utf8.DecodeLastRune(i.str[:pos])
   357  	}
   358  	if pos < len(i.str) {
   359  		r2, _ = utf8.DecodeRune(i.str[pos:])
   360  	}
   361  	return syntax.EmptyOpContext(r1, r2)
   362  }
   363  
   364  // inputReader scans a RuneReader.
   365  type inputReader struct {
   366  	r     io.RuneReader
   367  	atEOT bool
   368  	pos   int
   369  }
   370  
   371  func (i *inputReader) step(pos int) (rune, int) {
   372  	if !i.atEOT && pos != i.pos {
   373  		return endOfText, 0
   374  
   375  	}
   376  	r, w, err := i.r.ReadRune()
   377  	if err != nil {
   378  		i.atEOT = true
   379  		return endOfText, 0
   380  	}
   381  	i.pos += w
   382  	return r, w
   383  }
   384  
   385  func (i *inputReader) canCheckPrefix() bool {
   386  	return false
   387  }
   388  
   389  func (i *inputReader) hasPrefix(re *Regexp) bool {
   390  	return false
   391  }
   392  
   393  func (i *inputReader) index(re *Regexp, pos int) int {
   394  	return -1
   395  }
   396  
   397  func (i *inputReader) context(pos int) syntax.EmptyOp {
   398  	return 0
   399  }
   400  
   401  // LiteralPrefix returns a literal string that must begin any match
   402  // of the regular expression re. It returns the boolean true if the
   403  // literal string comprises the entire regular expression.
   404  func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
   405  	return re.prefix, re.prefixComplete
   406  }
   407  
   408  // MatchReader reports whether the Regexp matches the text read by the
   409  // RuneReader.
   410  func (re *Regexp) MatchReader(r io.RuneReader) bool {
   411  	return re.doMatch(r, nil, "")
   412  }
   413  
   414  // MatchString reports whether the Regexp matches the string s.
   415  func (re *Regexp) MatchString(s string) bool {
   416  	return re.doMatch(nil, nil, s)
   417  }
   418  
   419  // Match reports whether the Regexp matches the byte slice b.
   420  func (re *Regexp) Match(b []byte) bool {
   421  	return re.doMatch(nil, b, "")
   422  }
   423  
   424  // MatchReader checks whether a textual regular expression matches the text
   425  // read by the RuneReader. More complicated queries need to use Compile and
   426  // the full Regexp interface.
   427  func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
   428  	re, err := Compile(pattern)
   429  	if err != nil {
   430  		return false, err
   431  	}
   432  	return re.MatchReader(r), nil
   433  }
   434  
   435  // MatchString checks whether a textual regular expression
   436  // matches a string. More complicated queries need
   437  // to use Compile and the full Regexp interface.
   438  func MatchString(pattern string, s string) (matched bool, err error) {
   439  	re, err := Compile(pattern)
   440  	if err != nil {
   441  		return false, err
   442  	}
   443  	return re.MatchString(s), nil
   444  }
   445  
   446  // Match checks whether a textual regular expression
   447  // matches a byte slice. More complicated queries need
   448  // to use Compile and the full Regexp interface.
   449  func Match(pattern string, b []byte) (matched bool, err error) {
   450  	re, err := Compile(pattern)
   451  	if err != nil {
   452  		return false, err
   453  	}
   454  	return re.Match(b), nil
   455  }
   456  
   457  // ReplaceAllString returns a copy of src, replacing matches of the Regexp
   458  // with the replacement string repl. Inside repl, $ signs are interpreted as
   459  // in Expand, so for instance $1 represents the text of the first submatch.
   460  func (re *Regexp) ReplaceAllString(src, repl string) string {
   461  	n := 2
   462  	if strings.Contains(repl, "$") {
   463  		n = 2 * (re.numSubexp + 1)
   464  	}
   465  	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
   466  		return re.expand(dst, repl, nil, src, match)
   467  	})
   468  	return string(b)
   469  }
   470  
   471  // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
   472  // with the replacement string repl. The replacement repl is substituted directly,
   473  // without using Expand.
   474  func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
   475  	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   476  		return append(dst, repl...)
   477  	}))
   478  }
   479  
   480  // ReplaceAllStringFunc returns a copy of src in which all matches of the
   481  // Regexp have been replaced by the return value of function repl applied
   482  // to the matched substring. The replacement returned by repl is substituted
   483  // directly, without using Expand.
   484  func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
   485  	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   486  		return append(dst, repl(src[match[0]:match[1]])...)
   487  	})
   488  	return string(b)
   489  }
   490  
   491  func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
   492  	lastMatchEnd := 0 // end position of the most recent match
   493  	searchPos := 0    // position where we next look for a match
   494  	var buf []byte
   495  	var endPos int
   496  	if bsrc != nil {
   497  		endPos = len(bsrc)
   498  	} else {
   499  		endPos = len(src)
   500  	}
   501  	if nmatch > re.prog.NumCap {
   502  		nmatch = re.prog.NumCap
   503  	}
   504  
   505  	var dstCap [2]int
   506  	for searchPos <= endPos {
   507  		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
   508  		if len(a) == 0 {
   509  			break // no more matches
   510  		}
   511  
   512  		// Copy the unmatched characters before this match.
   513  		if bsrc != nil {
   514  			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
   515  		} else {
   516  			buf = append(buf, src[lastMatchEnd:a[0]]...)
   517  		}
   518  
   519  		// Now insert a copy of the replacement string, but not for a
   520  		// match of the empty string immediately after another match.
   521  		// (Otherwise, we get double replacement for patterns that
   522  		// match both empty and nonempty strings.)
   523  		if a[1] > lastMatchEnd || a[0] == 0 {
   524  			buf = repl(buf, a)
   525  		}
   526  		lastMatchEnd = a[1]
   527  
   528  		// Advance past this match; always advance at least one character.
   529  		var width int
   530  		if bsrc != nil {
   531  			_, width = utf8.DecodeRune(bsrc[searchPos:])
   532  		} else {
   533  			_, width = utf8.DecodeRuneInString(src[searchPos:])
   534  		}
   535  		if searchPos+width > a[1] {
   536  			searchPos += width
   537  		} else if searchPos+1 > a[1] {
   538  			// This clause is only needed at the end of the input
   539  			// string. In that case, DecodeRuneInString returns width=0.
   540  			searchPos++
   541  		} else {
   542  			searchPos = a[1]
   543  		}
   544  	}
   545  
   546  	// Copy the unmatched characters after the last match.
   547  	if bsrc != nil {
   548  		buf = append(buf, bsrc[lastMatchEnd:]...)
   549  	} else {
   550  		buf = append(buf, src[lastMatchEnd:]...)
   551  	}
   552  
   553  	return buf
   554  }
   555  
   556  // ReplaceAll returns a copy of src, replacing matches of the Regexp
   557  // with the replacement text repl. Inside repl, $ signs are interpreted as
   558  // in Expand, so for instance $1 represents the text of the first submatch.
   559  func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
   560  	n := 2
   561  	if bytes.IndexByte(repl, '$') >= 0 {
   562  		n = 2 * (re.numSubexp + 1)
   563  	}
   564  	srepl := ""
   565  	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
   566  		if len(srepl) != len(repl) {
   567  			srepl = string(repl)
   568  		}
   569  		return re.expand(dst, srepl, src, "", match)
   570  	})
   571  	return b
   572  }
   573  
   574  // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
   575  // with the replacement bytes repl. The replacement repl is substituted directly,
   576  // without using Expand.
   577  func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
   578  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   579  		return append(dst, repl...)
   580  	})
   581  }
   582  
   583  // ReplaceAllFunc returns a copy of src in which all matches of the
   584  // Regexp have been replaced by the return value of function repl applied
   585  // to the matched byte slice. The replacement returned by repl is substituted
   586  // directly, without using Expand.
   587  func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
   588  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   589  		return append(dst, repl(src[match[0]:match[1]])...)
   590  	})
   591  }
   592  
   593  var specialBytes = []byte(`\.+*?()|[]{}^$`)
   594  
   595  func special(b byte) bool {
   596  	return bytes.IndexByte(specialBytes, b) >= 0
   597  }
   598  
   599  // QuoteMeta returns a string that quotes all regular expression metacharacters
   600  // inside the argument text; the returned string is a regular expression matching
   601  // the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
   602  func QuoteMeta(s string) string {
   603  	// A byte loop is correct because all metacharacters are ASCII.
   604  	var i int
   605  	for i = 0; i < len(s); i++ {
   606  		if special(s[i]) {
   607  			break
   608  		}
   609  	}
   610  	// No meta characters found, so return original string.
   611  	if i >= len(s) {
   612  		return s
   613  	}
   614  
   615  	b := make([]byte, 2*len(s)-i)
   616  	copy(b, s[:i])
   617  	j := i
   618  	for ; i < len(s); i++ {
   619  		if special(s[i]) {
   620  			b[j] = '\\'
   621  			j++
   622  		}
   623  		b[j] = s[i]
   624  		j++
   625  	}
   626  	return string(b[:j])
   627  }
   628  
   629  // The number of capture values in the program may correspond
   630  // to fewer capturing expressions than are in the regexp.
   631  // For example, "(a){0}" turns into an empty program, so the
   632  // maximum capture in the program is 0 but we need to return
   633  // an expression for \1.  Pad appends -1s to the slice a as needed.
   634  func (re *Regexp) pad(a []int) []int {
   635  	if a == nil {
   636  		// No match.
   637  		return nil
   638  	}
   639  	n := (1 + re.numSubexp) * 2
   640  	for len(a) < n {
   641  		a = append(a, -1)
   642  	}
   643  	return a
   644  }
   645  
   646  // Find matches in slice b if b is non-nil, otherwise find matches in string s.
   647  func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
   648  	var end int
   649  	if b == nil {
   650  		end = len(s)
   651  	} else {
   652  		end = len(b)
   653  	}
   654  
   655  	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
   656  		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
   657  		if len(matches) == 0 {
   658  			break
   659  		}
   660  
   661  		accept := true
   662  		if matches[1] == pos {
   663  			// We've found an empty match.
   664  			if matches[0] == prevMatchEnd {
   665  				// We don't allow an empty match right
   666  				// after a previous match, so ignore it.
   667  				accept = false
   668  			}
   669  			var width int
   670  			// TODO: use step()
   671  			if b == nil {
   672  				_, width = utf8.DecodeRuneInString(s[pos:end])
   673  			} else {
   674  				_, width = utf8.DecodeRune(b[pos:end])
   675  			}
   676  			if width > 0 {
   677  				pos += width
   678  			} else {
   679  				pos = end + 1
   680  			}
   681  		} else {
   682  			pos = matches[1]
   683  		}
   684  		prevMatchEnd = matches[1]
   685  
   686  		if accept {
   687  			deliver(re.pad(matches))
   688  			i++
   689  		}
   690  	}
   691  }
   692  
   693  // Find returns a slice holding the text of the leftmost match in b of the regular expression.
   694  // A return value of nil indicates no match.
   695  func (re *Regexp) Find(b []byte) []byte {
   696  	var dstCap [2]int
   697  	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
   698  	if a == nil {
   699  		return nil
   700  	}
   701  	return b[a[0]:a[1]]
   702  }
   703  
   704  // FindIndex returns a two-element slice of integers defining the location of
   705  // the leftmost match in b of the regular expression. The match itself is at
   706  // b[loc[0]:loc[1]].
   707  // A return value of nil indicates no match.
   708  func (re *Regexp) FindIndex(b []byte) (loc []int) {
   709  	a := re.doExecute(nil, b, "", 0, 2, nil)
   710  	if a == nil {
   711  		return nil
   712  	}
   713  	return a[0:2]
   714  }
   715  
   716  // FindString returns a string holding the text of the leftmost match in s of the regular
   717  // expression. If there is no match, the return value is an empty string,
   718  // but it will also be empty if the regular expression successfully matches
   719  // an empty string. Use FindStringIndex or FindStringSubmatch if it is
   720  // necessary to distinguish these cases.
   721  func (re *Regexp) FindString(s string) string {
   722  	var dstCap [2]int
   723  	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
   724  	if a == nil {
   725  		return ""
   726  	}
   727  	return s[a[0]:a[1]]
   728  }
   729  
   730  // FindStringIndex returns a two-element slice of integers defining the
   731  // location of the leftmost match in s of the regular expression. The match
   732  // itself is at s[loc[0]:loc[1]].
   733  // A return value of nil indicates no match.
   734  func (re *Regexp) FindStringIndex(s string) (loc []int) {
   735  	a := re.doExecute(nil, nil, s, 0, 2, nil)
   736  	if a == nil {
   737  		return nil
   738  	}
   739  	return a[0:2]
   740  }
   741  
   742  // FindReaderIndex returns a two-element slice of integers defining the
   743  // location of the leftmost match of the regular expression in text read from
   744  // the RuneReader. The match text was found in the input stream at
   745  // byte offset loc[0] through loc[1]-1.
   746  // A return value of nil indicates no match.
   747  func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
   748  	a := re.doExecute(r, nil, "", 0, 2, nil)
   749  	if a == nil {
   750  		return nil
   751  	}
   752  	return a[0:2]
   753  }
   754  
   755  // FindSubmatch returns a slice of slices holding the text of the leftmost
   756  // match of the regular expression in b and the matches, if any, of its
   757  // subexpressions, as defined by the 'Submatch' descriptions in the package
   758  // comment.
   759  // A return value of nil indicates no match.
   760  func (re *Regexp) FindSubmatch(b []byte) [][]byte {
   761  	var dstCap [4]int
   762  	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
   763  	if a == nil {
   764  		return nil
   765  	}
   766  	ret := make([][]byte, 1+re.numSubexp)
   767  	for i := range ret {
   768  		if 2*i < len(a) && a[2*i] >= 0 {
   769  			ret[i] = b[a[2*i]:a[2*i+1]]
   770  		}
   771  	}
   772  	return ret
   773  }
   774  
   775  // Expand appends template to dst and returns the result; during the
   776  // append, Expand replaces variables in the template with corresponding
   777  // matches drawn from src. The match slice should have been returned by
   778  // FindSubmatchIndex.
   779  //
   780  // In the template, a variable is denoted by a substring of the form
   781  // $name or ${name}, where name is a non-empty sequence of letters,
   782  // digits, and underscores. A purely numeric name like $1 refers to
   783  // the submatch with the corresponding index; other names refer to
   784  // capturing parentheses named with the (?P<name>...) syntax. A
   785  // reference to an out of range or unmatched index or a name that is not
   786  // present in the regular expression is replaced with an empty slice.
   787  //
   788  // In the $name form, name is taken to be as long as possible: $1x is
   789  // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
   790  //
   791  // To insert a literal $ in the output, use $$ in the template.
   792  func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
   793  	return re.expand(dst, string(template), src, "", match)
   794  }
   795  
   796  // ExpandString is like Expand but the template and source are strings.
   797  // It appends to and returns a byte slice in order to give the calling
   798  // code control over allocation.
   799  func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
   800  	return re.expand(dst, template, nil, src, match)
   801  }
   802  
   803  func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
   804  	for len(template) > 0 {
   805  		i := strings.Index(template, "$")
   806  		if i < 0 {
   807  			break
   808  		}
   809  		dst = append(dst, template[:i]...)
   810  		template = template[i:]
   811  		if len(template) > 1 && template[1] == '$' {
   812  			// Treat $$ as $.
   813  			dst = append(dst, '$')
   814  			template = template[2:]
   815  			continue
   816  		}
   817  		name, num, rest, ok := extract(template)
   818  		if !ok {
   819  			// Malformed; treat $ as raw text.
   820  			dst = append(dst, '$')
   821  			template = template[1:]
   822  			continue
   823  		}
   824  		template = rest
   825  		if num >= 0 {
   826  			if 2*num+1 < len(match) && match[2*num] >= 0 {
   827  				if bsrc != nil {
   828  					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
   829  				} else {
   830  					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
   831  				}
   832  			}
   833  		} else {
   834  			for i, namei := range re.subexpNames {
   835  				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
   836  					if bsrc != nil {
   837  						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
   838  					} else {
   839  						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
   840  					}
   841  					break
   842  				}
   843  			}
   844  		}
   845  	}
   846  	dst = append(dst, template...)
   847  	return dst
   848  }
   849  
   850  // extract returns the name from a leading "$name" or "${name}" in str.
   851  // If it is a number, extract returns num set to that number; otherwise num = -1.
   852  func extract(str string) (name string, num int, rest string, ok bool) {
   853  	if len(str) < 2 || str[0] != '$' {
   854  		return
   855  	}
   856  	brace := false
   857  	if str[1] == '{' {
   858  		brace = true
   859  		str = str[2:]
   860  	} else {
   861  		str = str[1:]
   862  	}
   863  	i := 0
   864  	for i < len(str) {
   865  		rune, size := utf8.DecodeRuneInString(str[i:])
   866  		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
   867  			break
   868  		}
   869  		i += size
   870  	}
   871  	if i == 0 {
   872  		// empty name is not okay
   873  		return
   874  	}
   875  	name = str[:i]
   876  	if brace {
   877  		if i >= len(str) || str[i] != '}' {
   878  			// missing closing brace
   879  			return
   880  		}
   881  		i++
   882  	}
   883  
   884  	// Parse number.
   885  	num = 0
   886  	for i := 0; i < len(name); i++ {
   887  		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
   888  			num = -1
   889  			break
   890  		}
   891  		num = num*10 + int(name[i]) - '0'
   892  	}
   893  	// Disallow leading zeros.
   894  	if name[0] == '0' && len(name) > 1 {
   895  		num = -1
   896  	}
   897  
   898  	rest = str[i:]
   899  	ok = true
   900  	return
   901  }
   902  
   903  // FindSubmatchIndex returns a slice holding the index pairs identifying the
   904  // leftmost match of the regular expression in b and the matches, if any, of
   905  // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
   906  // in the package comment.
   907  // A return value of nil indicates no match.
   908  func (re *Regexp) FindSubmatchIndex(b []byte) []int {
   909  	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
   910  }
   911  
   912  // FindStringSubmatch returns a slice of strings holding the text of the
   913  // leftmost match of the regular expression in s and the matches, if any, of
   914  // its subexpressions, as defined by the 'Submatch' description in the
   915  // package comment.
   916  // A return value of nil indicates no match.
   917  func (re *Regexp) FindStringSubmatch(s string) []string {
   918  	var dstCap [4]int
   919  	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
   920  	if a == nil {
   921  		return nil
   922  	}
   923  	ret := make([]string, 1+re.numSubexp)
   924  	for i := range ret {
   925  		if 2*i < len(a) && a[2*i] >= 0 {
   926  			ret[i] = s[a[2*i]:a[2*i+1]]
   927  		}
   928  	}
   929  	return ret
   930  }
   931  
   932  // FindStringSubmatchIndex returns a slice holding the index pairs
   933  // identifying the leftmost match of the regular expression in s and the
   934  // matches, if any, of its subexpressions, as defined by the 'Submatch' and
   935  // 'Index' descriptions in the package comment.
   936  // A return value of nil indicates no match.
   937  func (re *Regexp) FindStringSubmatchIndex(s string) []int {
   938  	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
   939  }
   940  
   941  // FindReaderSubmatchIndex returns a slice holding the index pairs
   942  // identifying the leftmost match of the regular expression of text read by
   943  // the RuneReader, and the matches, if any, of its subexpressions, as defined
   944  // by the 'Submatch' and 'Index' descriptions in the package comment. A
   945  // return value of nil indicates no match.
   946  func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
   947  	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
   948  }
   949  
   950  const startSize = 10 // The size at which to start a slice in the 'All' routines.
   951  
   952  // FindAll is the 'All' version of Find; it returns a slice of all successive
   953  // matches of the expression, as defined by the 'All' description in the
   954  // package comment.
   955  // A return value of nil indicates no match.
   956  func (re *Regexp) FindAll(b []byte, n int) [][]byte {
   957  	if n < 0 {
   958  		n = len(b) + 1
   959  	}
   960  	result := make([][]byte, 0, startSize)
   961  	re.allMatches("", b, n, func(match []int) {
   962  		result = append(result, b[match[0]:match[1]])
   963  	})
   964  	if len(result) == 0 {
   965  		return nil
   966  	}
   967  	return result
   968  }
   969  
   970  // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
   971  // successive matches of the expression, as defined by the 'All' description
   972  // in the package comment.
   973  // A return value of nil indicates no match.
   974  func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
   975  	if n < 0 {
   976  		n = len(b) + 1
   977  	}
   978  	result := make([][]int, 0, startSize)
   979  	re.allMatches("", b, n, func(match []int) {
   980  		result = append(result, match[0:2])
   981  	})
   982  	if len(result) == 0 {
   983  		return nil
   984  	}
   985  	return result
   986  }
   987  
   988  // FindAllString is the 'All' version of FindString; it returns a slice of all
   989  // successive matches of the expression, as defined by the 'All' description
   990  // in the package comment.
   991  // A return value of nil indicates no match.
   992  func (re *Regexp) FindAllString(s string, n int) []string {
   993  	if n < 0 {
   994  		n = len(s) + 1
   995  	}
   996  	result := make([]string, 0, startSize)
   997  	re.allMatches(s, nil, n, func(match []int) {
   998  		result = append(result, s[match[0]:match[1]])
   999  	})
  1000  	if len(result) == 0 {
  1001  		return nil
  1002  	}
  1003  	return result
  1004  }
  1005  
  1006  // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
  1007  // slice of all successive matches of the expression, as defined by the 'All'
  1008  // description in the package comment.
  1009  // A return value of nil indicates no match.
  1010  func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
  1011  	if n < 0 {
  1012  		n = len(s) + 1
  1013  	}
  1014  	result := make([][]int, 0, startSize)
  1015  	re.allMatches(s, nil, n, func(match []int) {
  1016  		result = append(result, match[0:2])
  1017  	})
  1018  	if len(result) == 0 {
  1019  		return nil
  1020  	}
  1021  	return result
  1022  }
  1023  
  1024  // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
  1025  // of all successive matches of the expression, as defined by the 'All'
  1026  // description in the package comment.
  1027  // A return value of nil indicates no match.
  1028  func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
  1029  	if n < 0 {
  1030  		n = len(b) + 1
  1031  	}
  1032  	result := make([][][]byte, 0, startSize)
  1033  	re.allMatches("", b, n, func(match []int) {
  1034  		slice := make([][]byte, len(match)/2)
  1035  		for j := range slice {
  1036  			if match[2*j] >= 0 {
  1037  				slice[j] = b[match[2*j]:match[2*j+1]]
  1038  			}
  1039  		}
  1040  		result = append(result, slice)
  1041  	})
  1042  	if len(result) == 0 {
  1043  		return nil
  1044  	}
  1045  	return result
  1046  }
  1047  
  1048  // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
  1049  // a slice of all successive matches of the expression, as defined by the
  1050  // 'All' description in the package comment.
  1051  // A return value of nil indicates no match.
  1052  func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
  1053  	if n < 0 {
  1054  		n = len(b) + 1
  1055  	}
  1056  	result := make([][]int, 0, startSize)
  1057  	re.allMatches("", b, n, func(match []int) {
  1058  		result = append(result, match)
  1059  	})
  1060  	if len(result) == 0 {
  1061  		return nil
  1062  	}
  1063  	return result
  1064  }
  1065  
  1066  // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
  1067  // returns a slice of all successive matches of the expression, as defined by
  1068  // the 'All' description in the package comment.
  1069  // A return value of nil indicates no match.
  1070  func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
  1071  	if n < 0 {
  1072  		n = len(s) + 1
  1073  	}
  1074  	result := make([][]string, 0, startSize)
  1075  	re.allMatches(s, nil, n, func(match []int) {
  1076  		slice := make([]string, len(match)/2)
  1077  		for j := range slice {
  1078  			if match[2*j] >= 0 {
  1079  				slice[j] = s[match[2*j]:match[2*j+1]]
  1080  			}
  1081  		}
  1082  		result = append(result, slice)
  1083  	})
  1084  	if len(result) == 0 {
  1085  		return nil
  1086  	}
  1087  	return result
  1088  }
  1089  
  1090  // FindAllStringSubmatchIndex is the 'All' version of
  1091  // FindStringSubmatchIndex; it returns a slice of all successive matches of
  1092  // the expression, as defined by the 'All' description in the package
  1093  // comment.
  1094  // A return value of nil indicates no match.
  1095  func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
  1096  	if n < 0 {
  1097  		n = len(s) + 1
  1098  	}
  1099  	result := make([][]int, 0, startSize)
  1100  	re.allMatches(s, nil, n, func(match []int) {
  1101  		result = append(result, match)
  1102  	})
  1103  	if len(result) == 0 {
  1104  		return nil
  1105  	}
  1106  	return result
  1107  }
  1108  
  1109  // Split slices s into substrings separated by the expression and returns a slice of
  1110  // the substrings between those expression matches.
  1111  //
  1112  // The slice returned by this method consists of all the substrings of s
  1113  // not contained in the slice returned by FindAllString. When called on an expression
  1114  // that contains no metacharacters, it is equivalent to strings.SplitN.
  1115  //
  1116  // Example:
  1117  //   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
  1118  //   // s: ["", "b", "b", "c", "cadaaae"]
  1119  //
  1120  // The count determines the number of substrings to return:
  1121  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
  1122  //   n == 0: the result is nil (zero substrings)
  1123  //   n < 0: all substrings
  1124  func (re *Regexp) Split(s string, n int) []string {
  1125  
  1126  	if n == 0 {
  1127  		return nil
  1128  	}
  1129  
  1130  	if len(re.expr) > 0 && len(s) == 0 {
  1131  		return []string{""}
  1132  	}
  1133  
  1134  	matches := re.FindAllStringIndex(s, n)
  1135  	strings := make([]string, 0, len(matches))
  1136  
  1137  	beg := 0
  1138  	end := 0
  1139  	for _, match := range matches {
  1140  		if n > 0 && len(strings) >= n-1 {
  1141  			break
  1142  		}
  1143  
  1144  		end = match[0]
  1145  		if match[1] != 0 {
  1146  			strings = append(strings, s[beg:end])
  1147  		}
  1148  		beg = match[1]
  1149  	}
  1150  
  1151  	if end != len(s) {
  1152  		strings = append(strings, s[beg:])
  1153  	}
  1154  
  1155  	return strings
  1156  }