github.com/razvanm/vanadium-go-1.3@v0.0.0-20160721203343-4a65068e5915/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of October 27, 2014",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <!--
     8  TODO
     9  [ ] need language about function/method calls and parameter passing rules
    10  [ ] last paragraph of #Assignments (constant promotion) should be elsewhere
    11      and mention assignment to empty interface.
    12  [ ] need to say something about "scope" of selectors?
    13  [ ] clarify what a field name is in struct declarations
    14      (struct{T} vs struct {T T} vs struct {t T})
    15  [ ] need explicit language about the result type of operations
    16  [ ] should probably write something about evaluation order of statements even
    17  	though obvious
    18  [ ] in Selectors section, clarify what receiver value is passed in method invocations
    19  -->
    20  
    21  
    22  <h2 id="Introduction">Introduction</h2>
    23  
    24  <p>
    25  This is a reference manual for the Go programming language. For
    26  more information and other documents, see <a href="/">golang.org</a>.
    27  </p>
    28  
    29  <p>
    30  Go is a general-purpose language designed with systems programming
    31  in mind. It is strongly typed and garbage-collected and has explicit
    32  support for concurrent programming.  Programs are constructed from
    33  <i>packages</i>, whose properties allow efficient management of
    34  dependencies. The existing implementations use a traditional
    35  compile/link model to generate executable binaries.
    36  </p>
    37  
    38  <p>
    39  The grammar is compact and regular, allowing for easy analysis by
    40  automatic tools such as integrated development environments.
    41  </p>
    42  
    43  <h2 id="Notation">Notation</h2>
    44  <p>
    45  The syntax is specified using Extended Backus-Naur Form (EBNF):
    46  </p>
    47  
    48  <pre class="grammar">
    49  Production  = production_name "=" [ Expression ] "." .
    50  Expression  = Alternative { "|" Alternative } .
    51  Alternative = Term { Term } .
    52  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    53  Group       = "(" Expression ")" .
    54  Option      = "[" Expression "]" .
    55  Repetition  = "{" Expression "}" .
    56  </pre>
    57  
    58  <p>
    59  Productions are expressions constructed from terms and the following
    60  operators, in increasing precedence:
    61  </p>
    62  <pre class="grammar">
    63  |   alternation
    64  ()  grouping
    65  []  option (0 or 1 times)
    66  {}  repetition (0 to n times)
    67  </pre>
    68  
    69  <p>
    70  Lower-case production names are used to identify lexical tokens.
    71  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    72  double quotes <code>""</code> or back quotes <code>``</code>.
    73  </p>
    74  
    75  <p>
    76  The form <code>a … b</code> represents the set of characters from
    77  <code>a</code> through <code>b</code> as alternatives. The horizontal
    78  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    79  enumerations or code snippets that are not further specified. The character <code>…</code>
    80  (as opposed to the three characters <code>...</code>) is not a token of the Go
    81  language.
    82  </p>
    83  
    84  <h2 id="Source_code_representation">Source code representation</h2>
    85  
    86  <p>
    87  Source code is Unicode text encoded in
    88  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    89  canonicalized, so a single accented code point is distinct from the
    90  same character constructed from combining an accent and a letter;
    91  those are treated as two code points.  For simplicity, this document
    92  will use the unqualified term <i>character</i> to refer to a Unicode code point
    93  in the source text.
    94  </p>
    95  <p>
    96  Each code point is distinct; for instance, upper and lower case letters
    97  are different characters.
    98  </p>
    99  <p>
   100  Implementation restriction: For compatibility with other tools, a
   101  compiler may disallow the NUL character (U+0000) in the source text.
   102  </p>
   103  <p>
   104  Implementation restriction: For compatibility with other tools, a
   105  compiler may ignore a UTF-8-encoded byte order mark
   106  (U+FEFF) if it is the first Unicode code point in the source text.
   107  A byte order mark may be disallowed anywhere else in the source.
   108  </p>
   109  
   110  <h3 id="Characters">Characters</h3>
   111  
   112  <p>
   113  The following terms are used to denote specific Unicode character classes:
   114  </p>
   115  <pre class="ebnf">
   116  newline        = /* the Unicode code point U+000A */ .
   117  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   118  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   119  unicode_digit  = /* a Unicode code point classified as "Decimal Digit" */ .
   120  </pre>
   121  
   122  <p>
   123  In <a href="http://www.unicode.org/versions/Unicode6.3.0/">The Unicode Standard 6.3</a>,
   124  Section 4.5 "General Category"
   125  defines a set of character categories.  Go treats
   126  those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
   127  and those in category Nd as Unicode digits.
   128  </p>
   129  
   130  <h3 id="Letters_and_digits">Letters and digits</h3>
   131  
   132  <p>
   133  The underscore character <code>_</code> (U+005F) is considered a letter.
   134  </p>
   135  <pre class="ebnf">
   136  letter        = unicode_letter | "_" .
   137  decimal_digit = "0" … "9" .
   138  octal_digit   = "0" … "7" .
   139  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   140  </pre>
   141  
   142  <h2 id="Lexical_elements">Lexical elements</h2>
   143  
   144  <h3 id="Comments">Comments</h3>
   145  
   146  <p>
   147  There are two forms of comments:
   148  </p>
   149  
   150  <ol>
   151  <li>
   152  <i>Line comments</i> start with the character sequence <code>//</code>
   153  and stop at the end of the line. A line comment acts like a newline.
   154  </li>
   155  <li>
   156  <i>General comments</i> start with the character sequence <code>/*</code>
   157  and continue through the character sequence <code>*/</code>. A general
   158  comment containing one or more newlines acts like a newline, otherwise it acts
   159  like a space.
   160  </li>
   161  </ol>
   162  
   163  <p>
   164  Comments do not nest.
   165  </p>
   166  
   167  
   168  <h3 id="Tokens">Tokens</h3>
   169  
   170  <p>
   171  Tokens form the vocabulary of the Go language.
   172  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   173  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   174  spaces (U+0020), horizontal tabs (U+0009),
   175  carriage returns (U+000D), and newlines (U+000A),
   176  is ignored except as it separates tokens
   177  that would otherwise combine into a single token. Also, a newline or end of file
   178  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   179  While breaking the input into tokens,
   180  the next token is the longest sequence of characters that form a
   181  valid token.
   182  </p>
   183  
   184  <h3 id="Semicolons">Semicolons</h3>
   185  
   186  <p>
   187  The formal grammar uses semicolons <code>";"</code> as terminators in
   188  a number of productions. Go programs may omit most of these semicolons
   189  using the following two rules:
   190  </p>
   191  
   192  <ol>
   193  <li>
   194  <p>
   195  When the input is broken into tokens, a semicolon is automatically inserted
   196  into the token stream at the end of a non-blank line if the line's final
   197  token is
   198  </p>
   199  <ul>
   200  	<li>an
   201  	    <a href="#Identifiers">identifier</a>
   202  	</li>
   203  
   204  	<li>an
   205  	    <a href="#Integer_literals">integer</a>,
   206  	    <a href="#Floating-point_literals">floating-point</a>,
   207  	    <a href="#Imaginary_literals">imaginary</a>,
   208  	    <a href="#Rune_literals">rune</a>, or
   209  	    <a href="#String_literals">string</a> literal
   210  	</li>
   211  
   212  	<li>one of the <a href="#Keywords">keywords</a>
   213  	    <code>break</code>,
   214  	    <code>continue</code>,
   215  	    <code>fallthrough</code>, or
   216  	    <code>return</code>
   217  	</li>
   218  
   219  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   220  	    <code>++</code>,
   221  	    <code>--</code>,
   222  	    <code>)</code>,
   223  	    <code>]</code>, or
   224  	    <code>}</code>
   225  	</li>
   226  </ul>
   227  </li>
   228  
   229  <li>
   230  To allow complex statements to occupy a single line, a semicolon
   231  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   232  </li>
   233  </ol>
   234  
   235  <p>
   236  To reflect idiomatic use, code examples in this document elide semicolons
   237  using these rules.
   238  </p>
   239  
   240  
   241  <h3 id="Identifiers">Identifiers</h3>
   242  
   243  <p>
   244  Identifiers name program entities such as variables and types.
   245  An identifier is a sequence of one or more letters and digits.
   246  The first character in an identifier must be a letter.
   247  </p>
   248  <pre class="ebnf">
   249  identifier = letter { letter | unicode_digit } .
   250  </pre>
   251  <pre>
   252  a
   253  _x9
   254  ThisVariableIsExported
   255  αβ
   256  </pre>
   257  
   258  <p>
   259  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   260  </p>
   261  
   262  
   263  <h3 id="Keywords">Keywords</h3>
   264  
   265  <p>
   266  The following keywords are reserved and may not be used as identifiers.
   267  </p>
   268  <pre class="grammar">
   269  break        default      func         interface    select
   270  case         defer        go           map          struct
   271  chan         else         goto         package      switch
   272  const        fallthrough  if           range        type
   273  continue     for          import       return       var
   274  </pre>
   275  
   276  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   277  
   278  <p>
   279  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   280  </p>
   281  <pre class="grammar">
   282  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   283  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   284  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   285  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   286  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   287       &amp;^          &amp;^=
   288  </pre>
   289  
   290  <h3 id="Integer_literals">Integer literals</h3>
   291  
   292  <p>
   293  An integer literal is a sequence of digits representing an
   294  <a href="#Constants">integer constant</a>.
   295  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   296  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   297  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   298  </p>
   299  <pre class="ebnf">
   300  int_lit     = decimal_lit | octal_lit | hex_lit .
   301  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   302  octal_lit   = "0" { octal_digit } .
   303  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   304  </pre>
   305  
   306  <pre>
   307  42
   308  0600
   309  0xBadFace
   310  170141183460469231731687303715884105727
   311  </pre>
   312  
   313  <h3 id="Floating-point_literals">Floating-point literals</h3>
   314  <p>
   315  A floating-point literal is a decimal representation of a
   316  <a href="#Constants">floating-point constant</a>.
   317  It has an integer part, a decimal point, a fractional part,
   318  and an exponent part.  The integer and fractional part comprise
   319  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   320  followed by an optionally signed decimal exponent.  One of the
   321  integer part or the fractional part may be elided; one of the decimal
   322  point or the exponent may be elided.
   323  </p>
   324  <pre class="ebnf">
   325  float_lit = decimals "." [ decimals ] [ exponent ] |
   326              decimals exponent |
   327              "." decimals [ exponent ] .
   328  decimals  = decimal_digit { decimal_digit } .
   329  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   330  </pre>
   331  
   332  <pre>
   333  0.
   334  72.40
   335  072.40  // == 72.40
   336  2.71828
   337  1.e+0
   338  6.67428e-11
   339  1E6
   340  .25
   341  .12345E+5
   342  </pre>
   343  
   344  <h3 id="Imaginary_literals">Imaginary literals</h3>
   345  <p>
   346  An imaginary literal is a decimal representation of the imaginary part of a
   347  <a href="#Constants">complex constant</a>.
   348  It consists of a
   349  <a href="#Floating-point_literals">floating-point literal</a>
   350  or decimal integer followed
   351  by the lower-case letter <code>i</code>.
   352  </p>
   353  <pre class="ebnf">
   354  imaginary_lit = (decimals | float_lit) "i" .
   355  </pre>
   356  
   357  <pre>
   358  0i
   359  011i  // == 11i
   360  0.i
   361  2.71828i
   362  1.e+0i
   363  6.67428e-11i
   364  1E6i
   365  .25i
   366  .12345E+5i
   367  </pre>
   368  
   369  
   370  <h3 id="Rune_literals">Rune literals</h3>
   371  
   372  <p>
   373  A rune literal represents a <a href="#Constants">rune constant</a>,
   374  an integer value identifying a Unicode code point.
   375  A rune literal is expressed as one or more characters enclosed in single quotes.
   376  Within the quotes, any character may appear except single
   377  quote and newline. A single quoted character represents the Unicode value
   378  of the character itself,
   379  while multi-character sequences beginning with a backslash encode
   380  values in various formats.
   381  </p>
   382  <p>
   383  The simplest form represents the single character within the quotes;
   384  since Go source text is Unicode characters encoded in UTF-8, multiple
   385  UTF-8-encoded bytes may represent a single integer value.  For
   386  instance, the literal <code>'a'</code> holds a single byte representing
   387  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   388  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   389  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   390  </p>
   391  <p>
   392  Several backslash escapes allow arbitrary values to be encoded as
   393  ASCII text.  There are four ways to represent the integer value
   394  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   395  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   396  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   397  plain backslash <code>\</code> followed by exactly three octal digits.
   398  In each case the value of the literal is the value represented by
   399  the digits in the corresponding base.
   400  </p>
   401  <p>
   402  Although these representations all result in an integer, they have
   403  different valid ranges.  Octal escapes must represent a value between
   404  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   405  by construction. The escapes <code>\u</code> and <code>\U</code>
   406  represent Unicode code points so within them some values are illegal,
   407  in particular those above <code>0x10FFFF</code> and surrogate halves.
   408  </p>
   409  <p>
   410  After a backslash, certain single-character escapes represent special values:
   411  </p>
   412  <pre class="grammar">
   413  \a   U+0007 alert or bell
   414  \b   U+0008 backspace
   415  \f   U+000C form feed
   416  \n   U+000A line feed or newline
   417  \r   U+000D carriage return
   418  \t   U+0009 horizontal tab
   419  \v   U+000b vertical tab
   420  \\   U+005c backslash
   421  \'   U+0027 single quote  (valid escape only within rune literals)
   422  \"   U+0022 double quote  (valid escape only within string literals)
   423  </pre>
   424  <p>
   425  All other sequences starting with a backslash are illegal inside rune literals.
   426  </p>
   427  <pre class="ebnf">
   428  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   429  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   430  byte_value       = octal_byte_value | hex_byte_value .
   431  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   432  hex_byte_value   = `\` "x" hex_digit hex_digit .
   433  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   434  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   435                             hex_digit hex_digit hex_digit hex_digit .
   436  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   437  </pre>
   438  
   439  <pre>
   440  'a'
   441  'ä'
   442  '本'
   443  '\t'
   444  '\000'
   445  '\007'
   446  '\377'
   447  '\x07'
   448  '\xff'
   449  '\u12e4'
   450  '\U00101234'
   451  'aa'         // illegal: too many characters
   452  '\xa'        // illegal: too few hexadecimal digits
   453  '\0'         // illegal: too few octal digits
   454  '\uDFFF'     // illegal: surrogate half
   455  '\U00110000' // illegal: invalid Unicode code point
   456  </pre>
   457  
   458  
   459  <h3 id="String_literals">String literals</h3>
   460  
   461  <p>
   462  A string literal represents a <a href="#Constants">string constant</a>
   463  obtained from concatenating a sequence of characters. There are two forms:
   464  raw string literals and interpreted string literals.
   465  </p>
   466  <p>
   467  Raw string literals are character sequences between back quotes
   468  <code>``</code>.  Within the quotes, any character is legal except
   469  back quote. The value of a raw string literal is the
   470  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   471  between the quotes;
   472  in particular, backslashes have no special meaning and the string may
   473  contain newlines.
   474  Carriage return characters ('\r') inside raw string literals
   475  are discarded from the raw string value.
   476  </p>
   477  <p>
   478  Interpreted string literals are character sequences between double
   479  quotes <code>&quot;&quot;</code>. The text between the quotes,
   480  which may not contain newlines, forms the
   481  value of the literal, with backslash escapes interpreted as they
   482  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   483  <code>\"</code> is legal), with the same restrictions.
   484  The three-digit octal (<code>\</code><i>nnn</i>)
   485  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   486  <i>bytes</i> of the resulting string; all other escapes represent
   487  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   488  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   489  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   490  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   491  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   492  U+00FF.
   493  </p>
   494  
   495  <pre class="ebnf">
   496  string_lit             = raw_string_lit | interpreted_string_lit .
   497  raw_string_lit         = "`" { unicode_char | newline } "`" .
   498  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   499  </pre>
   500  
   501  <pre>
   502  `abc`  // same as "abc"
   503  `\n
   504  \n`    // same as "\\n\n\\n"
   505  "\n"
   506  ""
   507  "Hello, world!\n"
   508  "日本語"
   509  "\u65e5本\U00008a9e"
   510  "\xff\u00FF"
   511  "\uD800"       // illegal: surrogate half
   512  "\U00110000"   // illegal: invalid Unicode code point
   513  </pre>
   514  
   515  <p>
   516  These examples all represent the same string:
   517  </p>
   518  
   519  <pre>
   520  "日本語"                                 // UTF-8 input text
   521  `日本語`                                 // UTF-8 input text as a raw literal
   522  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   523  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   524  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   525  </pre>
   526  
   527  <p>
   528  If the source code represents a character as two code points, such as
   529  a combining form involving an accent and a letter, the result will be
   530  an error if placed in a rune literal (it is not a single code
   531  point), and will appear as two code points if placed in a string
   532  literal.
   533  </p>
   534  
   535  
   536  <h2 id="Constants">Constants</h2>
   537  
   538  <p>There are <i>boolean constants</i>,
   539  <i>rune constants</i>,
   540  <i>integer constants</i>,
   541  <i>floating-point constants</i>, <i>complex constants</i>,
   542  and <i>string constants</i>. Rune, integer, floating-point,
   543  and complex constants are
   544  collectively called <i>numeric constants</i>.
   545  </p>
   546  
   547  <p>
   548  A constant value is represented by a
   549  <a href="#Rune_literals">rune</a>,
   550  <a href="#Integer_literals">integer</a>,
   551  <a href="#Floating-point_literals">floating-point</a>,
   552  <a href="#Imaginary_literals">imaginary</a>,
   553  or
   554  <a href="#String_literals">string</a> literal,
   555  an identifier denoting a constant,
   556  a <a href="#Constant_expressions">constant expression</a>,
   557  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   558  the result value of some built-in functions such as
   559  <code>unsafe.Sizeof</code> applied to any value,
   560  <code>cap</code> or <code>len</code> applied to
   561  <a href="#Length_and_capacity">some expressions</a>,
   562  <code>real</code> and <code>imag</code> applied to a complex constant
   563  and <code>complex</code> applied to numeric constants.
   564  The boolean truth values are represented by the predeclared constants
   565  <code>true</code> and <code>false</code>. The predeclared identifier
   566  <a href="#Iota">iota</a> denotes an integer constant.
   567  </p>
   568  
   569  <p>
   570  In general, complex constants are a form of
   571  <a href="#Constant_expressions">constant expression</a>
   572  and are discussed in that section.
   573  </p>
   574  
   575  <p>
   576  Numeric constants represent values of arbitrary precision and do not overflow.
   577  </p>
   578  
   579  <p>
   580  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   581  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   582  and certain <a href="#Constant_expressions">constant expressions</a>
   583  containing only untyped constant operands are untyped.
   584  </p>
   585  
   586  <p>
   587  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   588  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   589  <a href="#Variable_declarations">variable declaration</a> or an
   590  <a href="#Assignments">assignment</a> or as an
   591  operand in an <a href="#Expressions">expression</a>.
   592  It is an error if the constant value
   593  cannot be represented as a value of the respective type.
   594  For instance, <code>3.0</code> can be given any integer or any
   595  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   596  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   597  not <code>int32</code> or <code>string</code>.
   598  </p>
   599  
   600  <p>
   601  An untyped constant has a <i>default type</i> which is the type to which the
   602  constant is implicitly converted in contexts where a typed value is required,
   603  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   604  such as <code>i := 0</code> where there is no explicit type.
   605  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   606  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   607  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   608  complex, or string constant.
   609  </p>
   610  
   611  <p>
   612  There are no constants denoting the IEEE-754 infinity and not-a-number values,
   613  but the <a href="/pkg/math/"><code>math</code> package</a>'s
   614  <a href="/pkg/math/#Inf">Inf</a>,
   615  <a href="/pkg/math/#NaN">NaN</a>,
   616  <a href="/pkg/math/#IsInf">IsInf</a>, and
   617  <a href="/pkg/math/#IsNaN">IsNaN</a>
   618  functions return and test for those values at run time.
   619  </p>
   620  
   621  <p>
   622  Implementation restriction: Although numeric constants have arbitrary
   623  precision in the language, a compiler may implement them using an
   624  internal representation with limited precision.  That said, every
   625  implementation must:
   626  </p>
   627  <ul>
   628  	<li>Represent integer constants with at least 256 bits.</li>
   629  
   630  	<li>Represent floating-point constants, including the parts of
   631  	    a complex constant, with a mantissa of at least 256 bits
   632  	    and a signed exponent of at least 32 bits.</li>
   633  
   634  	<li>Give an error if unable to represent an integer constant
   635  	    precisely.</li>
   636  
   637  	<li>Give an error if unable to represent a floating-point or
   638  	    complex constant due to overflow.</li>
   639  
   640  	<li>Round to the nearest representable constant if unable to
   641  	    represent a floating-point or complex constant due to limits
   642  	    on precision.</li>
   643  </ul>
   644  <p>
   645  These requirements apply both to literal constants and to the result
   646  of evaluating <a href="#Constant_expressions">constant
   647  expressions</a>.
   648  </p>
   649  
   650  <h2 id="Variables">Variables</h2>
   651  
   652  <p>
   653  A variable is a storage location for holding a <i>value</i>.
   654  The set of permissible values is determined by the
   655  variable's <i><a href="#Types">type</a></i>.
   656  </p>
   657  
   658  <p>
   659  A <a href="#Variable_declarations">variable declaration</a>
   660  or, for function parameters and results, the signature
   661  of a <a href="#Function_declarations">function declaration</a>
   662  or <a href="#Function_literals">function literal</a> reserves
   663  storage for a named variable.
   664  
   665  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   666  or taking the address of a <a href="#Composite_literals">composite literal</a>
   667  allocates storage for a variable at run time.
   668  Such an anonymous variable is referred to via a (possibly implicit)
   669  <a href="#Address_operators">pointer indirection</a>.
   670  </p>
   671  
   672  <p>
   673  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   674  and <a href="#Struct_types">struct</a> types have elements and fields that may
   675  be <a href="#Address_operators">addressed</a> individually. Each such element
   676  acts like a variable.
   677  </p>
   678  
   679  <p>
   680  The <i>static type</i> (or just <i>type</i>) of a variable is the	
   681  type given in its declaration, the type provided in the
   682  <code>new</code> call or composite literal, or the type of
   683  an element of a structured variable.
   684  Variables of interface type also have a distinct <i>dynamic type</i>,
   685  which is the concrete type of the value assigned to the variable at run time
   686  (unless the value is the predeclared identifier <code>nil</code>,
   687  which has no type).
   688  The dynamic type may vary during execution but values stored in interface
   689  variables are always <a href="#Assignability">assignable</a>
   690  to the static type of the variable.	
   691  </p>	
   692  
   693  <pre>
   694  var x interface{}  // x is nil and has static type interface{}
   695  var v *T           // v has value nil, static type *T
   696  x = 42             // x has value 42 and dynamic type int
   697  x = v              // x has value (*T)(nil) and dynamic type *T
   698  </pre>
   699  
   700  <p>
   701  A variable's value is retrieved by referring to the variable in an
   702  <a href="#Expressions">expression</a>; it is the most recent value
   703  <a href="#Assignments">assigned</a> to the variable.
   704  If a variable has not yet been assigned a value, its value is the
   705  <a href="#The_zero_value">zero value</a> for its type.
   706  </p>
   707  
   708  
   709  <h2 id="Types">Types</h2>
   710  
   711  <p>
   712  A type determines the set of values and operations specific to values of that
   713  type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
   714  by a (possibly <a href="#Qualified_identifiers">qualified</a>)
   715  <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
   716  using a <i>type literal</i>, which composes a new type from existing types.
   717  </p>
   718  
   719  <pre class="ebnf">
   720  Type      = TypeName | TypeLit | "(" Type ")" .
   721  TypeName  = identifier | QualifiedIdent .
   722  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   723  	    SliceType | MapType | ChannelType .
   724  </pre>
   725  
   726  <p>
   727  Named instances of the boolean, numeric, and string types are
   728  <a href="#Predeclared_identifiers">predeclared</a>.
   729  <i>Composite types</i>&mdash;array, struct, pointer, function,
   730  interface, slice, map, and channel types&mdash;may be constructed using
   731  type literals.
   732  </p>
   733  
   734  <p>
   735  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   736  is one of the predeclared boolean, numeric, or string types, or a type literal,
   737  the corresponding underlying
   738  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   739  is the underlying type of the type to which <code>T</code> refers in its
   740  <a href="#Type_declarations">type declaration</a>.
   741  </p>
   742  
   743  <pre>
   744     type T1 string
   745     type T2 T1
   746     type T3 []T1
   747     type T4 T3
   748  </pre>
   749  
   750  <p>
   751  The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
   752  is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
   753  and <code>T4</code> is <code>[]T1</code>.
   754  </p>
   755  
   756  <h3 id="Method_sets">Method sets</h3>
   757  <p>
   758  A type may have a <i>method set</i> associated with it.
   759  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   760  The method set of any other type <code>T</code> consists of all
   761  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   762  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   763  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   764  (that is, it also contains the method set of <code>T</code>).
   765  Further rules apply to structs containing anonymous fields, as described
   766  in the section on <a href="#Struct_types">struct types</a>.
   767  Any other type has an empty method set.
   768  In a method set, each method must have a
   769  <a href="#Uniqueness_of_identifiers">unique</a>
   770  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   771  </p>
   772  
   773  <p>
   774  The method set of a type determines the interfaces that the
   775  type <a href="#Interface_types">implements</a>
   776  and the methods that can be <a href="#Calls">called</a>
   777  using a receiver of that type.
   778  </p>
   779  
   780  <h3 id="Boolean_types">Boolean types</h3>
   781  
   782  <p>
   783  A <i>boolean type</i> represents the set of Boolean truth values
   784  denoted by the predeclared constants <code>true</code>
   785  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   786  </p>
   787  
   788  <h3 id="Numeric_types">Numeric types</h3>
   789  
   790  <p>
   791  A <i>numeric type</i> represents sets of integer or floating-point values.
   792  The predeclared architecture-independent numeric types are:
   793  </p>
   794  
   795  <pre class="grammar">
   796  uint8       the set of all unsigned  8-bit integers (0 to 255)
   797  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   798  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   799  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   800  
   801  int8        the set of all signed  8-bit integers (-128 to 127)
   802  int16       the set of all signed 16-bit integers (-32768 to 32767)
   803  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   804  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   805  
   806  float32     the set of all IEEE-754 32-bit floating-point numbers
   807  float64     the set of all IEEE-754 64-bit floating-point numbers
   808  
   809  complex64   the set of all complex numbers with float32 real and imaginary parts
   810  complex128  the set of all complex numbers with float64 real and imaginary parts
   811  
   812  byte        alias for uint8
   813  rune        alias for int32
   814  </pre>
   815  
   816  <p>
   817  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   818  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   819  </p>
   820  
   821  <p>
   822  There is also a set of predeclared numeric types with implementation-specific sizes:
   823  </p>
   824  
   825  <pre class="grammar">
   826  uint     either 32 or 64 bits
   827  int      same size as uint
   828  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   829  </pre>
   830  
   831  <p>
   832  To avoid portability issues all numeric types are distinct except
   833  <code>byte</code>, which is an alias for <code>uint8</code>, and
   834  <code>rune</code>, which is an alias for <code>int32</code>.
   835  Conversions
   836  are required when different numeric types are mixed in an expression
   837  or assignment. For instance, <code>int32</code> and <code>int</code>
   838  are not the same type even though they may have the same size on a
   839  particular architecture.
   840  
   841  
   842  <h3 id="String_types">String types</h3>
   843  
   844  <p>
   845  A <i>string type</i> represents the set of string values.
   846  A string value is a (possibly empty) sequence of bytes.
   847  Strings are immutable: once created,
   848  it is impossible to change the contents of a string.
   849  The predeclared string type is <code>string</code>.
   850  </p>
   851  
   852  <p>
   853  The length of a string <code>s</code> (its size in bytes) can be discovered using
   854  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   855  The length is a compile-time constant if the string is a constant.
   856  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   857  0 through <code>len(s)-1</code>.
   858  It is illegal to take the address of such an element; if
   859  <code>s[i]</code> is the <code>i</code>'th byte of a
   860  string, <code>&amp;s[i]</code> is invalid.
   861  </p>
   862  
   863  
   864  <h3 id="Array_types">Array types</h3>
   865  
   866  <p>
   867  An array is a numbered sequence of elements of a single
   868  type, called the element type.
   869  The number of elements is called the length and is never
   870  negative.
   871  </p>
   872  
   873  <pre class="ebnf">
   874  ArrayType   = "[" ArrayLength "]" ElementType .
   875  ArrayLength = Expression .
   876  ElementType = Type .
   877  </pre>
   878  
   879  <p>
   880  The length is part of the array's type; it must evaluate to a
   881  non-negative <a href="#Constants">constant</a> representable by a value
   882  of type <code>int</code>.
   883  The length of array <code>a</code> can be discovered
   884  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   885  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   886  0 through <code>len(a)-1</code>.
   887  Array types are always one-dimensional but may be composed to form
   888  multi-dimensional types.
   889  </p>
   890  
   891  <pre>
   892  [32]byte
   893  [2*N] struct { x, y int32 }
   894  [1000]*float64
   895  [3][5]int
   896  [2][2][2]float64  // same as [2]([2]([2]float64))
   897  </pre>
   898  
   899  <h3 id="Slice_types">Slice types</h3>
   900  
   901  <p>
   902  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   903  provides access to a numbered sequence of elements from that array.
   904  A slice type denotes the set of all slices of arrays of its element type.
   905  The value of an uninitialized slice is <code>nil</code>.
   906  </p>
   907  
   908  <pre class="ebnf">
   909  SliceType = "[" "]" ElementType .
   910  </pre>
   911  
   912  <p>
   913  Like arrays, slices are indexable and have a length.  The length of a
   914  slice <code>s</code> can be discovered by the built-in function
   915  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   916  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   917  0 through <code>len(s)-1</code>.  The slice index of a
   918  given element may be less than the index of the same element in the
   919  underlying array.
   920  </p>
   921  <p>
   922  A slice, once initialized, is always associated with an underlying
   923  array that holds its elements.  A slice therefore shares storage
   924  with its array and with other slices of the same array; by contrast,
   925  distinct arrays always represent distinct storage.
   926  </p>
   927  <p>
   928  The array underlying a slice may extend past the end of the slice.
   929  The <i>capacity</i> is a measure of that extent: it is the sum of
   930  the length of the slice and the length of the array beyond the slice;
   931  a slice of length up to that capacity can be created by
   932  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   933  The capacity of a slice <code>a</code> can be discovered using the
   934  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   935  </p>
   936  
   937  <p>
   938  A new, initialized slice value for a given element type <code>T</code> is
   939  made using the built-in function
   940  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   941  which takes a slice type
   942  and parameters specifying the length and optionally the capacity.
   943  A slice created with <code>make</code> always allocates a new, hidden array
   944  to which the returned slice value refers. That is, executing
   945  </p>
   946  
   947  <pre>
   948  make([]T, length, capacity)
   949  </pre>
   950  
   951  <p>
   952  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   953  it, so these two expressions are equivalent:
   954  </p>
   955  
   956  <pre>
   957  make([]int, 50, 100)
   958  new([100]int)[0:50]
   959  </pre>
   960  
   961  <p>
   962  Like arrays, slices are always one-dimensional but may be composed to construct
   963  higher-dimensional objects.
   964  With arrays of arrays, the inner arrays are, by construction, always the same length;
   965  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   966  Moreover, the inner slices must be initialized individually.
   967  </p>
   968  
   969  <h3 id="Struct_types">Struct types</h3>
   970  
   971  <p>
   972  A struct is a sequence of named elements, called fields, each of which has a
   973  name and a type. Field names may be specified explicitly (IdentifierList) or
   974  implicitly (AnonymousField).
   975  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   976  be <a href="#Uniqueness_of_identifiers">unique</a>.
   977  </p>
   978  
   979  <pre class="ebnf">
   980  StructType     = "struct" "{" { FieldDecl ";" } "}" .
   981  FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
   982  AnonymousField = [ "*" ] TypeName .
   983  Tag            = string_lit .
   984  </pre>
   985  
   986  <pre>
   987  // An empty struct.
   988  struct {}
   989  
   990  // A struct with 6 fields.
   991  struct {
   992  	x, y int
   993  	u float32
   994  	_ float32  // padding
   995  	A *[]int
   996  	F func()
   997  }
   998  </pre>
   999  
  1000  <p>
  1001  A field declared with a type but no explicit field name is an <i>anonymous field</i>,
  1002  also called an <i>embedded</i> field or an embedding of the type in the struct.
  1003  An embedded type must be specified as
  1004  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
  1005  and <code>T</code> itself may not be
  1006  a pointer type. The unqualified type name acts as the field name.
  1007  </p>
  1008  
  1009  <pre>
  1010  // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
  1011  struct {
  1012  	T1        // field name is T1
  1013  	*T2       // field name is T2
  1014  	P.T3      // field name is T3
  1015  	*P.T4     // field name is T4
  1016  	x, y int  // field names are x and y
  1017  }
  1018  </pre>
  1019  
  1020  <p>
  1021  The following declaration is illegal because field names must be unique
  1022  in a struct type:
  1023  </p>
  1024  
  1025  <pre>
  1026  struct {
  1027  	T     // conflicts with anonymous field *T and *P.T
  1028  	*T    // conflicts with anonymous field T and *P.T
  1029  	*P.T  // conflicts with anonymous field T and *T
  1030  }
  1031  </pre>
  1032  
  1033  <p>
  1034  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1035  anonymous field in a struct <code>x</code> is called <i>promoted</i> if
  1036  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1037  that field or method <code>f</code>.
  1038  </p>
  1039  
  1040  <p>
  1041  Promoted fields act like ordinary fields
  1042  of a struct except that they cannot be used as field names in
  1043  <a href="#Composite_literals">composite literals</a> of the struct.
  1044  </p>
  1045  
  1046  <p>
  1047  Given a struct type <code>S</code> and a type named <code>T</code>,
  1048  promoted methods are included in the method set of the struct as follows:
  1049  </p>
  1050  <ul>
  1051  	<li>
  1052  	If <code>S</code> contains an anonymous field <code>T</code>,
  1053  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1054  	and <code>*S</code> both include promoted methods with receiver
  1055  	<code>T</code>. The method set of <code>*S</code> also
  1056  	includes promoted methods with receiver <code>*T</code>.
  1057  	</li>
  1058  
  1059  	<li>
  1060  	If <code>S</code> contains an anonymous field <code>*T</code>,
  1061  	the method sets of <code>S</code> and <code>*S</code> both
  1062  	include promoted methods with receiver <code>T</code> or
  1063  	<code>*T</code>.
  1064  	</li>
  1065  </ul>
  1066  
  1067  <p>
  1068  A field declaration may be followed by an optional string literal <i>tag</i>,
  1069  which becomes an attribute for all the fields in the corresponding
  1070  field declaration. The tags are made
  1071  visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1072  and take part in <a href="#Type_identity">type identity</a> for structs
  1073  but are otherwise ignored.
  1074  </p>
  1075  
  1076  <pre>
  1077  // A struct corresponding to the TimeStamp protocol buffer.
  1078  // The tag strings define the protocol buffer field numbers.
  1079  struct {
  1080  	microsec  uint64 "field 1"
  1081  	serverIP6 uint64 "field 2"
  1082  	process   string "field 3"
  1083  }
  1084  </pre>
  1085  
  1086  <h3 id="Pointer_types">Pointer types</h3>
  1087  
  1088  <p>
  1089  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1090  type, called the <i>base type</i> of the pointer.
  1091  The value of an uninitialized pointer is <code>nil</code>.
  1092  </p>
  1093  
  1094  <pre class="ebnf">
  1095  PointerType = "*" BaseType .
  1096  BaseType    = Type .
  1097  </pre>
  1098  
  1099  <pre>
  1100  *Point
  1101  *[4]int
  1102  </pre>
  1103  
  1104  <h3 id="Function_types">Function types</h3>
  1105  
  1106  <p>
  1107  A function type denotes the set of all functions with the same parameter
  1108  and result types. The value of an uninitialized variable of function type
  1109  is <code>nil</code>.
  1110  </p>
  1111  
  1112  <pre class="ebnf">
  1113  FunctionType   = "func" Signature .
  1114  Signature      = Parameters [ Result ] .
  1115  Result         = Parameters | Type .
  1116  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1117  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1118  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1119  </pre>
  1120  
  1121  <p>
  1122  Within a list of parameters or results, the names (IdentifierList)
  1123  must either all be present or all be absent. If present, each name
  1124  stands for one item (parameter or result) of the specified type and
  1125  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1126  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1127  If absent, each type stands for one item of that type.
  1128  Parameter and result
  1129  lists are always parenthesized except that if there is exactly
  1130  one unnamed result it may be written as an unparenthesized type.
  1131  </p>
  1132  
  1133  <p>
  1134  The final parameter in a function signature may have
  1135  a type prefixed with <code>...</code>.
  1136  A function with such a parameter is called <i>variadic</i> and
  1137  may be invoked with zero or more arguments for that parameter.
  1138  </p>
  1139  
  1140  <pre>
  1141  func()
  1142  func(x int) int
  1143  func(a, _ int, z float32) bool
  1144  func(a, b int, z float32) (bool)
  1145  func(prefix string, values ...int)
  1146  func(a, b int, z float64, opt ...interface{}) (success bool)
  1147  func(int, int, float64) (float64, *[]int)
  1148  func(n int) func(p *T)
  1149  </pre>
  1150  
  1151  
  1152  <h3 id="Interface_types">Interface types</h3>
  1153  
  1154  <p>
  1155  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1156  A variable of interface type can store a value of any type with a method set
  1157  that is any superset of the interface. Such a type is said to
  1158  <i>implement the interface</i>.
  1159  The value of an uninitialized variable of interface type is <code>nil</code>.
  1160  </p>
  1161  
  1162  <pre class="ebnf">
  1163  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1164  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1165  MethodName         = identifier .
  1166  InterfaceTypeName  = TypeName .
  1167  </pre>
  1168  
  1169  <p>
  1170  As with all method sets, in an interface type, each method must have a
  1171  <a href="#Uniqueness_of_identifiers">unique</a>
  1172  non-<a href="#Blank_identifier">blank</a> name.
  1173  </p>
  1174  
  1175  <pre>
  1176  // A simple File interface
  1177  interface {
  1178  	Read(b Buffer) bool
  1179  	Write(b Buffer) bool
  1180  	Close()
  1181  }
  1182  </pre>
  1183  
  1184  <p>
  1185  More than one type may implement an interface.
  1186  For instance, if two types <code>S1</code> and <code>S2</code>
  1187  have the method set
  1188  </p>
  1189  
  1190  <pre>
  1191  func (p T) Read(b Buffer) bool { return … }
  1192  func (p T) Write(b Buffer) bool { return … }
  1193  func (p T) Close() { … }
  1194  </pre>
  1195  
  1196  <p>
  1197  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1198  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1199  <code>S2</code>, regardless of what other methods
  1200  <code>S1</code> and <code>S2</code> may have or share.
  1201  </p>
  1202  
  1203  <p>
  1204  A type implements any interface comprising any subset of its methods
  1205  and may therefore implement several distinct interfaces. For
  1206  instance, all types implement the <i>empty interface</i>:
  1207  </p>
  1208  
  1209  <pre>
  1210  interface{}
  1211  </pre>
  1212  
  1213  <p>
  1214  Similarly, consider this interface specification,
  1215  which appears within a <a href="#Type_declarations">type declaration</a>
  1216  to define an interface called <code>Locker</code>:
  1217  </p>
  1218  
  1219  <pre>
  1220  type Locker interface {
  1221  	Lock()
  1222  	Unlock()
  1223  }
  1224  </pre>
  1225  
  1226  <p>
  1227  If <code>S1</code> and <code>S2</code> also implement
  1228  </p>
  1229  
  1230  <pre>
  1231  func (p T) Lock() { … }
  1232  func (p T) Unlock() { … }
  1233  </pre>
  1234  
  1235  <p>
  1236  they implement the <code>Locker</code> interface as well
  1237  as the <code>File</code> interface.
  1238  </p>
  1239  
  1240  <p>
  1241  An interface <code>T</code> may use a (possibly qualified) interface type
  1242  name <code>E</code> in place of a method specification. This is called
  1243  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1244  all (exported and non-exported) methods of <code>E</code> to the interface
  1245  <code>T</code>.
  1246  </p>
  1247  
  1248  <pre>
  1249  type ReadWriter interface {
  1250  	Read(b Buffer) bool
  1251  	Write(b Buffer) bool
  1252  }
  1253  
  1254  type File interface {
  1255  	ReadWriter  // same as adding the methods of ReadWriter
  1256  	Locker      // same as adding the methods of Locker
  1257  	Close()
  1258  }
  1259  
  1260  type LockedFile interface {
  1261  	Locker
  1262  	File        // illegal: Lock, Unlock not unique
  1263  	Lock()      // illegal: Lock not unique
  1264  }
  1265  </pre>
  1266  
  1267  <p>
  1268  An interface type <code>T</code> may not embed itself
  1269  or any interface type that embeds <code>T</code>, recursively.
  1270  </p>
  1271  
  1272  <pre>
  1273  // illegal: Bad cannot embed itself
  1274  type Bad interface {
  1275  	Bad
  1276  }
  1277  
  1278  // illegal: Bad1 cannot embed itself using Bad2
  1279  type Bad1 interface {
  1280  	Bad2
  1281  }
  1282  type Bad2 interface {
  1283  	Bad1
  1284  }
  1285  </pre>
  1286  
  1287  <h3 id="Map_types">Map types</h3>
  1288  
  1289  <p>
  1290  A map is an unordered group of elements of one type, called the
  1291  element type, indexed by a set of unique <i>keys</i> of another type,
  1292  called the key type.
  1293  The value of an uninitialized map is <code>nil</code>.
  1294  </p>
  1295  
  1296  <pre class="ebnf">
  1297  MapType     = "map" "[" KeyType "]" ElementType .
  1298  KeyType     = Type .
  1299  </pre>
  1300  
  1301  <p>
  1302  The <a href="#Comparison_operators">comparison operators</a>
  1303  <code>==</code> and <code>!=</code> must be fully defined
  1304  for operands of the key type; thus the key type must not be a function, map, or
  1305  slice.
  1306  If the key type is an interface type, these
  1307  comparison operators must be defined for the dynamic key values;
  1308  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1309  
  1310  </p>
  1311  
  1312  <pre>
  1313  map[string]int
  1314  map[*T]struct{ x, y float64 }
  1315  map[string]interface{}
  1316  </pre>
  1317  
  1318  <p>
  1319  The number of map elements is called its length.
  1320  For a map <code>m</code>, it can be discovered using the
  1321  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1322  and may change during execution. Elements may be added during execution
  1323  using <a href="#Assignments">assignments</a> and retrieved with
  1324  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1325  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1326  </p>
  1327  <p>
  1328  A new, empty map value is made using the built-in
  1329  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1330  which takes the map type and an optional capacity hint as arguments:
  1331  </p>
  1332  
  1333  <pre>
  1334  make(map[string]int)
  1335  make(map[string]int, 100)
  1336  </pre>
  1337  
  1338  <p>
  1339  The initial capacity does not bound its size:
  1340  maps grow to accommodate the number of items
  1341  stored in them, with the exception of <code>nil</code> maps.
  1342  A <code>nil</code> map is equivalent to an empty map except that no elements
  1343  may be added.
  1344  
  1345  <h3 id="Channel_types">Channel types</h3>
  1346  
  1347  <p>
  1348  A channel provides a mechanism for
  1349  <a href="#Go_statements">concurrently executing functions</a>
  1350  to communicate by
  1351  <a href="#Send_statements">sending</a> and
  1352  <a href="#Receive_operator">receiving</a>
  1353  values of a specified element type.
  1354  The value of an uninitialized channel is <code>nil</code>.
  1355  </p>
  1356  
  1357  <pre class="ebnf">
  1358  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1359  </pre>
  1360  
  1361  <p>
  1362  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1363  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1364  <i>bidirectional</i>.
  1365  A channel may be constrained only to send or only to receive by
  1366  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1367  </p>
  1368  
  1369  <pre>
  1370  chan T          // can be used to send and receive values of type T
  1371  chan&lt;- float64  // can only be used to send float64s
  1372  &lt;-chan int      // can only be used to receive ints
  1373  </pre>
  1374  
  1375  <p>
  1376  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1377  possible:
  1378  </p>
  1379  
  1380  <pre>
  1381  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1382  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1383  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1384  chan (&lt;-chan int)
  1385  </pre>
  1386  
  1387  <p>
  1388  A new, initialized channel
  1389  value can be made using the built-in function
  1390  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1391  which takes the channel type and an optional <i>capacity</i> as arguments:
  1392  </p>
  1393  
  1394  <pre>
  1395  make(chan int, 100)
  1396  </pre>
  1397  
  1398  <p>
  1399  The capacity, in number of elements, sets the size of the buffer in the channel.
  1400  If the capacity is zero or absent, the channel is unbuffered and communication
  1401  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1402  is buffered and communication succeeds without blocking if the buffer
  1403  is not full (sends) or not empty (receives).
  1404  A <code>nil</code> channel is never ready for communication.
  1405  </p>
  1406  
  1407  <p>
  1408  A channel may be closed with the built-in function
  1409  <a href="#Close"><code>close</code></a>.
  1410  The multi-valued assignment form of the
  1411  <a href="#Receive_operator">receive operator</a>
  1412  reports whether a received value was sent before
  1413  the channel was closed.
  1414  </p>
  1415  
  1416  <p>
  1417  A single channel may be used in
  1418  <a href="#Send_statements">send statements</a>,
  1419  <a href="#Receive_operator">receive operations</a>,
  1420  and calls to the built-in functions
  1421  <a href="#Length_and_capacity"><code>cap</code></a> and
  1422  <a href="#Length_and_capacity"><code>len</code></a>
  1423  by any number of goroutines without further synchronization.
  1424  Channels act as first-in-first-out queues.
  1425  For example, if one goroutine sends values on a channel
  1426  and a second goroutine receives them, the values are
  1427  received in the order sent.
  1428  </p>
  1429  
  1430  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1431  
  1432  <h3 id="Type_identity">Type identity</h3>
  1433  
  1434  <p>
  1435  Two types are either <i>identical</i> or <i>different</i>.
  1436  </p>
  1437  
  1438  <p>
  1439  Two <a href="#Types">named types</a> are identical if their type names originate in the same
  1440  <a href="#Type_declarations">TypeSpec</a>.
  1441  A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
  1442  if the corresponding type literals are identical, that is, if they have the same
  1443  literal structure and corresponding components have identical types. In detail:
  1444  </p>
  1445  
  1446  <ul>
  1447  	<li>Two array types are identical if they have identical element types and
  1448  	    the same array length.</li>
  1449  
  1450  	<li>Two slice types are identical if they have identical element types.</li>
  1451  
  1452  	<li>Two struct types are identical if they have the same sequence of fields,
  1453  	    and if corresponding fields have the same names, and identical types,
  1454  	    and identical tags.
  1455  	    Two anonymous fields are considered to have the same name. Lower-case field
  1456  	    names from different packages are always different.</li>
  1457  
  1458  	<li>Two pointer types are identical if they have identical base types.</li>
  1459  
  1460  	<li>Two function types are identical if they have the same number of parameters
  1461  	    and result values, corresponding parameter and result types are
  1462  	    identical, and either both functions are variadic or neither is.
  1463  	    Parameter and result names are not required to match.</li>
  1464  
  1465  	<li>Two interface types are identical if they have the same set of methods
  1466  	    with the same names and identical function types. Lower-case method names from
  1467  	    different packages are always different. The order of the methods is irrelevant.</li>
  1468  
  1469  	<li>Two map types are identical if they have identical key and value types.</li>
  1470  
  1471  	<li>Two channel types are identical if they have identical value types and
  1472  	    the same direction.</li>
  1473  </ul>
  1474  
  1475  <p>
  1476  Given the declarations
  1477  </p>
  1478  
  1479  <pre>
  1480  type (
  1481  	T0 []string
  1482  	T1 []string
  1483  	T2 struct{ a, b int }
  1484  	T3 struct{ a, c int }
  1485  	T4 func(int, float64) *T0
  1486  	T5 func(x int, y float64) *[]string
  1487  )
  1488  </pre>
  1489  
  1490  <p>
  1491  these types are identical:
  1492  </p>
  1493  
  1494  <pre>
  1495  T0 and T0
  1496  []int and []int
  1497  struct{ a, b *T5 } and struct{ a, b *T5 }
  1498  func(x int, y float64) *[]string and func(int, float64) (result *[]string)
  1499  </pre>
  1500  
  1501  <p>
  1502  <code>T0</code> and <code>T1</code> are different because they are named types
  1503  with distinct declarations; <code>func(int, float64) *T0</code> and
  1504  <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
  1505  is different from <code>[]string</code>.
  1506  </p>
  1507  
  1508  
  1509  <h3 id="Assignability">Assignability</h3>
  1510  
  1511  <p>
  1512  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1513  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1514  </p>
  1515  
  1516  <ul>
  1517  <li>
  1518  <code>x</code>'s type is identical to <code>T</code>.
  1519  </li>
  1520  <li>
  1521  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1522  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1523  or <code>T</code> is not a <a href="#Types">named type</a>.
  1524  </li>
  1525  <li>
  1526  <code>T</code> is an interface type and
  1527  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1528  </li>
  1529  <li>
  1530  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1531  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1532  and at least one of <code>V</code> or <code>T</code> is not a named type.
  1533  </li>
  1534  <li>
  1535  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1536  is a pointer, function, slice, map, channel, or interface type.
  1537  </li>
  1538  <li>
  1539  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1540  by a value of type <code>T</code>.
  1541  </li>
  1542  </ul>
  1543  
  1544  
  1545  <h2 id="Blocks">Blocks</h2>
  1546  
  1547  <p>
  1548  A <i>block</i> is a possibly empty sequence of declarations and statements
  1549  within matching brace brackets.
  1550  </p>
  1551  
  1552  <pre class="ebnf">
  1553  Block = "{" StatementList "}" .
  1554  StatementList = { Statement ";" } .
  1555  </pre>
  1556  
  1557  <p>
  1558  In addition to explicit blocks in the source code, there are implicit blocks:
  1559  </p>
  1560  
  1561  <ol>
  1562  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1563  
  1564  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1565  	    Go source text for that package.</li>
  1566  
  1567  	<li>Each file has a <i>file block</i> containing all Go source text
  1568  	    in that file.</li>
  1569  
  1570  	<li>Each <a href="#If_statements">"if"</a>,
  1571  	    <a href="#For_statements">"for"</a>, and
  1572  	    <a href="#Switch_statements">"switch"</a>
  1573  	    statement is considered to be in its own implicit block.</li>
  1574  
  1575  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1576  	    or <a href="#Select_statements">"select"</a> statement
  1577  	    acts as an implicit block.</li>
  1578  </ol>
  1579  
  1580  <p>
  1581  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1582  </p>
  1583  
  1584  
  1585  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1586  
  1587  <p>
  1588  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1589  <a href="#Constant_declarations">constant</a>,
  1590  <a href="#Type_declarations">type</a>,
  1591  <a href="#Variable_declarations">variable</a>,
  1592  <a href="#Function_declarations">function</a>,
  1593  <a href="#Labeled_statements">label</a>, or
  1594  <a href="#Import_declarations">package</a>.
  1595  Every identifier in a program must be declared.
  1596  No identifier may be declared twice in the same block, and
  1597  no identifier may be declared in both the file and package block.
  1598  </p>
  1599  
  1600  <p>
  1601  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1602  in a declaration, but it does not introduce a binding and thus is not declared.
  1603  In the package block, the identifier <code>init</code> may only be used for
  1604  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1605  and like the blank identifier it does not introduce a new binding.
  1606  </p>
  1607  
  1608  <pre class="ebnf">
  1609  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1610  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1611  </pre>
  1612  
  1613  <p>
  1614  The <i>scope</i> of a declared identifier is the extent of source text in which
  1615  the identifier denotes the specified constant, type, variable, function, label, or package.
  1616  </p>
  1617  
  1618  <p>
  1619  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1620  </p>
  1621  
  1622  <ol>
  1623  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1624  
  1625  	<li>The scope of an identifier denoting a constant, type, variable,
  1626  	    or function (but not method) declared at top level (outside any
  1627  	    function) is the package block.</li>
  1628  
  1629  	<li>The scope of the package name of an imported package is the file block
  1630  	    of the file containing the import declaration.</li>
  1631  
  1632  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1633  	    or result variable is the function body.</li>
  1634  
  1635  	<li>The scope of a constant or variable identifier declared
  1636  	    inside a function begins at the end of the ConstSpec or VarSpec
  1637  	    (ShortVarDecl for short variable declarations)
  1638  	    and ends at the end of the innermost containing block.</li>
  1639  
  1640  	<li>The scope of a type identifier declared inside a function
  1641  	    begins at the identifier in the TypeSpec
  1642  	    and ends at the end of the innermost containing block.</li>
  1643  </ol>
  1644  
  1645  <p>
  1646  An identifier declared in a block may be redeclared in an inner block.
  1647  While the identifier of the inner declaration is in scope, it denotes
  1648  the entity declared by the inner declaration.
  1649  </p>
  1650  
  1651  <p>
  1652  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1653  does not appear in any scope. Its purpose is to identify the files belonging
  1654  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1655  declarations.
  1656  </p>
  1657  
  1658  
  1659  <h3 id="Label_scopes">Label scopes</h3>
  1660  
  1661  <p>
  1662  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1663  used in the <a href="#Break_statements">"break"</a>,
  1664  <a href="#Continue_statements">"continue"</a>, and
  1665  <a href="#Goto_statements">"goto"</a> statements.
  1666  It is illegal to define a label that is never used.
  1667  In contrast to other identifiers, labels are not block scoped and do
  1668  not conflict with identifiers that are not labels. The scope of a label
  1669  is the body of the function in which it is declared and excludes
  1670  the body of any nested function.
  1671  </p>
  1672  
  1673  
  1674  <h3 id="Blank_identifier">Blank identifier</h3>
  1675  
  1676  <p>
  1677  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1678  It serves as an anonymous placeholder instead of a regular (non-blank)
  1679  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1680  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1681  </p>
  1682  
  1683  
  1684  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1685  
  1686  <p>
  1687  The following identifiers are implicitly declared in the
  1688  <a href="#Blocks">universe block</a>:
  1689  </p>
  1690  <pre class="grammar">
  1691  Types:
  1692  	bool byte complex64 complex128 error float32 float64
  1693  	int int8 int16 int32 int64 rune string
  1694  	uint uint8 uint16 uint32 uint64 uintptr
  1695  
  1696  Constants:
  1697  	true false iota
  1698  
  1699  Zero value:
  1700  	nil
  1701  
  1702  Functions:
  1703  	append cap close complex copy delete imag len
  1704  	make new panic print println real recover
  1705  </pre>
  1706  
  1707  
  1708  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1709  
  1710  <p>
  1711  An identifier may be <i>exported</i> to permit access to it from another package.
  1712  An identifier is exported if both:
  1713  </p>
  1714  <ol>
  1715  	<li>the first character of the identifier's name is a Unicode upper case
  1716  	letter (Unicode class "Lu"); and</li>
  1717  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1718  	or it is a <a href="#Struct_types">field name</a> or
  1719  	<a href="#MethodName">method name</a>.</li>
  1720  </ol>
  1721  <p>
  1722  All other identifiers are not exported.
  1723  </p>
  1724  
  1725  
  1726  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1727  
  1728  <p>
  1729  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1730  <i>different</i> from every other in the set.
  1731  Two identifiers are different if they are spelled differently, or if they
  1732  appear in different <a href="#Packages">packages</a> and are not
  1733  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1734  </p>
  1735  
  1736  <h3 id="Constant_declarations">Constant declarations</h3>
  1737  
  1738  <p>
  1739  A constant declaration binds a list of identifiers (the names of
  1740  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1741  The number of identifiers must be equal
  1742  to the number of expressions, and the <i>n</i>th identifier on
  1743  the left is bound to the value of the <i>n</i>th expression on the
  1744  right.
  1745  </p>
  1746  
  1747  <pre class="ebnf">
  1748  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1749  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1750  
  1751  IdentifierList = identifier { "," identifier } .
  1752  ExpressionList = Expression { "," Expression } .
  1753  </pre>
  1754  
  1755  <p>
  1756  If the type is present, all constants take the type specified, and
  1757  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1758  If the type is omitted, the constants take the
  1759  individual types of the corresponding expressions.
  1760  If the expression values are untyped <a href="#Constants">constants</a>,
  1761  the declared constants remain untyped and the constant identifiers
  1762  denote the constant values. For instance, if the expression is a
  1763  floating-point literal, the constant identifier denotes a floating-point
  1764  constant, even if the literal's fractional part is zero.
  1765  </p>
  1766  
  1767  <pre>
  1768  const Pi float64 = 3.14159265358979323846
  1769  const zero = 0.0         // untyped floating-point constant
  1770  const (
  1771  	size int64 = 1024
  1772  	eof        = -1  // untyped integer constant
  1773  )
  1774  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1775  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1776  </pre>
  1777  
  1778  <p>
  1779  Within a parenthesized <code>const</code> declaration list the
  1780  expression list may be omitted from any but the first declaration.
  1781  Such an empty list is equivalent to the textual substitution of the
  1782  first preceding non-empty expression list and its type if any.
  1783  Omitting the list of expressions is therefore equivalent to
  1784  repeating the previous list.  The number of identifiers must be equal
  1785  to the number of expressions in the previous list.
  1786  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1787  this mechanism permits light-weight declaration of sequential values:
  1788  </p>
  1789  
  1790  <pre>
  1791  const (
  1792  	Sunday = iota
  1793  	Monday
  1794  	Tuesday
  1795  	Wednesday
  1796  	Thursday
  1797  	Friday
  1798  	Partyday
  1799  	numberOfDays  // this constant is not exported
  1800  )
  1801  </pre>
  1802  
  1803  
  1804  <h3 id="Iota">Iota</h3>
  1805  
  1806  <p>
  1807  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1808  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1809  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1810  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1811  It can be used to construct a set of related constants:
  1812  </p>
  1813  
  1814  <pre>
  1815  const (  // iota is reset to 0
  1816  	c0 = iota  // c0 == 0
  1817  	c1 = iota  // c1 == 1
  1818  	c2 = iota  // c2 == 2
  1819  )
  1820  
  1821  const (
  1822  	a = 1 &lt;&lt; iota  // a == 1 (iota has been reset)
  1823  	b = 1 &lt;&lt; iota  // b == 2
  1824  	c = 1 &lt;&lt; iota  // c == 4
  1825  )
  1826  
  1827  const (
  1828  	u         = iota * 42  // u == 0     (untyped integer constant)
  1829  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1830  	w         = iota * 42  // w == 84    (untyped integer constant)
  1831  )
  1832  
  1833  const x = iota  // x == 0 (iota has been reset)
  1834  const y = iota  // y == 0 (iota has been reset)
  1835  </pre>
  1836  
  1837  <p>
  1838  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1839  it is only incremented after each ConstSpec:
  1840  </p>
  1841  
  1842  <pre>
  1843  const (
  1844  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1845  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1846  	_, _                                  // skips iota == 2
  1847  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1848  )
  1849  </pre>
  1850  
  1851  <p>
  1852  This last example exploits the implicit repetition of the
  1853  last non-empty expression list.
  1854  </p>
  1855  
  1856  
  1857  <h3 id="Type_declarations">Type declarations</h3>
  1858  
  1859  <p>
  1860  A type declaration binds an identifier, the <i>type name</i>, to a new type
  1861  that has the same <a href="#Types">underlying type</a> as an existing type,
  1862  and operations defined for the existing type are also defined for the new type.
  1863  The new type is <a href="#Type_identity">different</a> from the existing type.
  1864  </p>
  1865  
  1866  <pre class="ebnf">
  1867  TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1868  TypeSpec     = identifier Type .
  1869  </pre>
  1870  
  1871  <pre>
  1872  type IntArray [16]int
  1873  
  1874  type (
  1875  	Point struct{ x, y float64 }
  1876  	Polar Point
  1877  )
  1878  
  1879  type TreeNode struct {
  1880  	left, right *TreeNode
  1881  	value *Comparable
  1882  }
  1883  
  1884  type Block interface {
  1885  	BlockSize() int
  1886  	Encrypt(src, dst []byte)
  1887  	Decrypt(src, dst []byte)
  1888  }
  1889  </pre>
  1890  
  1891  <p>
  1892  The declared type does not inherit any <a href="#Method_declarations">methods</a>
  1893  bound to the existing type, but the <a href="#Method_sets">method set</a>
  1894  of an interface type or of elements of a composite type remains unchanged:
  1895  </p>
  1896  
  1897  <pre>
  1898  // A Mutex is a data type with two methods, Lock and Unlock.
  1899  type Mutex struct         { /* Mutex fields */ }
  1900  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1901  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1902  
  1903  // NewMutex has the same composition as Mutex but its method set is empty.
  1904  type NewMutex Mutex
  1905  
  1906  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1907  // but the method set of PtrMutex is empty.
  1908  type PtrMutex *Mutex
  1909  
  1910  // The method set of *PrintableMutex contains the methods
  1911  // Lock and Unlock bound to its anonymous field Mutex.
  1912  type PrintableMutex struct {
  1913  	Mutex
  1914  }
  1915  
  1916  // MyBlock is an interface type that has the same method set as Block.
  1917  type MyBlock Block
  1918  </pre>
  1919  
  1920  <p>
  1921  A type declaration may be used to define a different boolean, numeric, or string
  1922  type and attach methods to it:
  1923  </p>
  1924  
  1925  <pre>
  1926  type TimeZone int
  1927  
  1928  const (
  1929  	EST TimeZone = -(5 + iota)
  1930  	CST
  1931  	MST
  1932  	PST
  1933  )
  1934  
  1935  func (tz TimeZone) String() string {
  1936  	return fmt.Sprintf("GMT+%dh", tz)
  1937  }
  1938  </pre>
  1939  
  1940  
  1941  <h3 id="Variable_declarations">Variable declarations</h3>
  1942  
  1943  <p>
  1944  A variable declaration creates one or more variables, binds corresponding
  1945  identifiers to them, and gives each a type and an initial value.
  1946  </p>
  1947  
  1948  <pre class="ebnf">
  1949  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1950  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1951  </pre>
  1952  
  1953  <pre>
  1954  var i int
  1955  var U, V, W float64
  1956  var k = 0
  1957  var x, y float32 = -1, -2
  1958  var (
  1959  	i       int
  1960  	u, v, s = 2.0, 3.0, "bar"
  1961  )
  1962  var re, im = complexSqrt(-1)
  1963  var _, found = entries[name]  // map lookup; only interested in "found"
  1964  </pre>
  1965  
  1966  <p>
  1967  If a list of expressions is given, the variables are initialized
  1968  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  1969  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  1970  </p>
  1971  
  1972  <p>
  1973  If a type is present, each variable is given that type.
  1974  Otherwise, each variable is given the type of the corresponding
  1975  initialization value in the assignment.
  1976  If that value is an untyped constant, it is first
  1977  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  1978  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  1979  The predeclared value <code>nil</code> cannot be used to initialize a variable
  1980  with no explicit type.
  1981  </p>
  1982  
  1983  <pre>
  1984  var d = math.Sin(0.5)  // d is int64
  1985  var i = 42             // i is int
  1986  var t, ok = x.(T)      // t is T, ok is bool
  1987  var n = nil            // illegal
  1988  </pre>
  1989  
  1990  <p>
  1991  Implementation restriction: A compiler may make it illegal to declare a variable
  1992  inside a <a href="#Function_declarations">function body</a> if the variable is
  1993  never used.
  1994  </p>
  1995  
  1996  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  1997  
  1998  <p>
  1999  A <i>short variable declaration</i> uses the syntax:
  2000  </p>
  2001  
  2002  <pre class="ebnf">
  2003  ShortVarDecl = IdentifierList ":=" ExpressionList .
  2004  </pre>
  2005  
  2006  <p>
  2007  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  2008  with initializer expressions but no types:
  2009  </p>
  2010  
  2011  <pre class="grammar">
  2012  "var" IdentifierList = ExpressionList .
  2013  </pre>
  2014  
  2015  <pre>
  2016  i, j := 0, 10
  2017  f := func() int { return 7 }
  2018  ch := make(chan int)
  2019  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2020  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2021  </pre>
  2022  
  2023  <p>
  2024  Unlike regular variable declarations, a short variable declaration may redeclare variables provided they
  2025  were originally declared earlier in the same block with the same type, and at
  2026  least one of the non-<a href="#Blank_identifier">blank</a> variables is new.  As a consequence, redeclaration
  2027  can only appear in a multi-variable short declaration.
  2028  Redeclaration does not introduce a new
  2029  variable; it just assigns a new value to the original.
  2030  </p>
  2031  
  2032  <pre>
  2033  field1, offset := nextField(str, 0)
  2034  field2, offset := nextField(str, offset)  // redeclares offset
  2035  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2036  </pre>
  2037  
  2038  <p>
  2039  Short variable declarations may appear only inside functions.
  2040  In some contexts such as the initializers for
  2041  <a href="#If_statements">"if"</a>,
  2042  <a href="#For_statements">"for"</a>, or
  2043  <a href="#Switch_statements">"switch"</a> statements,
  2044  they can be used to declare local temporary variables.
  2045  </p>
  2046  
  2047  <h3 id="Function_declarations">Function declarations</h3>
  2048  
  2049  <p>
  2050  A function declaration binds an identifier, the <i>function name</i>,
  2051  to a function.
  2052  </p>
  2053  
  2054  <pre class="ebnf">
  2055  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2056  FunctionName = identifier .
  2057  Function     = Signature FunctionBody .
  2058  FunctionBody = Block .
  2059  </pre>
  2060  
  2061  <p>
  2062  If the function's <a href="#Function_types">signature</a> declares
  2063  result parameters, the function body's statement list must end in
  2064  a <a href="#Terminating_statements">terminating statement</a>.
  2065  </p>
  2066  
  2067  <pre>
  2068  func findMarker(c &lt;-chan int) int {
  2069  	for i := range c {
  2070  		if x := &lt;-c; isMarker(x) {
  2071  			return x
  2072  		}
  2073  	}
  2074  	// invalid: missing return statement.
  2075  }
  2076  </pre>
  2077  
  2078  <p>
  2079  A function declaration may omit the body. Such a declaration provides the
  2080  signature for a function implemented outside Go, such as an assembly routine.
  2081  </p>
  2082  
  2083  <pre>
  2084  func min(x int, y int) int {
  2085  	if x &lt; y {
  2086  		return x
  2087  	}
  2088  	return y
  2089  }
  2090  
  2091  func flushICache(begin, end uintptr)  // implemented externally
  2092  </pre>
  2093  
  2094  <h3 id="Method_declarations">Method declarations</h3>
  2095  
  2096  <p>
  2097  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2098  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2099  and associates the method with the receiver's <i>base type</i>.
  2100  </p>
  2101  
  2102  <pre class="ebnf">
  2103  MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
  2104  Receiver     = Parameters .
  2105  </pre>
  2106  
  2107  <p>
  2108  The receiver is specified via an extra parameter section preceeding the method
  2109  name. That parameter section must declare a single parameter, the receiver.
  2110  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2111  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2112  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2113  it must be declared in the same package as the method.
  2114  The method is said to be <i>bound</i> to the base type and the method name
  2115  is visible only within selectors for that type.
  2116  </p>
  2117  
  2118  <p>
  2119  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2120  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2121  If the receiver's value is not referenced inside the body of the method,
  2122  its identifier may be omitted in the declaration. The same applies in
  2123  general to parameters of functions and methods.
  2124  </p>
  2125  
  2126  <p>
  2127  For a base type, the non-blank names of methods bound to it must be unique.
  2128  If the base type is a <a href="#Struct_types">struct type</a>,
  2129  the non-blank method and field names must be distinct.
  2130  </p>
  2131  
  2132  <p>
  2133  Given type <code>Point</code>, the declarations
  2134  </p>
  2135  
  2136  <pre>
  2137  func (p *Point) Length() float64 {
  2138  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2139  }
  2140  
  2141  func (p *Point) Scale(factor float64) {
  2142  	p.x *= factor
  2143  	p.y *= factor
  2144  }
  2145  </pre>
  2146  
  2147  <p>
  2148  bind the methods <code>Length</code> and <code>Scale</code>,
  2149  with receiver type <code>*Point</code>,
  2150  to the base type <code>Point</code>.
  2151  </p>
  2152  
  2153  <p>
  2154  The type of a method is the type of a function with the receiver as first
  2155  argument.  For instance, the method <code>Scale</code> has type
  2156  </p>
  2157  
  2158  <pre>
  2159  func(p *Point, factor float64)
  2160  </pre>
  2161  
  2162  <p>
  2163  However, a function declared this way is not a method.
  2164  </p>
  2165  
  2166  
  2167  <h2 id="Expressions">Expressions</h2>
  2168  
  2169  <p>
  2170  An expression specifies the computation of a value by applying
  2171  operators and functions to operands.
  2172  </p>
  2173  
  2174  <h3 id="Operands">Operands</h3>
  2175  
  2176  <p>
  2177  Operands denote the elementary values in an expression. An operand may be a
  2178  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2179  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2180  <a href="#Constant_declarations">constant</a>,
  2181  <a href="#Variable_declarations">variable</a>, or
  2182  <a href="#Function_declarations">function</a>,
  2183  a <a href="#Method_expressions">method expression</a> yielding a function,
  2184  or a parenthesized expression.
  2185  </p>
  2186  
  2187  <p>
  2188  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2189  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2190  </p>
  2191  
  2192  <pre class="ebnf">
  2193  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2194  Literal     = BasicLit | CompositeLit | FunctionLit .
  2195  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2196  OperandName = identifier | QualifiedIdent.
  2197  </pre>
  2198  
  2199  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2200  
  2201  <p>
  2202  A qualified identifier is an identifier qualified with a package name prefix.
  2203  Both the package name and the identifier must not be
  2204  <a href="#Blank_identifier">blank</a>.
  2205  </p>
  2206  
  2207  <pre class="ebnf">
  2208  QualifiedIdent = PackageName "." identifier .
  2209  </pre>
  2210  
  2211  <p>
  2212  A qualified identifier accesses an identifier in a different package, which
  2213  must be <a href="#Import_declarations">imported</a>.
  2214  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2215  declared in the <a href="#Blocks">package block</a> of that package.
  2216  </p>
  2217  
  2218  <pre>
  2219  math.Sin	// denotes the Sin function in package math
  2220  </pre>
  2221  
  2222  <h3 id="Composite_literals">Composite literals</h3>
  2223  
  2224  <p>
  2225  Composite literals construct values for structs, arrays, slices, and maps
  2226  and create a new value each time they are evaluated.
  2227  They consist of the type of the value
  2228  followed by a brace-bound list of composite elements. An element may be
  2229  a single expression or a key-value pair.
  2230  </p>
  2231  
  2232  <pre class="ebnf">
  2233  CompositeLit  = LiteralType LiteralValue .
  2234  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2235                  SliceType | MapType | TypeName .
  2236  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2237  ElementList   = Element { "," Element } .
  2238  Element       = [ Key ":" ] Value .
  2239  Key           = FieldName | ElementIndex .
  2240  FieldName     = identifier .
  2241  ElementIndex  = Expression .
  2242  Value         = Expression | LiteralValue .
  2243  </pre>
  2244  
  2245  <p>
  2246  The LiteralType must be a struct, array, slice, or map type
  2247  (the grammar enforces this constraint except when the type is given
  2248  as a TypeName).
  2249  The types of the expressions must be <a href="#Assignability">assignable</a>
  2250  to the respective field, element, and key types of the LiteralType;
  2251  there is no additional conversion.
  2252  The key is interpreted as a field name for struct literals,
  2253  an index for array and slice literals, and a key for map literals.
  2254  For map literals, all elements must have a key. It is an error
  2255  to specify multiple elements with the same field name or
  2256  constant key value.
  2257  </p>
  2258  
  2259  <p>
  2260  For struct literals the following rules apply:
  2261  </p>
  2262  <ul>
  2263  	<li>A key must be a field name declared in the LiteralType.
  2264  	</li>
  2265  	<li>An element list that does not contain any keys must
  2266  	    list an element for each struct field in the
  2267  	    order in which the fields are declared.
  2268  	</li>
  2269  	<li>If any element has a key, every element must have a key.
  2270  	</li>
  2271  	<li>An element list that contains keys does not need to
  2272  	    have an element for each struct field. Omitted fields
  2273  	    get the zero value for that field.
  2274  	</li>
  2275  	<li>A literal may omit the element list; such a literal evaluates
  2276  	    to the zero value for its type.
  2277  	</li>
  2278  	<li>It is an error to specify an element for a non-exported
  2279  	    field of a struct belonging to a different package.
  2280  	</li>
  2281  </ul>
  2282  
  2283  <p>
  2284  Given the declarations
  2285  </p>
  2286  <pre>
  2287  type Point3D struct { x, y, z float64 }
  2288  type Line struct { p, q Point3D }
  2289  </pre>
  2290  
  2291  <p>
  2292  one may write
  2293  </p>
  2294  
  2295  <pre>
  2296  origin := Point3D{}                            // zero value for Point3D
  2297  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2298  </pre>
  2299  
  2300  <p>
  2301  For array and slice literals the following rules apply:
  2302  </p>
  2303  <ul>
  2304  	<li>Each element has an associated integer index marking
  2305  	    its position in the array.
  2306  	</li>
  2307  	<li>An element with a key uses the key as its index; the
  2308  	    key must be a constant integer expression.
  2309  	</li>
  2310  	<li>An element without a key uses the previous element's index plus one.
  2311  	    If the first element has no key, its index is zero.
  2312  	</li>
  2313  </ul>
  2314  
  2315  <p>
  2316  <a href="#Address_operators">Taking the address</a> of a composite literal
  2317  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2318  with the literal's value.
  2319  </p>
  2320  <pre>
  2321  var pointer *Point3D = &amp;Point3D{y: 1000}
  2322  </pre>
  2323  
  2324  <p>
  2325  The length of an array literal is the length specified in the LiteralType.
  2326  If fewer elements than the length are provided in the literal, the missing
  2327  elements are set to the zero value for the array element type.
  2328  It is an error to provide elements with index values outside the index range
  2329  of the array. The notation <code>...</code> specifies an array length equal
  2330  to the maximum element index plus one.
  2331  </p>
  2332  
  2333  <pre>
  2334  buffer := [10]string{}             // len(buffer) == 10
  2335  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2336  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2337  </pre>
  2338  
  2339  <p>
  2340  A slice literal describes the entire underlying array literal.
  2341  Thus, the length and capacity of a slice literal are the maximum
  2342  element index plus one. A slice literal has the form
  2343  </p>
  2344  
  2345  <pre>
  2346  []T{x1, x2, … xn}
  2347  </pre>
  2348  
  2349  <p>
  2350  and is shorthand for a slice operation applied to an array:
  2351  </p>
  2352  
  2353  <pre>
  2354  tmp := [n]T{x1, x2, … xn}
  2355  tmp[0 : n]
  2356  </pre>
  2357  
  2358  <p>
  2359  Within a composite literal of array, slice, or map type <code>T</code>,
  2360  elements that are themselves composite literals may elide the respective
  2361  literal type if it is identical to the element type of <code>T</code>.
  2362  Similarly, elements that are addresses of composite literals may elide
  2363  the <code>&amp;T</code> when the element type is <code>*T</code>.
  2364  </p>
  2365  
  2366  <pre>
  2367  [...]Point{{1.5, -3.5}, {0, 0}}   // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2368  [][]int{{1, 2, 3}, {4, 5}}        // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2369  
  2370  [...]*Point{{1.5, -3.5}, {0, 0}}  // same as [...]*Point{&amp;Point{1.5, -3.5}, &amp;Point{0, 0}}
  2371  </pre>
  2372  
  2373  <p>
  2374  A parsing ambiguity arises when a composite literal using the
  2375  TypeName form of the LiteralType appears as an operand between the
  2376  <a href="#Keywords">keyword</a> and the opening brace of the block
  2377  of an "if", "for", or "switch" statement, and the composite literal
  2378  is not enclosed in parentheses, square brackets, or curly braces.
  2379  In this rare case, the opening brace of the literal is erroneously parsed
  2380  as the one introducing the block of statements. To resolve the ambiguity,
  2381  the composite literal must appear within parentheses.
  2382  </p>
  2383  
  2384  <pre>
  2385  if x == (T{a,b,c}[i]) { … }
  2386  if (x == T{a,b,c}[i]) { … }
  2387  </pre>
  2388  
  2389  <p>
  2390  Examples of valid array, slice, and map literals:
  2391  </p>
  2392  
  2393  <pre>
  2394  // list of prime numbers
  2395  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2396  
  2397  // vowels[ch] is true if ch is a vowel
  2398  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2399  
  2400  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2401  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2402  
  2403  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2404  noteFrequency := map[string]float32{
  2405  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2406  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2407  }
  2408  </pre>
  2409  
  2410  
  2411  <h3 id="Function_literals">Function literals</h3>
  2412  
  2413  <p>
  2414  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2415  </p>
  2416  
  2417  <pre class="ebnf">
  2418  FunctionLit = "func" Function .
  2419  </pre>
  2420  
  2421  <pre>
  2422  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2423  </pre>
  2424  
  2425  <p>
  2426  A function literal can be assigned to a variable or invoked directly.
  2427  </p>
  2428  
  2429  <pre>
  2430  f := func(x, y int) int { return x + y }
  2431  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2432  </pre>
  2433  
  2434  <p>
  2435  Function literals are <i>closures</i>: they may refer to variables
  2436  defined in a surrounding function. Those variables are then shared between
  2437  the surrounding function and the function literal, and they survive as long
  2438  as they are accessible.
  2439  </p>
  2440  
  2441  
  2442  <h3 id="Primary_expressions">Primary expressions</h3>
  2443  
  2444  <p>
  2445  Primary expressions are the operands for unary and binary expressions.
  2446  </p>
  2447  
  2448  <pre class="ebnf">
  2449  PrimaryExpr =
  2450  	Operand |
  2451  	Conversion |
  2452  	PrimaryExpr Selector |
  2453  	PrimaryExpr Index |
  2454  	PrimaryExpr Slice |
  2455  	PrimaryExpr TypeAssertion |
  2456  	PrimaryExpr Arguments .
  2457  
  2458  Selector       = "." identifier .
  2459  Index          = "[" Expression "]" .
  2460  Slice          = "[" ( [ Expression ] ":" [ Expression ] ) |
  2461                       ( [ Expression ] ":" Expression ":" Expression )
  2462                   "]" .
  2463  TypeAssertion  = "." "(" Type ")" .
  2464  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2465  </pre>
  2466  
  2467  
  2468  <pre>
  2469  x
  2470  2
  2471  (s + ".txt")
  2472  f(3.1415, true)
  2473  Point{1, 2}
  2474  m["foo"]
  2475  s[i : j + 1]
  2476  obj.color
  2477  f.p[i].x()
  2478  </pre>
  2479  
  2480  
  2481  <h3 id="Selectors">Selectors</h3>
  2482  
  2483  <p>
  2484  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2485  that is not a <a href="#Package_clause">package name</a>, the
  2486  <i>selector expression</i>
  2487  </p>
  2488  
  2489  <pre>
  2490  x.f
  2491  </pre>
  2492  
  2493  <p>
  2494  denotes the field or method <code>f</code> of the value <code>x</code>
  2495  (or sometimes <code>*x</code>; see below).
  2496  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2497  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2498  The type of the selector expression is the type of <code>f</code>.
  2499  If <code>x</code> is a package name, see the section on
  2500  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2501  </p>
  2502  
  2503  <p>
  2504  A selector <code>f</code> may denote a field or method <code>f</code> of
  2505  a type <code>T</code>, or it may refer
  2506  to a field or method <code>f</code> of a nested
  2507  <a href="#Struct_types">anonymous field</a> of <code>T</code>.
  2508  The number of anonymous fields traversed
  2509  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2510  The depth of a field or method <code>f</code>
  2511  declared in <code>T</code> is zero.
  2512  The depth of a field or method <code>f</code> declared in
  2513  an anonymous field <code>A</code> in <code>T</code> is the
  2514  depth of <code>f</code> in <code>A</code> plus one.
  2515  </p>
  2516  
  2517  <p>
  2518  The following rules apply to selectors:
  2519  </p>
  2520  
  2521  <ol>
  2522  <li>
  2523  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2524  where <code>T</code> is not an interface type,
  2525  <code>x.f</code> denotes the field or method at the shallowest depth
  2526  in <code>T</code> where there
  2527  is such an <code>f</code>.
  2528  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2529  with shallowest depth, the selector expression is illegal.
  2530  </li>
  2531  <li>
  2532  For a variable <code>x</code> of type <code>I</code> where <code>I</code>
  2533  is an interface type, <code>x.f</code> denotes the actual method with name
  2534  <code>f</code> of the value assigned to <code>x</code>.
  2535  If there is no method with name <code>f</code> in the
  2536  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2537  expression is illegal.
  2538  </li>
  2539  <li>
  2540  In all other cases, <code>x.f</code> is illegal.
  2541  </li>
  2542  <li>
  2543  If <code>x</code> is of pointer type and has the value
  2544  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2545  assigning to or evaluating <code>x.f</code>
  2546  causes a <a href="#Run_time_panics">run-time panic</a>.
  2547  </li>
  2548  <li>
  2549  If <code>x</code> is of interface type and has the value
  2550  <code>nil</code>, <a href="#Calls">calling</a> or
  2551  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2552  causes a <a href="#Run_time_panics">run-time panic</a>.
  2553  </li>
  2554  </ol>
  2555  
  2556  <p>
  2557  Selectors automatically <a href="#Address_operators">dereference</a>
  2558  pointers to structs.
  2559  If <code>x</code> is a pointer to a struct, <code>x.y</code>
  2560  is shorthand for <code>(*x).y</code>; if the field <code>y</code>
  2561  is also a pointer to a struct, <code>x.y.z</code> is shorthand
  2562  for <code>(*(*x).y).z</code>, and so on.
  2563  If <code>x</code> contains an anonymous field of type <code>*A</code>,
  2564  where <code>A</code> is also a struct type,
  2565  <code>x.f</code> is shorthand for <code>(*x.A).f</code>.
  2566  </p>
  2567  
  2568  <p>
  2569  For example, given the declarations:
  2570  </p>
  2571  
  2572  <pre>
  2573  type T0 struct {
  2574  	x int
  2575  }
  2576  
  2577  func (recv *T0) M0()
  2578  
  2579  type T1 struct {
  2580  	y int
  2581  }
  2582  
  2583  func (recv T1) M1()
  2584  
  2585  type T2 struct {
  2586  	z int
  2587  	T1
  2588  	*T0
  2589  }
  2590  
  2591  func (recv *T2) M2()
  2592  
  2593  var p *T2  // with p != nil and p.T0 != nil
  2594  </pre>
  2595  
  2596  <p>
  2597  one may write:
  2598  </p>
  2599  
  2600  <pre>
  2601  p.z   // (*p).z
  2602  p.y   // ((*p).T1).y
  2603  p.x   // (*(*p).T0).x
  2604  
  2605  p.M2()  // (*p).M2()
  2606  p.M1()  // ((*p).T1).M1()
  2607  p.M0()  // ((*p).T0).M0()
  2608  </pre>
  2609  
  2610  
  2611  <h3 id="Method_expressions">Method expressions</h3>
  2612  
  2613  <p>
  2614  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2615  <code>T.M</code> is a function that is callable as a regular function
  2616  with the same arguments as <code>M</code> prefixed by an additional
  2617  argument that is the receiver of the method.
  2618  </p>
  2619  
  2620  <pre class="ebnf">
  2621  MethodExpr    = ReceiverType "." MethodName .
  2622  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2623  </pre>
  2624  
  2625  <p>
  2626  Consider a struct type <code>T</code> with two methods,
  2627  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2628  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2629  </p>
  2630  
  2631  <pre>
  2632  type T struct {
  2633  	a int
  2634  }
  2635  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2636  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2637  
  2638  var t T
  2639  </pre>
  2640  
  2641  <p>
  2642  The expression
  2643  </p>
  2644  
  2645  <pre>
  2646  T.Mv
  2647  </pre>
  2648  
  2649  <p>
  2650  yields a function equivalent to <code>Mv</code> but
  2651  with an explicit receiver as its first argument; it has signature
  2652  </p>
  2653  
  2654  <pre>
  2655  func(tv T, a int) int
  2656  </pre>
  2657  
  2658  <p>
  2659  That function may be called normally with an explicit receiver, so
  2660  these five invocations are equivalent:
  2661  </p>
  2662  
  2663  <pre>
  2664  t.Mv(7)
  2665  T.Mv(t, 7)
  2666  (T).Mv(t, 7)
  2667  f1 := T.Mv; f1(t, 7)
  2668  f2 := (T).Mv; f2(t, 7)
  2669  </pre>
  2670  
  2671  <p>
  2672  Similarly, the expression
  2673  </p>
  2674  
  2675  <pre>
  2676  (*T).Mp
  2677  </pre>
  2678  
  2679  <p>
  2680  yields a function value representing <code>Mp</code> with signature
  2681  </p>
  2682  
  2683  <pre>
  2684  func(tp *T, f float32) float32
  2685  </pre>
  2686  
  2687  <p>
  2688  For a method with a value receiver, one can derive a function
  2689  with an explicit pointer receiver, so
  2690  </p>
  2691  
  2692  <pre>
  2693  (*T).Mv
  2694  </pre>
  2695  
  2696  <p>
  2697  yields a function value representing <code>Mv</code> with signature
  2698  </p>
  2699  
  2700  <pre>
  2701  func(tv *T, a int) int
  2702  </pre>
  2703  
  2704  <p>
  2705  Such a function indirects through the receiver to create a value
  2706  to pass as the receiver to the underlying method;
  2707  the method does not overwrite the value whose address is passed in
  2708  the function call.
  2709  </p>
  2710  
  2711  <p>
  2712  The final case, a value-receiver function for a pointer-receiver method,
  2713  is illegal because pointer-receiver methods are not in the method set
  2714  of the value type.
  2715  </p>
  2716  
  2717  <p>
  2718  Function values derived from methods are called with function call syntax;
  2719  the receiver is provided as the first argument to the call.
  2720  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2721  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2722  To construct a function that binds the receiver, use a
  2723  <a href="#Function_literals">function literal</a> or
  2724  <a href="#Method_values">method value</a>.
  2725  </p>
  2726  
  2727  <p>
  2728  It is legal to derive a function value from a method of an interface type.
  2729  The resulting function takes an explicit receiver of that interface type.
  2730  </p>
  2731  
  2732  <h3 id="Method_values">Method values</h3>
  2733  
  2734  <p>
  2735  If the expression <code>x</code> has static type <code>T</code> and
  2736  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2737  <code>x.M</code> is called a <i>method value</i>.
  2738  The method value <code>x.M</code> is a function value that is callable
  2739  with the same arguments as a method call of <code>x.M</code>.
  2740  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2741  method value; the saved copy is then used as the receiver in any calls,
  2742  which may be executed later.
  2743  </p>
  2744  
  2745  <p>
  2746  The type <code>T</code> may be an interface or non-interface type.
  2747  </p>
  2748  
  2749  <p>
  2750  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2751  consider a struct type <code>T</code> with two methods,
  2752  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2753  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2754  </p>
  2755  
  2756  <pre>
  2757  type T struct {
  2758  	a int
  2759  }
  2760  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2761  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2762  
  2763  var t T
  2764  var pt *T
  2765  func makeT() T
  2766  </pre>
  2767  
  2768  <p>
  2769  The expression
  2770  </p>
  2771  
  2772  <pre>
  2773  t.Mv
  2774  </pre>
  2775  
  2776  <p>
  2777  yields a function value of type
  2778  </p>
  2779  
  2780  <pre>
  2781  func(int) int
  2782  </pre>
  2783  
  2784  <p>
  2785  These two invocations are equivalent:
  2786  </p>
  2787  
  2788  <pre>
  2789  t.Mv(7)
  2790  f := t.Mv; f(7)
  2791  </pre>
  2792  
  2793  <p>
  2794  Similarly, the expression
  2795  </p>
  2796  
  2797  <pre>
  2798  pt.Mp
  2799  </pre>
  2800  
  2801  <p>
  2802  yields a function value of type
  2803  </p>
  2804  
  2805  <pre>
  2806  func(float32) float32
  2807  </pre>
  2808  
  2809  <p>
  2810  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2811  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2812  </p>
  2813  
  2814  <p>
  2815  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2816  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2817  </p>
  2818  
  2819  <pre>
  2820  f := t.Mv; f(7)   // like t.Mv(7)
  2821  f := pt.Mp; f(7)  // like pt.Mp(7)
  2822  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2823  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2824  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2825  </pre>
  2826  
  2827  <p>
  2828  Although the examples above use non-interface types, it is also legal to create a method value
  2829  from a value of interface type.
  2830  </p>
  2831  
  2832  <pre>
  2833  var i interface { M(int) } = myVal
  2834  f := i.M; f(7)  // like i.M(7)
  2835  </pre>
  2836  
  2837  
  2838  <h3 id="Index_expressions">Index expressions</h3>
  2839  
  2840  <p>
  2841  A primary expression of the form
  2842  </p>
  2843  
  2844  <pre>
  2845  a[x]
  2846  </pre>
  2847  
  2848  <p>
  2849  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2850  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2851  The following rules apply:
  2852  </p>
  2853  
  2854  <p>
  2855  If <code>a</code> is not a map:
  2856  </p>
  2857  <ul>
  2858  	<li>the index <code>x</code> must be of integer type or untyped;
  2859  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2860  	    otherwise it is <i>out of range</i></li>
  2861  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2862  	    and representable by a value of type <code>int</code>
  2863  </ul>
  2864  
  2865  <p>
  2866  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2867  </p>
  2868  <ul>
  2869  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2870  	<li>if <code>x</code> is out of range at run time,
  2871  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2872  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2873  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2874  </ul>
  2875  
  2876  <p>
  2877  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2878  </p>
  2879  <ul>
  2880  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2881  </ul>
  2882  
  2883  <p>
  2884  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2885  </p>
  2886  <ul>
  2887  	<li>if <code>x</code> is out of range at run time,
  2888  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2889  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2890  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2891  </ul>
  2892  
  2893  <p>
  2894  For <code>a</code> of <a href="#String_types">string type</a>:
  2895  </p>
  2896  <ul>
  2897  	<li>a <a href="#Constants">constant</a> index must be in range
  2898  	    if the string <code>a</code> is also constant</li>
  2899  	<li>if <code>x</code> is out of range at run time,
  2900  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2901  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2902  	    <code>a[x]</code> is <code>byte</code></li>
  2903  	<li><code>a[x]</code> may not be assigned to</li>
  2904  </ul>
  2905  
  2906  <p>
  2907  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2908  </p>
  2909  <ul>
  2910  	<li><code>x</code>'s type must be
  2911  	    <a href="#Assignability">assignable</a>
  2912  	    to the key type of <code>M</code></li>
  2913  	<li>if the map contains an entry with key <code>x</code>,
  2914  	    <code>a[x]</code> is the map value with key <code>x</code>
  2915  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2916  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2917  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2918  	    for the value type of <code>M</code></li>
  2919  </ul>
  2920  
  2921  <p>
  2922  Otherwise <code>a[x]</code> is illegal.
  2923  </p>
  2924  
  2925  <p>
  2926  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2927  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2928  </p>
  2929  
  2930  <pre>
  2931  v, ok = a[x]
  2932  v, ok := a[x]
  2933  var v, ok = a[x]
  2934  </pre>
  2935  
  2936  <p>
  2937  yields an additional untyped boolean value. The value of <code>ok</code> is
  2938  <code>true</code> if the key <code>x</code> is present in the map, and
  2939  <code>false</code> otherwise.
  2940  </p>
  2941  
  2942  <p>
  2943  Assigning to an element of a <code>nil</code> map causes a
  2944  <a href="#Run_time_panics">run-time panic</a>.
  2945  </p>
  2946  
  2947  
  2948  <h3 id="Slice_expressions">Slice expressions</h3>
  2949  
  2950  <p>
  2951  Slice expressions construct a substring or slice from a string, array, pointer
  2952  to array, or slice. There are two variants: a simple form that specifies a low
  2953  and high bound, and a full form that also specifies a bound on the capacity.
  2954  </p>
  2955  
  2956  <h4>Simple slice expressions</h4>
  2957  
  2958  <p>
  2959  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  2960  </p>
  2961  
  2962  <pre>
  2963  a[low : high]
  2964  </pre>
  2965  
  2966  <p>
  2967  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  2968  <code>high</code> select which elements of operand <code>a</code> appear
  2969  in the result. The result has indices starting at 0 and length equal to
  2970  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  2971  After slicing the array <code>a</code>
  2972  </p>
  2973  
  2974  <pre>
  2975  a := [5]int{1, 2, 3, 4, 5}
  2976  s := a[1:4]
  2977  </pre>
  2978  
  2979  <p>
  2980  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  2981  </p>
  2982  
  2983  <pre>
  2984  s[0] == 2
  2985  s[1] == 3
  2986  s[2] == 4
  2987  </pre>
  2988  
  2989  <p>
  2990  For convenience, any of the indices may be omitted. A missing <code>low</code>
  2991  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  2992  sliced operand:
  2993  </p>
  2994  
  2995  <pre>
  2996  a[2:]  // same as a[2 : len(a)]
  2997  a[:3]  // same as a[0 : 3]
  2998  a[:]   // same as a[0 : len(a)]
  2999  </pre>
  3000  
  3001  <p>
  3002  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3003  <code>(*a)[low : high]</code>.
  3004  </p>
  3005  
  3006  <p>
  3007  For arrays or strings, the indices are <i>in range</i> if
  3008  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3009  otherwise they are <i>out of range</i>.
  3010  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3011  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3012  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3013  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3014  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3015  </p>
  3016  
  3017  <p>
  3018  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3019  the result of the slice operation is a non-constant value of the same type as the operand.
  3020  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3021  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3022  and the result of the slice operation is a slice with the same element type as the array.
  3023  </p>
  3024  
  3025  <p>
  3026  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3027  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3028  operand.
  3029  </p>
  3030  
  3031  <h4>Full slice expressions</h4>
  3032  
  3033  <p>
  3034  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3035  </p>
  3036  
  3037  <pre>
  3038  a[low : high : max]
  3039  </pre>
  3040  
  3041  <p>
  3042  constructs a slice of the same type, and with the same length and elements as the simple slice
  3043  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3044  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3045  After slicing the array <code>a</code>
  3046  </p>
  3047  
  3048  <pre>
  3049  a := [5]int{1, 2, 3, 4, 5}
  3050  t := a[1:3:5]
  3051  </pre>
  3052  
  3053  <p>
  3054  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3055  </p>
  3056  
  3057  <pre>
  3058  t[0] == 2
  3059  t[1] == 3
  3060  </pre>
  3061  
  3062  <p>
  3063  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3064  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3065  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3066  </p>
  3067  
  3068  <p>
  3069  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3070  otherwise they are <i>out of range</i>.
  3071  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3072  <code>int</code>; for arrays, constant indices must also be in range.
  3073  If multiple indices are constant, the constants that are present must be in range relative to each
  3074  other.
  3075  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3076  </p>
  3077  
  3078  <h3 id="Type_assertions">Type assertions</h3>
  3079  
  3080  <p>
  3081  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3082  and a type <code>T</code>, the primary expression
  3083  </p>
  3084  
  3085  <pre>
  3086  x.(T)
  3087  </pre>
  3088  
  3089  <p>
  3090  asserts that <code>x</code> is not <code>nil</code>
  3091  and that the value stored in <code>x</code> is of type <code>T</code>.
  3092  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3093  </p>
  3094  <p>
  3095  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3096  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3097  to the type <code>T</code>.
  3098  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3099  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3100  to store a value of type <code>T</code>.
  3101  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3102  of <code>x</code> implements the interface <code>T</code>.
  3103  </p>
  3104  <p>
  3105  If the type assertion holds, the value of the expression is the value
  3106  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3107  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3108  In other words, even though the dynamic type of <code>x</code>
  3109  is known only at run time, the type of <code>x.(T)</code> is
  3110  known to be <code>T</code> in a correct program.
  3111  </p>
  3112  
  3113  <pre>
  3114  var x interface{} = 7  // x has dynamic type int and value 7
  3115  i := x.(int)           // i has type int and value 7
  3116  
  3117  type I interface { m() }
  3118  var y I
  3119  s := y.(string)        // illegal: string does not implement I (missing method m)
  3120  r := y.(io.Reader)     // r has type io.Reader and y must implement both I and io.Reader
  3121  </pre>
  3122  
  3123  <p>
  3124  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3125  </p>
  3126  
  3127  <pre>
  3128  v, ok = x.(T)
  3129  v, ok := x.(T)
  3130  var v, ok = x.(T)
  3131  </pre>
  3132  
  3133  <p>
  3134  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3135  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3136  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3137  No run-time panic occurs in this case.
  3138  </p>
  3139  
  3140  
  3141  <h3 id="Calls">Calls</h3>
  3142  
  3143  <p>
  3144  Given an expression <code>f</code> of function type
  3145  <code>F</code>,
  3146  </p>
  3147  
  3148  <pre>
  3149  f(a1, a2, … an)
  3150  </pre>
  3151  
  3152  <p>
  3153  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3154  Except for one special case, arguments must be single-valued expressions
  3155  <a href="#Assignability">assignable</a> to the parameter types of
  3156  <code>F</code> and are evaluated before the function is called.
  3157  The type of the expression is the result type
  3158  of <code>F</code>.
  3159  A method invocation is similar but the method itself
  3160  is specified as a selector upon a value of the receiver type for
  3161  the method.
  3162  </p>
  3163  
  3164  <pre>
  3165  math.Atan2(x, y)  // function call
  3166  var pt *Point
  3167  pt.Scale(3.5)     // method call with receiver pt
  3168  </pre>
  3169  
  3170  <p>
  3171  In a function call, the function value and arguments are evaluated in
  3172  <a href="#Order_of_evaluation">the usual order</a>.
  3173  After they are evaluated, the parameters of the call are passed by value to the function
  3174  and the called function begins execution.
  3175  The return parameters of the function are passed by value
  3176  back to the calling function when the function returns.
  3177  </p>
  3178  
  3179  <p>
  3180  Calling a <code>nil</code> function value
  3181  causes a <a href="#Run_time_panics">run-time panic</a>.
  3182  </p>
  3183  
  3184  <p>
  3185  As a special case, if the return values of a function or method
  3186  <code>g</code> are equal in number and individually
  3187  assignable to the parameters of another function or method
  3188  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3189  will invoke <code>f</code> after binding the return values of
  3190  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3191  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3192  and <code>g</code> must have at least one return value.
  3193  If <code>f</code> has a final <code>...</code> parameter, it is
  3194  assigned the return values of <code>g</code> that remain after
  3195  assignment of regular parameters.
  3196  </p>
  3197  
  3198  <pre>
  3199  func Split(s string, pos int) (string, string) {
  3200  	return s[0:pos], s[pos:]
  3201  }
  3202  
  3203  func Join(s, t string) string {
  3204  	return s + t
  3205  }
  3206  
  3207  if Join(Split(value, len(value)/2)) != value {
  3208  	log.Panic("test fails")
  3209  }
  3210  </pre>
  3211  
  3212  <p>
  3213  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3214  of (the type of) <code>x</code> contains <code>m</code> and the
  3215  argument list can be assigned to the parameter list of <code>m</code>.
  3216  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3217  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3218  for <code>(&amp;x).m()</code>:
  3219  </p>
  3220  
  3221  <pre>
  3222  var p Point
  3223  p.Scale(3.5)
  3224  </pre>
  3225  
  3226  <p>
  3227  There is no distinct method type and there are no method literals.
  3228  </p>
  3229  
  3230  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3231  
  3232  <p>
  3233  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3234  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3235  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3236  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3237  the value passed to <code>p</code> is <code>nil</code>.
  3238  Otherwise, the value passed is a new slice
  3239  of type <code>[]T</code> with a new underlying array whose successive elements
  3240  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3241  to <code>T</code>. The length and capacity of the slice is therefore
  3242  the number of arguments bound to <code>p</code> and may differ for each
  3243  call site.
  3244  </p>
  3245  
  3246  <p>
  3247  Given the function and calls
  3248  </p>
  3249  <pre>
  3250  func Greeting(prefix string, who ...string)
  3251  Greeting("nobody")
  3252  Greeting("hello:", "Joe", "Anna", "Eileen")
  3253  </pre>
  3254  
  3255  <p>
  3256  within <code>Greeting</code>, <code>who</code> will have the value
  3257  <code>nil</code> in the first call, and
  3258  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3259  </p>
  3260  
  3261  <p>
  3262  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3263  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3264  is followed by <code>...</code>. In this case no new slice is created.
  3265  </p>
  3266  
  3267  <p>
  3268  Given the slice <code>s</code> and call
  3269  </p>
  3270  
  3271  <pre>
  3272  s := []string{"James", "Jasmine"}
  3273  Greeting("goodbye:", s...)
  3274  </pre>
  3275  
  3276  <p>
  3277  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3278  with the same underlying array.
  3279  </p>
  3280  
  3281  
  3282  <h3 id="Operators">Operators</h3>
  3283  
  3284  <p>
  3285  Operators combine operands into expressions.
  3286  </p>
  3287  
  3288  <pre class="ebnf">
  3289  Expression = UnaryExpr | Expression binary_op UnaryExpr .
  3290  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3291  
  3292  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3293  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3294  add_op     = "+" | "-" | "|" | "^" .
  3295  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3296  
  3297  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3298  </pre>
  3299  
  3300  <p>
  3301  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3302  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3303  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3304  For operations involving constants only, see the section on
  3305  <a href="#Constant_expressions">constant expressions</a>.
  3306  </p>
  3307  
  3308  <p>
  3309  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3310  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3311  to the type of the other operand.
  3312  </p>
  3313  
  3314  <p>
  3315  The right operand in a shift expression must have unsigned integer type
  3316  or be an untyped constant that can be converted to unsigned integer type.
  3317  If the left operand of a non-constant shift expression is an untyped constant,
  3318  the type of the constant is what it would be if the shift expression were
  3319  replaced by its left operand alone.
  3320  </p>
  3321  
  3322  <pre>
  3323  var s uint = 33
  3324  var i = 1&lt;&lt;s           // 1 has type int
  3325  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3326  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3327  var m int = 1.0&lt;&lt;s     // 1.0 has type int
  3328  var n = 1.0&lt;&lt;s != i    // 1.0 has type int; n == false if ints are 32bits in size
  3329  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3330  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3331  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3332  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3333  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3334  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3335  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3336  </pre>
  3337  
  3338  <h3 id="Operator_precedence">Operator precedence</h3>
  3339  <p>
  3340  Unary operators have the highest precedence.
  3341  As the  <code>++</code> and <code>--</code> operators form
  3342  statements, not expressions, they fall
  3343  outside the operator hierarchy.
  3344  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3345  <p>
  3346  There are five precedence levels for binary operators.
  3347  Multiplication operators bind strongest, followed by addition
  3348  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3349  and finally <code>||</code> (logical OR):
  3350  </p>
  3351  
  3352  <pre class="grammar">
  3353  Precedence    Operator
  3354      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3355      4             +  -  |  ^
  3356      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3357      2             &amp;&amp;
  3358      1             ||
  3359  </pre>
  3360  
  3361  <p>
  3362  Binary operators of the same precedence associate from left to right.
  3363  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3364  </p>
  3365  
  3366  <pre>
  3367  +x
  3368  23 + 3*x[i]
  3369  x &lt;= f()
  3370  ^a &gt;&gt; b
  3371  f() || g()
  3372  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3373  </pre>
  3374  
  3375  
  3376  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3377  <p>
  3378  Arithmetic operators apply to numeric values and yield a result of the same
  3379  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3380  <code>-</code>,  <code>*</code>, <code>/</code>) apply to integer,
  3381  floating-point, and complex types; <code>+</code> also applies
  3382  to strings. All other arithmetic operators apply to integers only.
  3383  </p>
  3384  
  3385  <pre class="grammar">
  3386  +    sum                    integers, floats, complex values, strings
  3387  -    difference             integers, floats, complex values
  3388  *    product                integers, floats, complex values
  3389  /    quotient               integers, floats, complex values
  3390  %    remainder              integers
  3391  
  3392  &amp;    bitwise AND            integers
  3393  |    bitwise OR             integers
  3394  ^    bitwise XOR            integers
  3395  &amp;^   bit clear (AND NOT)    integers
  3396  
  3397  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3398  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3399  </pre>
  3400  
  3401  <p>
  3402  Strings can be concatenated using the <code>+</code> operator
  3403  or the <code>+=</code> assignment operator:
  3404  </p>
  3405  
  3406  <pre>
  3407  s := "hi" + string(c)
  3408  s += " and good bye"
  3409  </pre>
  3410  
  3411  <p>
  3412  String addition creates a new string by concatenating the operands.
  3413  </p>
  3414  <p>
  3415  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3416  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3417  relationships:
  3418  </p>
  3419  
  3420  <pre>
  3421  x = q*y + r  and  |r| &lt; |y|
  3422  </pre>
  3423  
  3424  <p>
  3425  with <code>x / y</code> truncated towards zero
  3426  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3427  </p>
  3428  
  3429  <pre>
  3430   x     y     x / y     x % y
  3431   5     3       1         2
  3432  -5     3      -1        -2
  3433   5    -3      -1         2
  3434  -5    -3       1        -2
  3435  </pre>
  3436  
  3437  <p>
  3438  As an exception to this rule, if the dividend <code>x</code> is the most
  3439  negative value for the int type of <code>x</code>, the quotient
  3440  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3441  </p>
  3442  
  3443  <pre>
  3444  			 x, q
  3445  int8                     -128
  3446  int16                  -32768
  3447  int32             -2147483648
  3448  int64    -9223372036854775808
  3449  </pre>
  3450  
  3451  <p>
  3452  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3453  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3454  If the dividend is non-negative and the divisor is a constant power of 2,
  3455  the division may be replaced by a right shift, and computing the remainder may
  3456  be replaced by a bitwise AND operation:
  3457  </p>
  3458  
  3459  <pre>
  3460   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3461   11      2         3         2          3
  3462  -11     -2        -3        -3          1
  3463  </pre>
  3464  
  3465  <p>
  3466  The shift operators shift the left operand by the shift count specified by the
  3467  right operand. They implement arithmetic shifts if the left operand is a signed
  3468  integer and logical shifts if it is an unsigned integer.
  3469  There is no upper limit on the shift count. Shifts behave
  3470  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3471  count of <code>n</code>.
  3472  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3473  and <code>x &gt;&gt; 1</code> is the same as
  3474  <code>x/2</code> but truncated towards negative infinity.
  3475  </p>
  3476  
  3477  <p>
  3478  For integer operands, the unary operators
  3479  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3480  follows:
  3481  </p>
  3482  
  3483  <pre class="grammar">
  3484  +x                          is 0 + x
  3485  -x    negation              is 0 - x
  3486  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3487                                        and  m = -1 for signed x
  3488  </pre>
  3489  
  3490  <p>
  3491  For floating-point and complex numbers,
  3492  <code>+x</code> is the same as <code>x</code>,
  3493  while <code>-x</code> is the negation of <code>x</code>.
  3494  The result of a floating-point or complex division by zero is not specified beyond the
  3495  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3496  occurs is implementation-specific.
  3497  </p>
  3498  
  3499  <h3 id="Integer_overflow">Integer overflow</h3>
  3500  
  3501  <p>
  3502  For unsigned integer values, the operations <code>+</code>,
  3503  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3504  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3505  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3506  Loosely speaking, these unsigned integer operations
  3507  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3508  </p>
  3509  <p>
  3510  For signed integers, the operations <code>+</code>,
  3511  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3512  overflow and the resulting value exists and is deterministically defined
  3513  by the signed integer representation, the operation, and its operands.
  3514  No exception is raised as a result of overflow. A
  3515  compiler may not optimize code under the assumption that overflow does
  3516  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3517  </p>
  3518  
  3519  
  3520  <h3 id="Comparison_operators">Comparison operators</h3>
  3521  
  3522  <p>
  3523  Comparison operators compare two operands and yield an untyped boolean value.
  3524  </p>
  3525  
  3526  <pre class="grammar">
  3527  ==    equal
  3528  !=    not equal
  3529  &lt;     less
  3530  &lt;=    less or equal
  3531  &gt;     greater
  3532  &gt;=    greater or equal
  3533  </pre>
  3534  
  3535  <p>
  3536  In any comparison, the first operand
  3537  must be <a href="#Assignability">assignable</a>
  3538  to the type of the second operand, or vice versa.
  3539  </p>
  3540  <p>
  3541  The equality operators <code>==</code> and <code>!=</code> apply
  3542  to operands that are <i>comparable</i>.
  3543  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3544  apply to operands that are <i>ordered</i>.
  3545  These terms and the result of the comparisons are defined as follows:
  3546  </p>
  3547  
  3548  <ul>
  3549  	<li>
  3550  	Boolean values are comparable.
  3551  	Two boolean values are equal if they are either both
  3552  	<code>true</code> or both <code>false</code>.
  3553  	</li>
  3554  
  3555  	<li>
  3556  	Integer values are comparable and ordered, in the usual way.
  3557  	</li>
  3558  
  3559  	<li>
  3560  	Floating point values are comparable and ordered,
  3561  	as defined by the IEEE-754 standard.
  3562  	</li>
  3563  
  3564  	<li>
  3565  	Complex values are comparable.
  3566  	Two complex values <code>u</code> and <code>v</code> are
  3567  	equal if both <code>real(u) == real(v)</code> and
  3568  	<code>imag(u) == imag(v)</code>.
  3569  	</li>
  3570  
  3571  	<li>
  3572  	String values are comparable and ordered, lexically byte-wise.
  3573  	</li>
  3574  
  3575  	<li>
  3576  	Pointer values are comparable.
  3577  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3578  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3579  	</li>
  3580  
  3581  	<li>
  3582  	Channel values are comparable.
  3583  	Two channel values are equal if they were created by the same call to
  3584  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3585  	or if both have value <code>nil</code>.
  3586  	</li>
  3587  
  3588  	<li>
  3589  	Interface values are comparable.
  3590  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3591  	and equal dynamic values or if both have value <code>nil</code>.
  3592  	</li>
  3593  
  3594  	<li>
  3595  	A value <code>x</code> of non-interface type <code>X</code> and
  3596  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3597  	of type <code>X</code> are comparable and
  3598  	<code>X</code> implements <code>T</code>.
  3599  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3600  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3601  	</li>
  3602  
  3603  	<li>
  3604  	Struct values are comparable if all their fields are comparable.
  3605  	Two struct values are equal if their corresponding
  3606  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3607  	</li>
  3608  
  3609  	<li>
  3610  	Array values are comparable if values of the array element type are comparable.
  3611  	Two array values are equal if their corresponding elements are equal.
  3612  	</li>
  3613  </ul>
  3614  
  3615  <p>
  3616  A comparison of two interface values with identical dynamic types
  3617  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3618  of that type are not comparable.  This behavior applies not only to direct interface
  3619  value comparisons but also when comparing arrays of interface values
  3620  or structs with interface-valued fields.
  3621  </p>
  3622  
  3623  <p>
  3624  Slice, map, and function values are not comparable.
  3625  However, as a special case, a slice, map, or function value may
  3626  be compared to the predeclared identifier <code>nil</code>.
  3627  Comparison of pointer, channel, and interface values to <code>nil</code>
  3628  is also allowed and follows from the general rules above.
  3629  </p>
  3630  
  3631  <pre>
  3632  const c = 3 &lt; 4            // c is the untyped bool constant true
  3633  
  3634  type MyBool bool
  3635  var x, y int
  3636  var (
  3637  	// The result of a comparison is an untyped bool.
  3638  	// The usual assignment rules apply.
  3639  	b3        = x == y // b3 has type bool
  3640  	b4 bool   = x == y // b4 has type bool
  3641  	b5 MyBool = x == y // b5 has type MyBool
  3642  )
  3643  </pre>
  3644  
  3645  <h3 id="Logical_operators">Logical operators</h3>
  3646  
  3647  <p>
  3648  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3649  and yield a result of the same type as the operands.
  3650  The right operand is evaluated conditionally.
  3651  </p>
  3652  
  3653  <pre class="grammar">
  3654  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3655  ||    conditional OR     p || q  is  "if p then true else q"
  3656  !     NOT                !p      is  "not p"
  3657  </pre>
  3658  
  3659  
  3660  <h3 id="Address_operators">Address operators</h3>
  3661  
  3662  <p>
  3663  For an operand <code>x</code> of type <code>T</code>, the address operation
  3664  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3665  The operand must be <i>addressable</i>,
  3666  that is, either a variable, pointer indirection, or slice indexing
  3667  operation; or a field selector of an addressable struct operand;
  3668  or an array indexing operation of an addressable array.
  3669  As an exception to the addressability requirement, <code>x</code> may also be a
  3670  (possibly parenthesized)
  3671  <a href="#Composite_literals">composite literal</a>.
  3672  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3673  then the evaluation of <code>&amp;x</code> does too.
  3674  </p>
  3675  
  3676  <p>
  3677  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3678  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3679  to by <code>x</code>.
  3680  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3681  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3682  </p>
  3683  
  3684  <pre>
  3685  &amp;x
  3686  &amp;a[f(2)]
  3687  &amp;Point{2, 3}
  3688  *p
  3689  *pf(x)
  3690  
  3691  var x *int = nil
  3692  *x   // causes a run-time panic
  3693  &amp;*x  // causes a run-time panic
  3694  </pre>
  3695  
  3696  
  3697  <h3 id="Receive_operator">Receive operator</h3>
  3698  
  3699  <p>
  3700  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3701  the value of the receive operation <code>&lt;-ch</code> is the value received
  3702  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3703  and the type of the receive operation is the element type of the channel.
  3704  The expression blocks until a value is available.
  3705  Receiving from a <code>nil</code> channel blocks forever.
  3706  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3707  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3708  after any previously sent values have been received.
  3709  </p>
  3710  
  3711  <pre>
  3712  v1 := &lt;-ch
  3713  v2 = &lt;-ch
  3714  f(&lt;-ch)
  3715  &lt;-strobe  // wait until clock pulse and discard received value
  3716  </pre>
  3717  
  3718  <p>
  3719  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3720  </p>
  3721  
  3722  <pre>
  3723  x, ok = &lt;-ch
  3724  x, ok := &lt;-ch
  3725  var x, ok = &lt;-ch
  3726  </pre>
  3727  
  3728  <p>
  3729  yields an additional untyped boolean result reporting whether the
  3730  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3731  if the value received was delivered by a successful send operation to the
  3732  channel, or <code>false</code> if it is a zero value generated because the
  3733  channel is closed and empty.
  3734  </p>
  3735  
  3736  
  3737  <h3 id="Conversions">Conversions</h3>
  3738  
  3739  <p>
  3740  Conversions are expressions of the form <code>T(x)</code>
  3741  where <code>T</code> is a type and <code>x</code> is an expression
  3742  that can be converted to type <code>T</code>.
  3743  </p>
  3744  
  3745  <pre class="ebnf">
  3746  Conversion = Type "(" Expression [ "," ] ")" .
  3747  </pre>
  3748  
  3749  <p>
  3750  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3751  or if the type starts with the keyword <code>func</code>
  3752  and has no result list, it must be parenthesized when
  3753  necessary to avoid ambiguity:
  3754  </p>
  3755  
  3756  <pre>
  3757  *Point(p)        // same as *(Point(p))
  3758  (*Point)(p)      // p is converted to *Point
  3759  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3760  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3761  func()(x)        // function signature func() x
  3762  (func())(x)      // x is converted to func()
  3763  (func() int)(x)  // x is converted to func() int
  3764  func() int(x)    // x is converted to func() int (unambiguous)
  3765  </pre>
  3766  
  3767  <p>
  3768  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3769  type <code>T</code> in any of these cases:
  3770  </p>
  3771  
  3772  <ul>
  3773  	<li>
  3774  	<code>x</code> is representable by a value of type <code>T</code>.
  3775  	</li>
  3776  	<li>
  3777  	<code>x</code> is a floating-point constant,
  3778  	<code>T</code> is a floating-point type,
  3779  	and <code>x</code> is representable by a value
  3780  	of type <code>T</code> after rounding using
  3781  	IEEE 754 round-to-even rules.
  3782  	The constant <code>T(x)</code> is the rounded value.
  3783  	</li>
  3784  	<li>
  3785  	<code>x</code> is an integer constant and <code>T</code> is a
  3786  	<a href="#String_types">string type</a>.
  3787  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3788  	as for non-constant <code>x</code> applies in this case.
  3789  	</li>
  3790  </ul>
  3791  
  3792  <p>
  3793  Converting a constant yields a typed constant as result.
  3794  </p>
  3795  
  3796  <pre>
  3797  uint(iota)               // iota value of type uint
  3798  float32(2.718281828)     // 2.718281828 of type float32
  3799  complex128(1)            // 1.0 + 0.0i of type complex128
  3800  float32(0.49999999)      // 0.5 of type float32
  3801  string('x')              // "x" of type string
  3802  string(0x266c)           // "♬" of type string
  3803  MyString("foo" + "bar")  // "foobar" of type MyString
  3804  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3805  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3806  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3807  string(65.0)             // illegal: 65.0 is not an integer constant
  3808  </pre>
  3809  
  3810  <p>
  3811  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3812  in any of these cases:
  3813  </p>
  3814  
  3815  <ul>
  3816  	<li>
  3817  	<code>x</code> is <a href="#Assignability">assignable</a>
  3818  	to <code>T</code>.
  3819  	</li>
  3820  	<li>
  3821  	<code>x</code>'s type and <code>T</code> have identical
  3822  	<a href="#Types">underlying types</a>.
  3823  	</li>
  3824  	<li>
  3825  	<code>x</code>'s type and <code>T</code> are unnamed pointer types
  3826  	and their pointer base types have identical underlying types.
  3827  	</li>
  3828  	<li>
  3829  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3830  	point types.
  3831  	</li>
  3832  	<li>
  3833  	<code>x</code>'s type and <code>T</code> are both complex types.
  3834  	</li>
  3835  	<li>
  3836  	<code>x</code> is an integer or a slice of bytes or runes
  3837  	and <code>T</code> is a string type.
  3838  	</li>
  3839  	<li>
  3840  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3841  	</li>
  3842  </ul>
  3843  
  3844  <p>
  3845  Specific rules apply to (non-constant) conversions between numeric types or
  3846  to and from a string type.
  3847  These conversions may change the representation of <code>x</code>
  3848  and incur a run-time cost.
  3849  All other conversions only change the type but not the representation
  3850  of <code>x</code>.
  3851  </p>
  3852  
  3853  <p>
  3854  There is no linguistic mechanism to convert between pointers and integers.
  3855  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3856  implements this functionality under
  3857  restricted circumstances.
  3858  </p>
  3859  
  3860  <h4>Conversions between numeric types</h4>
  3861  
  3862  <p>
  3863  For the conversion of non-constant numeric values, the following rules apply:
  3864  </p>
  3865  
  3866  <ol>
  3867  <li>
  3868  When converting between integer types, if the value is a signed integer, it is
  3869  sign extended to implicit infinite precision; otherwise it is zero extended.
  3870  It is then truncated to fit in the result type's size.
  3871  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3872  The conversion always yields a valid value; there is no indication of overflow.
  3873  </li>
  3874  <li>
  3875  When converting a floating-point number to an integer, the fraction is discarded
  3876  (truncation towards zero).
  3877  </li>
  3878  <li>
  3879  When converting an integer or floating-point number to a floating-point type,
  3880  or a complex number to another complex type, the result value is rounded
  3881  to the precision specified by the destination type.
  3882  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3883  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3884  but float32(x) represents the result of rounding <code>x</code>'s value to
  3885  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  3886  of precision, but <code>float32(x + 0.1)</code> does not.
  3887  </li>
  3888  </ol>
  3889  
  3890  <p>
  3891  In all non-constant conversions involving floating-point or complex values,
  3892  if the result type cannot represent the value the conversion
  3893  succeeds but the result value is implementation-dependent.
  3894  </p>
  3895  
  3896  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  3897  
  3898  <ol>
  3899  <li>
  3900  Converting a signed or unsigned integer value to a string type yields a
  3901  string containing the UTF-8 representation of the integer. Values outside
  3902  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  3903  
  3904  <pre>
  3905  string('a')       // "a"
  3906  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  3907  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  3908  type MyString string
  3909  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  3910  </pre>
  3911  </li>
  3912  
  3913  <li>
  3914  Converting a slice of bytes to a string type yields
  3915  a string whose successive bytes are the elements of the slice.
  3916  
  3917  <pre>
  3918  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  3919  string([]byte{})                                     // ""
  3920  string([]byte(nil))                                  // ""
  3921  
  3922  type MyBytes []byte
  3923  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  3924  </pre>
  3925  </li>
  3926  
  3927  <li>
  3928  Converting a slice of runes to a string type yields
  3929  a string that is the concatenation of the individual rune values
  3930  converted to strings.
  3931  
  3932  <pre>
  3933  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3934  string([]rune{})                         // ""
  3935  string([]rune(nil))                      // ""
  3936  
  3937  type MyRunes []rune
  3938  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3939  </pre>
  3940  </li>
  3941  
  3942  <li>
  3943  Converting a value of a string type to a slice of bytes type
  3944  yields a slice whose successive elements are the bytes of the string.
  3945  
  3946  <pre>
  3947  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  3948  []byte("")        // []byte{}
  3949  
  3950  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  3951  </pre>
  3952  </li>
  3953  
  3954  <li>
  3955  Converting a value of a string type to a slice of runes type
  3956  yields a slice containing the individual Unicode code points of the string.
  3957  
  3958  <pre>
  3959  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  3960  []rune("")                 // []rune{}
  3961  
  3962  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  3963  </pre>
  3964  </li>
  3965  </ol>
  3966  
  3967  
  3968  <h3 id="Constant_expressions">Constant expressions</h3>
  3969  
  3970  <p>
  3971  Constant expressions may contain only <a href="#Constants">constant</a>
  3972  operands and are evaluated at compile time.
  3973  </p>
  3974  
  3975  <p>
  3976  Untyped boolean, numeric, and string constants may be used as operands
  3977  wherever it is legal to use an operand of boolean, numeric, or string type,
  3978  respectively.
  3979  Except for shift operations, if the operands of a binary operation are
  3980  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  3981  the kind that appears later in this list: integer, rune, floating-point, complex.
  3982  For example, an untyped integer constant divided by an
  3983  untyped complex constant yields an untyped complex constant.
  3984  </p>
  3985  
  3986  <p>
  3987  A constant <a href="#Comparison_operators">comparison</a> always yields
  3988  an untyped boolean constant.  If the left operand of a constant
  3989  <a href="#Operators">shift expression</a> is an untyped constant, the
  3990  result is an integer constant; otherwise it is a constant of the same
  3991  type as the left operand, which must be of
  3992  <a href="#Numeric_types">integer type</a>.
  3993  Applying all other operators to untyped constants results in an untyped
  3994  constant of the same kind (that is, a boolean, integer, floating-point,
  3995  complex, or string constant).
  3996  </p>
  3997  
  3998  <pre>
  3999  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4000  const b = 15 / 4           // b == 3     (untyped integer constant)
  4001  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4002  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4003  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4004  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4005  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4006  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4007  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4008  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4009  const j = true             // j == true  (untyped boolean constant)
  4010  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4011  const l = "hi"             // l == "hi"  (untyped string constant)
  4012  const m = string(k)        // m == "x"   (type string)
  4013  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4014  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4015  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4016  </pre>
  4017  
  4018  <p>
  4019  Applying the built-in function <code>complex</code> to untyped
  4020  integer, rune, or floating-point constants yields
  4021  an untyped complex constant.
  4022  </p>
  4023  
  4024  <pre>
  4025  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4026  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4027  </pre>
  4028  
  4029  <p>
  4030  Constant expressions are always evaluated exactly; intermediate values and the
  4031  constants themselves may require precision significantly larger than supported
  4032  by any predeclared type in the language. The following are legal declarations:
  4033  </p>
  4034  
  4035  <pre>
  4036  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4037  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4038  </pre>
  4039  
  4040  <p>
  4041  The divisor of a constant division or remainder operation must not be zero:
  4042  </p>
  4043  
  4044  <pre>
  4045  3.14 / 0.0   // illegal: division by zero
  4046  </pre>
  4047  
  4048  <p>
  4049  The values of <i>typed</i> constants must always be accurately representable as values
  4050  of the constant type. The following constant expressions are illegal:
  4051  </p>
  4052  
  4053  <pre>
  4054  uint(-1)     // -1 cannot be represented as a uint
  4055  int(3.14)    // 3.14 cannot be represented as an int
  4056  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4057  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4058  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4059  </pre>
  4060  
  4061  <p>
  4062  The mask used by the unary bitwise complement operator <code>^</code> matches
  4063  the rule for non-constants: the mask is all 1s for unsigned constants
  4064  and -1 for signed and untyped constants.
  4065  </p>
  4066  
  4067  <pre>
  4068  ^1         // untyped integer constant, equal to -2
  4069  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4070  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4071  int8(^1)   // same as int8(-2)
  4072  ^int8(1)   // same as -1 ^ int8(1) = -2
  4073  </pre>
  4074  
  4075  <p>
  4076  Implementation restriction: A compiler may use rounding while
  4077  computing untyped floating-point or complex constant expressions; see
  4078  the implementation restriction in the section
  4079  on <a href="#Constants">constants</a>.  This rounding may cause a
  4080  floating-point constant expression to be invalid in an integer
  4081  context, even if it would be integral when calculated using infinite
  4082  precision.
  4083  </p>
  4084  
  4085  
  4086  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4087  
  4088  <p>
  4089  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4090  determine the evaluation order of individual initialization expressions in
  4091  <a href="#Variable_declarations">variable declarations</a>.
  4092  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4093  expression, assignment, or
  4094  <a href="#Return_statements">return statement</a>,
  4095  all function calls, method calls, and
  4096  communication operations are evaluated in lexical left-to-right
  4097  order.
  4098  </p>
  4099  
  4100  <p>
  4101  For example, in the (function-local) assignment
  4102  </p>
  4103  <pre>
  4104  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4105  </pre>
  4106  <p>
  4107  the function calls and communication happen in the order
  4108  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4109  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4110  However, the order of those events compared to the evaluation
  4111  and indexing of <code>x</code> and the evaluation
  4112  of <code>y</code> is not specified.
  4113  </p>
  4114  
  4115  <pre>
  4116  a := 1
  4117  f := func() int { a++; return a }
  4118  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4119  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4120  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4121  </pre>
  4122  
  4123  <p>
  4124  At package level, initialization dependencies override the left-to-right rule
  4125  for individual initialization expressions, but not for operands within each
  4126  expression:
  4127  </p>
  4128  
  4129  <pre>
  4130  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4131  
  4132  func f() int        { return c }
  4133  func g() int        { return a }
  4134  func sqr(x int) int { return x*x }
  4135  
  4136  // functions u and v are independent of all other variables and functions
  4137  </pre>
  4138  
  4139  <p>
  4140  The function calls happen in the order
  4141  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4142  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4143  </p>
  4144  
  4145  <p>
  4146  Floating-point operations within a single expression are evaluated according to
  4147  the associativity of the operators.  Explicit parentheses affect the evaluation
  4148  by overriding the default associativity.
  4149  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4150  is performed before adding <code>x</code>.
  4151  </p>
  4152  
  4153  <h2 id="Statements">Statements</h2>
  4154  
  4155  <p>
  4156  Statements control execution.
  4157  </p>
  4158  
  4159  <pre class="ebnf">
  4160  Statement =
  4161  	Declaration | LabeledStmt | SimpleStmt |
  4162  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4163  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4164  	DeferStmt .
  4165  
  4166  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4167  </pre>
  4168  
  4169  <h3 id="Terminating_statements">Terminating statements</h3>
  4170  
  4171  <p>
  4172  A terminating statement is one of the following:
  4173  </p>
  4174  
  4175  <ol>
  4176  <li>
  4177  	A <a href="#Return_statements">"return"</a> or
  4178      	<a href="#Goto_statements">"goto"</a> statement.
  4179  	<!-- ul below only for regular layout -->
  4180  	<ul> </ul>
  4181  </li>
  4182  
  4183  <li>
  4184  	A call to the built-in function
  4185  	<a href="#Handling_panics"><code>panic</code></a>.
  4186  	<!-- ul below only for regular layout -->
  4187  	<ul> </ul>
  4188  </li>
  4189  
  4190  <li>
  4191  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4192  	<!-- ul below only for regular layout -->
  4193  	<ul> </ul>
  4194  </li>
  4195  
  4196  <li>
  4197  	An <a href="#If_statements">"if" statement</a> in which:
  4198  	<ul>
  4199  	<li>the "else" branch is present, and</li>
  4200  	<li>both branches are terminating statements.</li>
  4201  	</ul>
  4202  </li>
  4203  
  4204  <li>
  4205  	A <a href="#For_statements">"for" statement</a> in which:
  4206  	<ul>
  4207  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4208  	<li>the loop condition is absent.</li>
  4209  	</ul>
  4210  </li>
  4211  
  4212  <li>
  4213  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4214  	<ul>
  4215  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4216  	<li>there is a default case, and</li>
  4217  	<li>the statement lists in each case, including the default, end in a terminating
  4218  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4219  	    statement</a>.</li>
  4220  	</ul>
  4221  </li>
  4222  
  4223  <li>
  4224  	A <a href="#Select_statements">"select" statement</a> in which:
  4225  	<ul>
  4226  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4227  	<li>the statement lists in each case, including the default if present,
  4228  	    end in a terminating statement.</li>
  4229  	</ul>
  4230  </li>
  4231  
  4232  <li>
  4233  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4234  	a terminating statement.
  4235  </li>
  4236  </ol>
  4237  
  4238  <p>
  4239  All other statements are not terminating.
  4240  </p>
  4241  
  4242  <p>
  4243  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4244  is not empty and its final statement is terminating.
  4245  </p>
  4246  
  4247  
  4248  <h3 id="Empty_statements">Empty statements</h3>
  4249  
  4250  <p>
  4251  The empty statement does nothing.
  4252  </p>
  4253  
  4254  <pre class="ebnf">
  4255  EmptyStmt = .
  4256  </pre>
  4257  
  4258  
  4259  <h3 id="Labeled_statements">Labeled statements</h3>
  4260  
  4261  <p>
  4262  A labeled statement may be the target of a <code>goto</code>,
  4263  <code>break</code> or <code>continue</code> statement.
  4264  </p>
  4265  
  4266  <pre class="ebnf">
  4267  LabeledStmt = Label ":" Statement .
  4268  Label       = identifier .
  4269  </pre>
  4270  
  4271  <pre>
  4272  Error: log.Panic("error encountered")
  4273  </pre>
  4274  
  4275  
  4276  <h3 id="Expression_statements">Expression statements</h3>
  4277  
  4278  <p>
  4279  With the exception of specific built-in functions,
  4280  function and method <a href="#Calls">calls</a> and
  4281  <a href="#Receive_operator">receive operations</a>
  4282  can appear in statement context. Such statements may be parenthesized.
  4283  </p>
  4284  
  4285  <pre class="ebnf">
  4286  ExpressionStmt = Expression .
  4287  </pre>
  4288  
  4289  <p>
  4290  The following built-in functions are not permitted in statement context:
  4291  </p>
  4292  
  4293  <pre>
  4294  append cap complex imag len make new real
  4295  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4296  </pre>
  4297  
  4298  <pre>
  4299  h(x+y)
  4300  f.Close()
  4301  &lt;-ch
  4302  (&lt;-ch)
  4303  len("foo")  // illegal if len is the built-in function
  4304  </pre>
  4305  
  4306  
  4307  <h3 id="Send_statements">Send statements</h3>
  4308  
  4309  <p>
  4310  A send statement sends a value on a channel.
  4311  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4312  the channel direction must permit send operations,
  4313  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4314  to the channel's element type.
  4315  </p>
  4316  
  4317  <pre class="ebnf">
  4318  SendStmt = Channel "&lt;-" Expression .
  4319  Channel  = Expression .
  4320  </pre>
  4321  
  4322  <p>
  4323  Both the channel and the value expression are evaluated before communication
  4324  begins. Communication blocks until the send can proceed.
  4325  A send on an unbuffered channel can proceed if a receiver is ready.
  4326  A send on a buffered channel can proceed if there is room in the buffer.
  4327  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4328  A send on a <code>nil</code> channel blocks forever.
  4329  </p>
  4330  
  4331  <pre>
  4332  ch &lt;- 3  // send value 3 to channel ch
  4333  </pre>
  4334  
  4335  
  4336  <h3 id="IncDec_statements">IncDec statements</h3>
  4337  
  4338  <p>
  4339  The "++" and "--" statements increment or decrement their operands
  4340  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4341  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4342  or a map index expression.
  4343  </p>
  4344  
  4345  <pre class="ebnf">
  4346  IncDecStmt = Expression ( "++" | "--" ) .
  4347  </pre>
  4348  
  4349  <p>
  4350  The following <a href="#Assignments">assignment statements</a> are semantically
  4351  equivalent:
  4352  </p>
  4353  
  4354  <pre class="grammar">
  4355  IncDec statement    Assignment
  4356  x++                 x += 1
  4357  x--                 x -= 1
  4358  </pre>
  4359  
  4360  
  4361  <h3 id="Assignments">Assignments</h3>
  4362  
  4363  <pre class="ebnf">
  4364  Assignment = ExpressionList assign_op ExpressionList .
  4365  
  4366  assign_op = [ add_op | mul_op ] "=" .
  4367  </pre>
  4368  
  4369  <p>
  4370  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4371  a map index expression, or (for <code>=</code> assignments only) the
  4372  <a href="#Blank_identifier">blank identifier</a>.
  4373  Operands may be parenthesized.
  4374  </p>
  4375  
  4376  <pre>
  4377  x = 1
  4378  *p = f()
  4379  a[i] = 23
  4380  (k) = &lt;-ch  // same as: k = &lt;-ch
  4381  </pre>
  4382  
  4383  <p>
  4384  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4385  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4386  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4387  <code>y</code> but evaluates <code>x</code>
  4388  only once.  The <i>op</i><code>=</code> construct is a single token.
  4389  In assignment operations, both the left- and right-hand expression lists
  4390  must contain exactly one single-valued expression, and the left-hand
  4391  expression must not be the blank identifier.
  4392  </p>
  4393  
  4394  <pre>
  4395  a[i] &lt;&lt;= 2
  4396  i &amp;^= 1&lt;&lt;n
  4397  </pre>
  4398  
  4399  <p>
  4400  A tuple assignment assigns the individual elements of a multi-valued
  4401  operation to a list of variables.  There are two forms.  In the
  4402  first, the right hand operand is a single multi-valued expression
  4403  such as a function call, a <a href="#Channel_types">channel</a> or
  4404  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4405  The number of operands on the left
  4406  hand side must match the number of values.  For instance, if
  4407  <code>f</code> is a function returning two values,
  4408  </p>
  4409  
  4410  <pre>
  4411  x, y = f()
  4412  </pre>
  4413  
  4414  <p>
  4415  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4416  In the second form, the number of operands on the left must equal the number
  4417  of expressions on the right, each of which must be single-valued, and the
  4418  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4419  operand on the left:
  4420  </p>
  4421  
  4422  <pre>
  4423  one, two, three = '一', '二', '三'
  4424  </pre>
  4425  
  4426  <p>
  4427  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4428  ignore right-hand side values in an assignment:
  4429  </p>
  4430  
  4431  <pre>
  4432  _ = x       // evaluate x but ignore it
  4433  x, _ = f()  // evaluate f() but ignore second result value
  4434  </pre>
  4435  
  4436  <p>
  4437  The assignment proceeds in two phases.
  4438  First, the operands of <a href="#Index_expressions">index expressions</a>
  4439  and <a href="#Address_operators">pointer indirections</a>
  4440  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4441  on the left and the expressions on the right are all
  4442  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4443  Second, the assignments are carried out in left-to-right order.
  4444  </p>
  4445  
  4446  <pre>
  4447  a, b = b, a  // exchange a and b
  4448  
  4449  x := []int{1, 2, 3}
  4450  i := 0
  4451  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4452  
  4453  i = 0
  4454  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4455  
  4456  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4457  
  4458  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4459  
  4460  type Point struct { x, y int }
  4461  var p *Point
  4462  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4463  
  4464  i = 2
  4465  x = []int{3, 5, 7}
  4466  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4467  	break
  4468  }
  4469  // after this loop, i == 0 and x == []int{3, 5, 3}
  4470  </pre>
  4471  
  4472  <p>
  4473  In assignments, each value must be <a href="#Assignability">assignable</a>
  4474  to the type of the operand to which it is assigned, with the following special cases:
  4475  </p>
  4476  
  4477  <ol>
  4478  <li>
  4479  	Any typed value may be assigned to the blank identifier.
  4480  </li>
  4481  
  4482  <li>
  4483  	If an untyped constant
  4484  	is assigned to a variable of interface type or the blank identifier,
  4485  	the constant is first <a href="#Conversions">converted</a> to its
  4486  	 <a href="#Constants">default type</a>.
  4487  </li>
  4488  
  4489  <li>
  4490  	If an untyped boolean value is assigned to a variable of interface type or
  4491  	the blank identifier, it is first converted to type <code>bool</code>.
  4492  </li>
  4493  </ol>
  4494  
  4495  <h3 id="If_statements">If statements</h3>
  4496  
  4497  <p>
  4498  "If" statements specify the conditional execution of two branches
  4499  according to the value of a boolean expression.  If the expression
  4500  evaluates to true, the "if" branch is executed, otherwise, if
  4501  present, the "else" branch is executed.
  4502  </p>
  4503  
  4504  <pre class="ebnf">
  4505  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4506  </pre>
  4507  
  4508  <pre>
  4509  if x &gt; max {
  4510  	x = max
  4511  }
  4512  </pre>
  4513  
  4514  <p>
  4515  The expression may be preceded by a simple statement, which
  4516  executes before the expression is evaluated.
  4517  </p>
  4518  
  4519  <pre>
  4520  if x := f(); x &lt; y {
  4521  	return x
  4522  } else if x &gt; z {
  4523  	return z
  4524  } else {
  4525  	return y
  4526  }
  4527  </pre>
  4528  
  4529  
  4530  <h3 id="Switch_statements">Switch statements</h3>
  4531  
  4532  <p>
  4533  "Switch" statements provide multi-way execution.
  4534  An expression or type specifier is compared to the "cases"
  4535  inside the "switch" to determine which branch
  4536  to execute.
  4537  </p>
  4538  
  4539  <pre class="ebnf">
  4540  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4541  </pre>
  4542  
  4543  <p>
  4544  There are two forms: expression switches and type switches.
  4545  In an expression switch, the cases contain expressions that are compared
  4546  against the value of the switch expression.
  4547  In a type switch, the cases contain types that are compared against the
  4548  type of a specially annotated switch expression.
  4549  </p>
  4550  
  4551  <h4 id="Expression_switches">Expression switches</h4>
  4552  
  4553  <p>
  4554  In an expression switch,
  4555  the switch expression is evaluated and
  4556  the case expressions, which need not be constants,
  4557  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4558  switch expression
  4559  triggers execution of the statements of the associated case;
  4560  the other cases are skipped.
  4561  If no case matches and there is a "default" case,
  4562  its statements are executed.
  4563  There can be at most one default case and it may appear anywhere in the
  4564  "switch" statement.
  4565  A missing switch expression is equivalent to the boolean value
  4566  <code>true</code>.
  4567  </p>
  4568  
  4569  <pre class="ebnf">
  4570  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4571  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4572  ExprSwitchCase = "case" ExpressionList | "default" .
  4573  </pre>
  4574  
  4575  <p>
  4576  In a case or default clause, the last non-empty statement
  4577  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4578  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4579  indicate that control should flow from the end of this clause to
  4580  the first statement of the next clause.
  4581  Otherwise control flows to the end of the "switch" statement.
  4582  A "fallthrough" statement may appear as the last statement of all
  4583  but the last clause of an expression switch.
  4584  </p>
  4585  
  4586  <p>
  4587  The expression may be preceded by a simple statement, which
  4588  executes before the expression is evaluated.
  4589  </p>
  4590  
  4591  <pre>
  4592  switch tag {
  4593  default: s3()
  4594  case 0, 1, 2, 3: s1()
  4595  case 4, 5, 6, 7: s2()
  4596  }
  4597  
  4598  switch x := f(); {  // missing switch expression means "true"
  4599  case x &lt; 0: return -x
  4600  default: return x
  4601  }
  4602  
  4603  switch {
  4604  case x &lt; y: f1()
  4605  case x &lt; z: f2()
  4606  case x == 4: f3()
  4607  }
  4608  </pre>
  4609  
  4610  <h4 id="Type_switches">Type switches</h4>
  4611  
  4612  <p>
  4613  A type switch compares types rather than values. It is otherwise similar
  4614  to an expression switch. It is marked by a special switch expression that
  4615  has the form of a <a href="#Type_assertions">type assertion</a>
  4616  using the reserved word <code>type</code> rather than an actual type:
  4617  </p>
  4618  
  4619  <pre>
  4620  switch x.(type) {
  4621  // cases
  4622  }
  4623  </pre>
  4624  
  4625  <p>
  4626  Cases then match actual types <code>T</code> against the dynamic type of the
  4627  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4628  <a href="#Interface_types">interface type</a>, and each non-interface type
  4629  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4630  </p>
  4631  
  4632  <pre class="ebnf">
  4633  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4634  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4635  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4636  TypeSwitchCase  = "case" TypeList | "default" .
  4637  TypeList        = Type { "," Type } .
  4638  </pre>
  4639  
  4640  <p>
  4641  The TypeSwitchGuard may include a
  4642  <a href="#Short_variable_declarations">short variable declaration</a>.
  4643  When that form is used, the variable is declared at the beginning of
  4644  the <a href="#Blocks">implicit block</a> in each clause.
  4645  In clauses with a case listing exactly one type, the variable
  4646  has that type; otherwise, the variable has the type of the expression
  4647  in the TypeSwitchGuard.
  4648  </p>
  4649  
  4650  <p>
  4651  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4652  that case is used when the expression in the TypeSwitchGuard
  4653  is a <code>nil</code> interface value.
  4654  </p>
  4655  
  4656  <p>
  4657  Given an expression <code>x</code> of type <code>interface{}</code>,
  4658  the following type switch:
  4659  </p>
  4660  
  4661  <pre>
  4662  switch i := x.(type) {
  4663  case nil:
  4664  	printString("x is nil")                // type of i is type of x (interface{})
  4665  case int:
  4666  	printInt(i)                            // type of i is int
  4667  case float64:
  4668  	printFloat64(i)                        // type of i is float64
  4669  case func(int) float64:
  4670  	printFunction(i)                       // type of i is func(int) float64
  4671  case bool, string:
  4672  	printString("type is bool or string")  // type of i is type of x (interface{})
  4673  default:
  4674  	printString("don't know the type")     // type of i is type of x (interface{})
  4675  }
  4676  </pre>
  4677  
  4678  <p>
  4679  could be rewritten:
  4680  </p>
  4681  
  4682  <pre>
  4683  v := x  // x is evaluated exactly once
  4684  if v == nil {
  4685  	i := v                                 // type of i is type of x (interface{})
  4686  	printString("x is nil")
  4687  } else if i, isInt := v.(int); isInt {
  4688  	printInt(i)                            // type of i is int
  4689  } else if i, isFloat64 := v.(float64); isFloat64 {
  4690  	printFloat64(i)                        // type of i is float64
  4691  } else if i, isFunc := v.(func(int) float64); isFunc {
  4692  	printFunction(i)                       // type of i is func(int) float64
  4693  } else {
  4694  	_, isBool := v.(bool)
  4695  	_, isString := v.(string)
  4696  	if isBool || isString {
  4697  		i := v                         // type of i is type of x (interface{})
  4698  		printString("type is bool or string")
  4699  	} else {
  4700  		i := v                         // type of i is type of x (interface{})
  4701  		printString("don't know the type")
  4702  	}
  4703  }
  4704  </pre>
  4705  
  4706  <p>
  4707  The type switch guard may be preceded by a simple statement, which
  4708  executes before the guard is evaluated.
  4709  </p>
  4710  
  4711  <p>
  4712  The "fallthrough" statement is not permitted in a type switch.
  4713  </p>
  4714  
  4715  <h3 id="For_statements">For statements</h3>
  4716  
  4717  <p>
  4718  A "for" statement specifies repeated execution of a block. The iteration is
  4719  controlled by a condition, a "for" clause, or a "range" clause.
  4720  </p>
  4721  
  4722  <pre class="ebnf">
  4723  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4724  Condition = Expression .
  4725  </pre>
  4726  
  4727  <p>
  4728  In its simplest form, a "for" statement specifies the repeated execution of
  4729  a block as long as a boolean condition evaluates to true.
  4730  The condition is evaluated before each iteration.
  4731  If the condition is absent, it is equivalent to the boolean value
  4732  <code>true</code>.
  4733  </p>
  4734  
  4735  <pre>
  4736  for a &lt; b {
  4737  	a *= 2
  4738  }
  4739  </pre>
  4740  
  4741  <p>
  4742  A "for" statement with a ForClause is also controlled by its condition, but
  4743  additionally it may specify an <i>init</i>
  4744  and a <i>post</i> statement, such as an assignment,
  4745  an increment or decrement statement. The init statement may be a
  4746  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4747  Variables declared by the init statement are re-used in each iteration.
  4748  </p>
  4749  
  4750  <pre class="ebnf">
  4751  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4752  InitStmt = SimpleStmt .
  4753  PostStmt = SimpleStmt .
  4754  </pre>
  4755  
  4756  <pre>
  4757  for i := 0; i &lt; 10; i++ {
  4758  	f(i)
  4759  }
  4760  </pre>
  4761  
  4762  <p>
  4763  If non-empty, the init statement is executed once before evaluating the
  4764  condition for the first iteration;
  4765  the post statement is executed after each execution of the block (and
  4766  only if the block was executed).
  4767  Any element of the ForClause may be empty but the
  4768  <a href="#Semicolons">semicolons</a> are
  4769  required unless there is only a condition.
  4770  If the condition is absent, it is equivalent to the boolean value
  4771  <code>true</code>.
  4772  </p>
  4773  
  4774  <pre>
  4775  for cond { S() }    is the same as    for ; cond ; { S() }
  4776  for      { S() }    is the same as    for true     { S() }
  4777  </pre>
  4778  
  4779  <p>
  4780  A "for" statement with a "range" clause
  4781  iterates through all entries of an array, slice, string or map,
  4782  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4783  to corresponding <i>iteration variables</i> if present and then executes the block.
  4784  </p>
  4785  
  4786  <pre class="ebnf">
  4787  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4788  </pre>
  4789  
  4790  <p>
  4791  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4792  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4793  <a href="#Receive_operator">receive operations</a>.
  4794  As with an assignment, if present the operands on the left must be
  4795  <a href="#Address_operators">addressable</a> or map index expressions; they
  4796  denote the iteration variables. If the range expression is a channel, at most
  4797  one iteration variable is permitted, otherwise there may be up to two.
  4798  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4799  the range clause is equivalent to the same clause without that identifier.
  4800  </p>
  4801  
  4802  <p>
  4803  The range expression is evaluated once before beginning the loop,
  4804  with one exception: if the range expression is an array or a pointer to an array
  4805  and at most one iteration variable is present, only the range expression's
  4806  length is evaluated; if that length is constant,
  4807  <a href="#Length_and_capacity">by definition</a>
  4808  the range expression itself will not be evaluated.
  4809  </p>
  4810  
  4811  <p>
  4812  Function calls on the left are evaluated once per iteration.
  4813  For each iteration, iteration values are produced as follows
  4814  if the respective iteration variables are present:
  4815  </p>
  4816  
  4817  <pre class="grammar">
  4818  Range expression                          1st value          2nd value
  4819  
  4820  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4821  string          s  string type            index    i  int    see below  rune
  4822  map             m  map[K]V                key      k  K      m[k]       V
  4823  channel         c  chan E, &lt;-chan E       element  e  E
  4824  </pre>
  4825  
  4826  <ol>
  4827  <li>
  4828  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4829  values are produced in increasing order, starting at element index 0.
  4830  If at most one iteration variable is present, the range loop produces
  4831  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4832  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4833  </li>
  4834  
  4835  <li>
  4836  For a string value, the "range" clause iterates over the Unicode code points
  4837  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4838  index of the first byte of successive UTF-8-encoded code points in the string,
  4839  and the second value, of type <code>rune</code>, will be the value of
  4840  the corresponding code point.  If the iteration encounters an invalid
  4841  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4842  the Unicode replacement character, and the next iteration will advance
  4843  a single byte in the string.
  4844  </li>
  4845  
  4846  <li>
  4847  The iteration order over maps is not specified
  4848  and is not guaranteed to be the same from one iteration to the next.
  4849  If map entries that have not yet been reached are removed during iteration,
  4850  the corresponding iteration values will not be produced. If map entries are
  4851  created during iteration, that entry may be produced during the iteration or
  4852  may be skipped. The choice may vary for each entry created and from one
  4853  iteration to the next.
  4854  If the map is <code>nil</code>, the number of iterations is 0.
  4855  </li>
  4856  
  4857  <li>
  4858  For channels, the iteration values produced are the successive values sent on
  4859  the channel until the channel is <a href="#Close">closed</a>. If the channel
  4860  is <code>nil</code>, the range expression blocks forever.
  4861  </li>
  4862  </ol>
  4863  
  4864  <p>
  4865  The iteration values are assigned to the respective
  4866  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  4867  </p>
  4868  
  4869  <p>
  4870  The iteration variables may be declared by the "range" clause using a form of
  4871  <a href="#Short_variable_declarations">short variable declaration</a>
  4872  (<code>:=</code>).
  4873  In this case their types are set to the types of the respective iteration values
  4874  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  4875  statement; they are re-used in each iteration.
  4876  If the iteration variables are declared outside the "for" statement,
  4877  after execution their values will be those of the last iteration.
  4878  </p>
  4879  
  4880  <pre>
  4881  var testdata *struct {
  4882  	a *[7]int
  4883  }
  4884  for i, _ := range testdata.a {
  4885  	// testdata.a is never evaluated; len(testdata.a) is constant
  4886  	// i ranges from 0 to 6
  4887  	f(i)
  4888  }
  4889  
  4890  var a [10]string
  4891  for i, s := range a {
  4892  	// type of i is int
  4893  	// type of s is string
  4894  	// s == a[i]
  4895  	g(i, s)
  4896  }
  4897  
  4898  var key string
  4899  var val interface {}  // value type of m is assignable to val
  4900  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  4901  for key, val = range m {
  4902  	h(key, val)
  4903  }
  4904  // key == last map key encountered in iteration
  4905  // val == map[key]
  4906  
  4907  var ch chan Work = producer()
  4908  for w := range ch {
  4909  	doWork(w)
  4910  }
  4911  
  4912  // empty a channel
  4913  for range ch {}
  4914  </pre>
  4915  
  4916  
  4917  <h3 id="Go_statements">Go statements</h3>
  4918  
  4919  <p>
  4920  A "go" statement starts the execution of a function call
  4921  as an independent concurrent thread of control, or <i>goroutine</i>,
  4922  within the same address space.
  4923  </p>
  4924  
  4925  <pre class="ebnf">
  4926  GoStmt = "go" Expression .
  4927  </pre>
  4928  
  4929  <p>
  4930  The expression must be a function or method call; it cannot be parenthesized.
  4931  Calls of built-in functions are restricted as for
  4932  <a href="#Expression_statements">expression statements</a>.
  4933  </p>
  4934  
  4935  <p>
  4936  The function value and parameters are
  4937  <a href="#Calls">evaluated as usual</a>
  4938  in the calling goroutine, but
  4939  unlike with a regular call, program execution does not wait
  4940  for the invoked function to complete.
  4941  Instead, the function begins executing independently
  4942  in a new goroutine.
  4943  When the function terminates, its goroutine also terminates.
  4944  If the function has any return values, they are discarded when the
  4945  function completes.
  4946  </p>
  4947  
  4948  <pre>
  4949  go Server()
  4950  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  4951  </pre>
  4952  
  4953  
  4954  <h3 id="Select_statements">Select statements</h3>
  4955  
  4956  <p>
  4957  A "select" statement chooses which of a set of possible
  4958  <a href="#Send_statements">send</a> or
  4959  <a href="#Receive_operator">receive</a>
  4960  operations will proceed.
  4961  It looks similar to a
  4962  <a href="#Switch_statements">"switch"</a> statement but with the
  4963  cases all referring to communication operations.
  4964  </p>
  4965  
  4966  <pre class="ebnf">
  4967  SelectStmt = "select" "{" { CommClause } "}" .
  4968  CommClause = CommCase ":" StatementList .
  4969  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  4970  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  4971  RecvExpr   = Expression .
  4972  </pre>
  4973  
  4974  <p>
  4975  A case with a RecvStmt may assign the result of a RecvExpr to one or
  4976  two variables, which may be declared using a
  4977  <a href="#Short_variable_declarations">short variable declaration</a>.
  4978  The RecvExpr must be a (possibly parenthesized) receive operation.
  4979  There can be at most one default case and it may appear anywhere
  4980  in the list of cases.
  4981  </p>
  4982  
  4983  <p>
  4984  Execution of a "select" statement proceeds in several steps:
  4985  </p>
  4986  
  4987  <ol>
  4988  <li>
  4989  For all the cases in the statement, the channel operands of receive operations
  4990  and the channel and right-hand-side expressions of send statements are
  4991  evaluated exactly once, in source order, upon entering the "select" statement.
  4992  The result is a set of channels to receive from or send to,
  4993  and the corresponding values to send.
  4994  Any side effects in that evaluation will occur irrespective of which (if any)
  4995  communication operation is selected to proceed.
  4996  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  4997  or assignment are not yet evaluated.
  4998  </li>
  4999  
  5000  <li>
  5001  If one or more of the communications can proceed,
  5002  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5003  Otherwise, if there is a default case, that case is chosen.
  5004  If there is no default case, the "select" statement blocks until
  5005  at least one of the communications can proceed.
  5006  </li>
  5007  
  5008  <li>
  5009  Unless the selected case is the default case, the respective communication
  5010  operation is executed.
  5011  </li>
  5012  
  5013  <li>
  5014  If the selected case is a RecvStmt with a short variable declaration or
  5015  an assignment, the left-hand side expressions are evaluated and the
  5016  received value (or values) are assigned.
  5017  </li>
  5018  
  5019  <li>
  5020  The statement list of the selected case is executed.
  5021  </li>
  5022  </ol>
  5023  
  5024  <p>
  5025  Since communication on <code>nil</code> channels can never proceed,
  5026  a select with only <code>nil</code> channels and no default case blocks forever.
  5027  </p>
  5028  
  5029  <pre>
  5030  var a []int
  5031  var c, c1, c2, c3, c4 chan int
  5032  var i1, i2 int
  5033  select {
  5034  case i1 = &lt;-c1:
  5035  	print("received ", i1, " from c1\n")
  5036  case c2 &lt;- i2:
  5037  	print("sent ", i2, " to c2\n")
  5038  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5039  	if ok {
  5040  		print("received ", i3, " from c3\n")
  5041  	} else {
  5042  		print("c3 is closed\n")
  5043  	}
  5044  case a[f()] = &lt;-c4:
  5045  	// same as:
  5046  	// case t := &lt;-c4
  5047  	//	a[f()] = t
  5048  default:
  5049  	print("no communication\n")
  5050  }
  5051  
  5052  for {  // send random sequence of bits to c
  5053  	select {
  5054  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5055  	case c &lt;- 1:
  5056  	}
  5057  }
  5058  
  5059  select {}  // block forever
  5060  </pre>
  5061  
  5062  
  5063  <h3 id="Return_statements">Return statements</h3>
  5064  
  5065  <p>
  5066  A "return" statement in a function <code>F</code> terminates the execution
  5067  of <code>F</code>, and optionally provides one or more result values.
  5068  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5069  are executed before <code>F</code> returns to its caller.
  5070  </p>
  5071  
  5072  <pre class="ebnf">
  5073  ReturnStmt = "return" [ ExpressionList ] .
  5074  </pre>
  5075  
  5076  <p>
  5077  In a function without a result type, a "return" statement must not
  5078  specify any result values.
  5079  </p>
  5080  <pre>
  5081  func noResult() {
  5082  	return
  5083  }
  5084  </pre>
  5085  
  5086  <p>
  5087  There are three ways to return values from a function with a result
  5088  type:
  5089  </p>
  5090  
  5091  <ol>
  5092  	<li>The return value or values may be explicitly listed
  5093  		in the "return" statement. Each expression must be single-valued
  5094  		and <a href="#Assignability">assignable</a>
  5095  		to the corresponding element of the function's result type.
  5096  <pre>
  5097  func simpleF() int {
  5098  	return 2
  5099  }
  5100  
  5101  func complexF1() (re float64, im float64) {
  5102  	return -7.0, -4.0
  5103  }
  5104  </pre>
  5105  	</li>
  5106  	<li>The expression list in the "return" statement may be a single
  5107  		call to a multi-valued function. The effect is as if each value
  5108  		returned from that function were assigned to a temporary
  5109  		variable with the type of the respective value, followed by a
  5110  		"return" statement listing these variables, at which point the
  5111  		rules of the previous case apply.
  5112  <pre>
  5113  func complexF2() (re float64, im float64) {
  5114  	return complexF1()
  5115  }
  5116  </pre>
  5117  	</li>
  5118  	<li>The expression list may be empty if the function's result
  5119  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5120  		The result parameters act as ordinary local variables
  5121  		and the function may assign values to them as necessary.
  5122  		The "return" statement returns the values of these variables.
  5123  <pre>
  5124  func complexF3() (re float64, im float64) {
  5125  	re = 7.0
  5126  	im = 4.0
  5127  	return
  5128  }
  5129  
  5130  func (devnull) Write(p []byte) (n int, _ error) {
  5131  	n = len(p)
  5132  	return
  5133  }
  5134  </pre>
  5135  	</li>
  5136  </ol>
  5137  
  5138  <p>
  5139  Regardless of how they are declared, all the result values are initialized to
  5140  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5141  function. A "return" statement that specifies results sets the result parameters before
  5142  any deferred functions are executed.
  5143  </p>
  5144  
  5145  <p>
  5146  Implementation restriction: A compiler may disallow an empty expression list
  5147  in a "return" statement if a different entity (constant, type, or variable)
  5148  with the same name as a result parameter is in
  5149  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5150  </p>
  5151  
  5152  <pre>
  5153  func f(n int) (res int, err error) {
  5154  	if _, err := f(n-1); err != nil {
  5155  		return  // invalid return statement: err is shadowed
  5156  	}
  5157  	return
  5158  }
  5159  </pre>
  5160  
  5161  <h3 id="Break_statements">Break statements</h3>
  5162  
  5163  <p>
  5164  A "break" statement terminates execution of the innermost
  5165  <a href="#For_statements">"for"</a>,
  5166  <a href="#Switch_statements">"switch"</a>, or
  5167  <a href="#Select_statements">"select"</a> statement
  5168  within the same function.
  5169  </p>
  5170  
  5171  <pre class="ebnf">
  5172  BreakStmt = "break" [ Label ] .
  5173  </pre>
  5174  
  5175  <p>
  5176  If there is a label, it must be that of an enclosing
  5177  "for", "switch", or "select" statement,
  5178  and that is the one whose execution terminates.
  5179  </p>
  5180  
  5181  <pre>
  5182  OuterLoop:
  5183  	for i = 0; i &lt; n; i++ {
  5184  		for j = 0; j &lt; m; j++ {
  5185  			switch a[i][j] {
  5186  			case nil:
  5187  				state = Error
  5188  				break OuterLoop
  5189  			case item:
  5190  				state = Found
  5191  				break OuterLoop
  5192  			}
  5193  		}
  5194  	}
  5195  </pre>
  5196  
  5197  <h3 id="Continue_statements">Continue statements</h3>
  5198  
  5199  <p>
  5200  A "continue" statement begins the next iteration of the
  5201  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5202  The "for" loop must be within the same function.
  5203  </p>
  5204  
  5205  <pre class="ebnf">
  5206  ContinueStmt = "continue" [ Label ] .
  5207  </pre>
  5208  
  5209  <p>
  5210  If there is a label, it must be that of an enclosing
  5211  "for" statement, and that is the one whose execution
  5212  advances.
  5213  </p>
  5214  
  5215  <pre>
  5216  RowLoop:
  5217  	for y, row := range rows {
  5218  		for x, data := range row {
  5219  			if data == endOfRow {
  5220  				continue RowLoop
  5221  			}
  5222  			row[x] = data + bias(x, y)
  5223  		}
  5224  	}
  5225  </pre>
  5226  
  5227  <h3 id="Goto_statements">Goto statements</h3>
  5228  
  5229  <p>
  5230  A "goto" statement transfers control to the statement with the corresponding label
  5231  within the same function.
  5232  </p>
  5233  
  5234  <pre class="ebnf">
  5235  GotoStmt = "goto" Label .
  5236  </pre>
  5237  
  5238  <pre>
  5239  goto Error
  5240  </pre>
  5241  
  5242  <p>
  5243  Executing the "goto" statement must not cause any variables to come into
  5244  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5245  For instance, this example:
  5246  </p>
  5247  
  5248  <pre>
  5249  	goto L  // BAD
  5250  	v := 3
  5251  L:
  5252  </pre>
  5253  
  5254  <p>
  5255  is erroneous because the jump to label <code>L</code> skips
  5256  the creation of <code>v</code>.
  5257  </p>
  5258  
  5259  <p>
  5260  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5261  For instance, this example:
  5262  </p>
  5263  
  5264  <pre>
  5265  if n%2 == 1 {
  5266  	goto L1
  5267  }
  5268  for n &gt; 0 {
  5269  	f()
  5270  	n--
  5271  L1:
  5272  	f()
  5273  	n--
  5274  }
  5275  </pre>
  5276  
  5277  <p>
  5278  is erroneous because the label <code>L1</code> is inside
  5279  the "for" statement's block but the <code>goto</code> is not.
  5280  </p>
  5281  
  5282  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5283  
  5284  <p>
  5285  A "fallthrough" statement transfers control to the first statement of the
  5286  next case clause in a <a href="#Expression_switches">expression "switch" statement</a>.
  5287  It may be used only as the final non-empty statement in such a clause.
  5288  </p>
  5289  
  5290  <pre class="ebnf">
  5291  FallthroughStmt = "fallthrough" .
  5292  </pre>
  5293  
  5294  
  5295  <h3 id="Defer_statements">Defer statements</h3>
  5296  
  5297  <p>
  5298  A "defer" statement invokes a function whose execution is deferred
  5299  to the moment the surrounding function returns, either because the
  5300  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5301  reached the end of its <a href="#Function_declarations">function body</a>,
  5302  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5303  </p>
  5304  
  5305  <pre class="ebnf">
  5306  DeferStmt = "defer" Expression .
  5307  </pre>
  5308  
  5309  <p>
  5310  The expression must be a function or method call; it cannot be parenthesized.
  5311  Calls of built-in functions are restricted as for
  5312  <a href="#Expression_statements">expression statements</a>.
  5313  </p>
  5314  
  5315  <p>
  5316  Each time a "defer" statement
  5317  executes, the function value and parameters to the call are
  5318  <a href="#Calls">evaluated as usual</a>
  5319  and saved anew but the actual function is not invoked.
  5320  Instead, deferred functions are invoked immediately before
  5321  the surrounding function returns, in the reverse order
  5322  they were deferred.
  5323  If a deferred function value evaluates
  5324  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5325  when the function is invoked, not when the "defer" statement is executed.
  5326  </p>
  5327  
  5328  <p>
  5329  For instance, if the deferred function is
  5330  a <a href="#Function_literals">function literal</a> and the surrounding
  5331  function has <a href="#Function_types">named result parameters</a> that
  5332  are in scope within the literal, the deferred function may access and modify
  5333  the result parameters before they are returned.
  5334  If the deferred function has any return values, they are discarded when
  5335  the function completes.
  5336  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5337  </p>
  5338  
  5339  <pre>
  5340  lock(l)
  5341  defer unlock(l)  // unlocking happens before surrounding function returns
  5342  
  5343  // prints 3 2 1 0 before surrounding function returns
  5344  for i := 0; i &lt;= 3; i++ {
  5345  	defer fmt.Print(i)
  5346  }
  5347  
  5348  // f returns 1
  5349  func f() (result int) {
  5350  	defer func() {
  5351  		result++
  5352  	}()
  5353  	return 0
  5354  }
  5355  </pre>
  5356  
  5357  <h2 id="Built-in_functions">Built-in functions</h2>
  5358  
  5359  <p>
  5360  Built-in functions are
  5361  <a href="#Predeclared_identifiers">predeclared</a>.
  5362  They are called like any other function but some of them
  5363  accept a type instead of an expression as the first argument.
  5364  </p>
  5365  
  5366  <p>
  5367  The built-in functions do not have standard Go types,
  5368  so they can only appear in <a href="#Calls">call expressions</a>;
  5369  they cannot be used as function values.
  5370  </p>
  5371  
  5372  <h3 id="Close">Close</h3>
  5373  
  5374  <p>
  5375  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5376  records that no more values will be sent on the channel.
  5377  It is an error if <code>c</code> is a receive-only channel.
  5378  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5379  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5380  After calling <code>close</code>, and after any previously
  5381  sent values have been received, receive operations will return
  5382  the zero value for the channel's type without blocking.
  5383  The multi-valued <a href="#Receive_operator">receive operation</a>
  5384  returns a received value along with an indication of whether the channel is closed.
  5385  </p>
  5386  
  5387  
  5388  <h3 id="Length_and_capacity">Length and capacity</h3>
  5389  
  5390  <p>
  5391  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5392  of various types and return a result of type <code>int</code>.
  5393  The implementation guarantees that the result always fits into an <code>int</code>.
  5394  </p>
  5395  
  5396  <pre class="grammar">
  5397  Call      Argument type    Result
  5398  
  5399  len(s)    string type      string length in bytes
  5400            [n]T, *[n]T      array length (== n)
  5401            []T              slice length
  5402            map[K]T          map length (number of defined keys)
  5403            chan T           number of elements queued in channel buffer
  5404  
  5405  cap(s)    [n]T, *[n]T      array length (== n)
  5406            []T              slice capacity
  5407            chan T           channel buffer capacity
  5408  </pre>
  5409  
  5410  <p>
  5411  The capacity of a slice is the number of elements for which there is
  5412  space allocated in the underlying array.
  5413  At any time the following relationship holds:
  5414  </p>
  5415  
  5416  <pre>
  5417  0 &lt;= len(s) &lt;= cap(s)
  5418  </pre>
  5419  
  5420  <p>
  5421  The length of a <code>nil</code> slice, map or channel is 0.
  5422  The capacity of a <code>nil</code> slice or channel is 0.
  5423  </p>
  5424  
  5425  <p>
  5426  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5427  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5428  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5429  or pointer to an array and the expression <code>s</code> does not contain
  5430  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5431  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5432  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5433  constant and <code>s</code> is evaluated.
  5434  </p>
  5435  
  5436  <pre>
  5437  const (
  5438  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5439  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5440  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5441  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5442  	c5 = len([10]float64{imag(z)})   // invalid: imag(x) is a (non-constant) function call
  5443  )
  5444  var z complex128
  5445  </pre>
  5446  
  5447  <h3 id="Allocation">Allocation</h3>
  5448  
  5449  <p>
  5450  The built-in function <code>new</code> takes a type <code>T</code>,
  5451  allocates storage for a <a href="#Variables">variable</a> of that type
  5452  at run time, and returns a value of type <code>*T</code>
  5453  <a href="#Pointer_types">pointing</a> to it.
  5454  The variable is initialized as described in the section on
  5455  <a href="#The_zero_value">initial values</a>.
  5456  </p>
  5457  
  5458  <pre class="grammar">
  5459  new(T)
  5460  </pre>
  5461  
  5462  <p>
  5463  For instance
  5464  </p>
  5465  
  5466  <pre>
  5467  type S struct { a int; b float64 }
  5468  new(S)
  5469  </pre>
  5470  
  5471  <p>
  5472  allocates storage for a variable of type <code>S</code>,
  5473  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5474  and returns a value of type <code>*S</code> containing the address
  5475  of the location.
  5476  </p>
  5477  
  5478  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5479  
  5480  <p>
  5481  The built-in function <code>make</code> takes a type <code>T</code>,
  5482  which must be a slice, map or channel type,
  5483  optionally followed by a type-specific list of expressions.
  5484  It returns a value of type <code>T</code> (not <code>*T</code>).
  5485  The memory is initialized as described in the section on
  5486  <a href="#The_zero_value">initial values</a>.
  5487  </p>
  5488  
  5489  <pre class="grammar">
  5490  Call             Type T     Result
  5491  
  5492  make(T, n)       slice      slice of type T with length n and capacity n
  5493  make(T, n, m)    slice      slice of type T with length n and capacity m
  5494  
  5495  make(T)          map        map of type T
  5496  make(T, n)       map        map of type T with initial space for n elements
  5497  
  5498  make(T)          channel    unbuffered channel of type T
  5499  make(T, n)       channel    buffered channel of type T, buffer size n
  5500  </pre>
  5501  
  5502  
  5503  <p>
  5504  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5505  A <a href="#Constants">constant</a> size argument must be non-negative and
  5506  representable by a value of type <code>int</code>.
  5507  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5508  <code>n</code> must be no larger than <code>m</code>.
  5509  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5510  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5511  </p>
  5512  
  5513  <pre>
  5514  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5515  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5516  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5517  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5518  c := make(chan int, 10)         // channel with a buffer size of 10
  5519  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5520  </pre>
  5521  
  5522  
  5523  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5524  
  5525  <p>
  5526  The built-in functions <code>append</code> and <code>copy</code> assist in
  5527  common slice operations.
  5528  For both functions, the result is independent of whether the memory referenced
  5529  by the arguments overlaps.
  5530  </p>
  5531  
  5532  <p>
  5533  The <a href="#Function_types">variadic</a> function <code>append</code>
  5534  appends zero or more values <code>x</code>
  5535  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5536  returns the resulting slice, also of type <code>S</code>.
  5537  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5538  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5539  <code>S</code> and the respective
  5540  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5541  As a special case, <code>append</code> also accepts a first argument
  5542  assignable to type <code>[]byte</code> with a second argument of
  5543  string type followed by <code>...</code>. This form appends the
  5544  bytes of the string.
  5545  </p>
  5546  
  5547  <pre class="grammar">
  5548  append(s S, x ...T) S  // T is the element type of S
  5549  </pre>
  5550  
  5551  <p>
  5552  If the capacity of <code>s</code> is not large enough to fit the additional
  5553  values, <code>append</code> allocates a new, sufficiently large underlying
  5554  array that fits both the existing slice elements and the additional values.
  5555  Otherwise, <code>append</code> re-uses the underlying array.
  5556  </p>
  5557  
  5558  <pre>
  5559  s0 := []int{0, 0}
  5560  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5561  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5562  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5563  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5564  
  5565  var t []interface{}
  5566  t = append(t, 42, 3.1415, "foo")                                  t == []interface{}{42, 3.1415, "foo"}
  5567  
  5568  var b []byte
  5569  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5570  </pre>
  5571  
  5572  <p>
  5573  The function <code>copy</code> copies slice elements from
  5574  a source <code>src</code> to a destination <code>dst</code> and returns the
  5575  number of elements copied.
  5576  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5577  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5578  The number of elements copied is the minimum of
  5579  <code>len(src)</code> and <code>len(dst)</code>.
  5580  As a special case, <code>copy</code> also accepts a destination argument assignable
  5581  to type <code>[]byte</code> with a source argument of a string type.
  5582  This form copies the bytes from the string into the byte slice.
  5583  </p>
  5584  
  5585  <pre class="grammar">
  5586  copy(dst, src []T) int
  5587  copy(dst []byte, src string) int
  5588  </pre>
  5589  
  5590  <p>
  5591  Examples:
  5592  </p>
  5593  
  5594  <pre>
  5595  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5596  var s = make([]int, 6)
  5597  var b = make([]byte, 5)
  5598  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5599  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5600  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5601  </pre>
  5602  
  5603  
  5604  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5605  
  5606  <p>
  5607  The built-in function <code>delete</code> removes the element with key
  5608  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5609  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5610  to the key type of <code>m</code>.
  5611  </p>
  5612  
  5613  <pre class="grammar">
  5614  delete(m, k)  // remove element m[k] from map m
  5615  </pre>
  5616  
  5617  <p>
  5618  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5619  does not exist, <code>delete</code> is a no-op.
  5620  </p>
  5621  
  5622  
  5623  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5624  
  5625  <p>
  5626  Three functions assemble and disassemble complex numbers.
  5627  The built-in function <code>complex</code> constructs a complex
  5628  value from a floating-point real and imaginary part, while
  5629  <code>real</code> and <code>imag</code>
  5630  extract the real and imaginary parts of a complex value.
  5631  </p>
  5632  
  5633  <pre class="grammar">
  5634  complex(realPart, imaginaryPart floatT) complexT
  5635  real(complexT) floatT
  5636  imag(complexT) floatT
  5637  </pre>
  5638  
  5639  <p>
  5640  The type of the arguments and return value correspond.
  5641  For <code>complex</code>, the two arguments must be of the same
  5642  floating-point type and the return type is the complex type
  5643  with the corresponding floating-point constituents:
  5644  <code>complex64</code> for <code>float32</code>,
  5645  <code>complex128</code> for <code>float64</code>.
  5646  The <code>real</code> and <code>imag</code> functions
  5647  together form the inverse, so for a complex value <code>z</code>,
  5648  <code>z</code> <code>==</code> <code>complex(real(z),</code> <code>imag(z))</code>.
  5649  </p>
  5650  
  5651  <p>
  5652  If the operands of these functions are all constants, the return
  5653  value is a constant.
  5654  </p>
  5655  
  5656  <pre>
  5657  var a = complex(2, -2)             // complex128
  5658  var b = complex(1.0, -1.4)         // complex128
  5659  x := float32(math.Cos(math.Pi/2))  // float32
  5660  var c64 = complex(5, -x)           // complex64
  5661  var im = imag(b)                   // float64
  5662  var rl = real(c64)                 // float32
  5663  </pre>
  5664  
  5665  <h3 id="Handling_panics">Handling panics</h3>
  5666  
  5667  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5668  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5669  and program-defined error conditions.
  5670  </p>
  5671  
  5672  <pre class="grammar">
  5673  func panic(interface{})
  5674  func recover() interface{}
  5675  </pre>
  5676  
  5677  <p>
  5678  While executing a function <code>F</code>,
  5679  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5680  terminates the execution of <code>F</code>.
  5681  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5682  are then executed as usual.
  5683  Next, any deferred functions run by <code>F's</code> caller are run,
  5684  and so on up to any deferred by the top-level function in the executing goroutine.
  5685  At that point, the program is terminated and the error
  5686  condition is reported, including the value of the argument to <code>panic</code>.
  5687  This termination sequence is called <i>panicking</i>.
  5688  </p>
  5689  
  5690  <pre>
  5691  panic(42)
  5692  panic("unreachable")
  5693  panic(Error("cannot parse"))
  5694  </pre>
  5695  
  5696  <p>
  5697  The <code>recover</code> function allows a program to manage behavior
  5698  of a panicking goroutine.
  5699  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5700  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5701  is executing.
  5702  When the running of deferred functions reaches <code>D</code>,
  5703  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5704  If <code>D</code> returns normally, without starting a new
  5705  <code>panic</code>, the panicking sequence stops. In that case,
  5706  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5707  is discarded, and normal execution resumes.
  5708  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5709  execution terminates by returning to its caller.
  5710  </p>
  5711  
  5712  <p>
  5713  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5714  </p>
  5715  <ul>
  5716  <li>
  5717  <code>panic</code>'s argument was <code>nil</code>;
  5718  </li>
  5719  <li>
  5720  the goroutine is not panicking;
  5721  </li>
  5722  <li>
  5723  <code>recover</code> was not called directly by a deferred function.
  5724  </li>
  5725  </ul>
  5726  
  5727  <p>
  5728  The <code>protect</code> function in the example below invokes
  5729  the function argument <code>g</code> and protects callers from
  5730  run-time panics raised by <code>g</code>.
  5731  </p>
  5732  
  5733  <pre>
  5734  func protect(g func()) {
  5735  	defer func() {
  5736  		log.Println("done")  // Println executes normally even if there is a panic
  5737  		if x := recover(); x != nil {
  5738  			log.Printf("run time panic: %v", x)
  5739  		}
  5740  	}()
  5741  	log.Println("start")
  5742  	g()
  5743  }
  5744  </pre>
  5745  
  5746  
  5747  <h3 id="Bootstrapping">Bootstrapping</h3>
  5748  
  5749  <p>
  5750  Current implementations provide several built-in functions useful during
  5751  bootstrapping. These functions are documented for completeness but are not
  5752  guaranteed to stay in the language. They do not return a result.
  5753  </p>
  5754  
  5755  <pre class="grammar">
  5756  Function   Behavior
  5757  
  5758  print      prints all arguments; formatting of arguments is implementation-specific
  5759  println    like print but prints spaces between arguments and a newline at the end
  5760  </pre>
  5761  
  5762  
  5763  <h2 id="Packages">Packages</h2>
  5764  
  5765  <p>
  5766  Go programs are constructed by linking together <i>packages</i>.
  5767  A package in turn is constructed from one or more source files
  5768  that together declare constants, types, variables and functions
  5769  belonging to the package and which are accessible in all files
  5770  of the same package. Those elements may be
  5771  <a href="#Exported_identifiers">exported</a> and used in another package.
  5772  </p>
  5773  
  5774  <h3 id="Source_file_organization">Source file organization</h3>
  5775  
  5776  <p>
  5777  Each source file consists of a package clause defining the package
  5778  to which it belongs, followed by a possibly empty set of import
  5779  declarations that declare packages whose contents it wishes to use,
  5780  followed by a possibly empty set of declarations of functions,
  5781  types, variables, and constants.
  5782  </p>
  5783  
  5784  <pre class="ebnf">
  5785  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5786  </pre>
  5787  
  5788  <h3 id="Package_clause">Package clause</h3>
  5789  
  5790  <p>
  5791  A package clause begins each source file and defines the package
  5792  to which the file belongs.
  5793  </p>
  5794  
  5795  <pre class="ebnf">
  5796  PackageClause  = "package" PackageName .
  5797  PackageName    = identifier .
  5798  </pre>
  5799  
  5800  <p>
  5801  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5802  </p>
  5803  
  5804  <pre>
  5805  package math
  5806  </pre>
  5807  
  5808  <p>
  5809  A set of files sharing the same PackageName form the implementation of a package.
  5810  An implementation may require that all source files for a package inhabit the same directory.
  5811  </p>
  5812  
  5813  <h3 id="Import_declarations">Import declarations</h3>
  5814  
  5815  <p>
  5816  An import declaration states that the source file containing the declaration
  5817  depends on functionality of the <i>imported</i> package
  5818  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5819  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5820  of that package.
  5821  The import names an identifier (PackageName) to be used for access and an ImportPath
  5822  that specifies the package to be imported.
  5823  </p>
  5824  
  5825  <pre class="ebnf">
  5826  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5827  ImportSpec       = [ "." | PackageName ] ImportPath .
  5828  ImportPath       = string_lit .
  5829  </pre>
  5830  
  5831  <p>
  5832  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  5833  to access exported identifiers of the package within the importing source file.
  5834  It is declared in the <a href="#Blocks">file block</a>.
  5835  If the PackageName is omitted, it defaults to the identifier specified in the
  5836  <a href="#Package_clause">package clause</a> of the imported package.
  5837  If an explicit period (<code>.</code>) appears instead of a name, all the
  5838  package's exported identifiers declared in that package's
  5839  <a href="#Blocks">package block</a> will be declared in the importing source
  5840  file's file block and must be accessed without a qualifier.
  5841  </p>
  5842  
  5843  <p>
  5844  The interpretation of the ImportPath is implementation-dependent but
  5845  it is typically a substring of the full file name of the compiled
  5846  package and may be relative to a repository of installed packages.
  5847  </p>
  5848  
  5849  <p>
  5850  Implementation restriction: A compiler may restrict ImportPaths to
  5851  non-empty strings using only characters belonging to
  5852  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  5853  L, M, N, P, and S general categories (the Graphic characters without
  5854  spaces) and may also exclude the characters
  5855  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  5856  and the Unicode replacement character U+FFFD.
  5857  </p>
  5858  
  5859  <p>
  5860  Assume we have compiled a package containing the package clause
  5861  <code>package math</code>, which exports function <code>Sin</code>, and
  5862  installed the compiled package in the file identified by
  5863  <code>"lib/math"</code>.
  5864  This table illustrates how <code>Sin</code> is accessed in files
  5865  that import the package after the
  5866  various types of import declaration.
  5867  </p>
  5868  
  5869  <pre class="grammar">
  5870  Import declaration          Local name of Sin
  5871  
  5872  import   "lib/math"         math.Sin
  5873  import m "lib/math"         m.Sin
  5874  import . "lib/math"         Sin
  5875  </pre>
  5876  
  5877  <p>
  5878  An import declaration declares a dependency relation between
  5879  the importing and imported package.
  5880  It is illegal for a package to import itself, directly or indirectly,
  5881  or to directly import a package without
  5882  referring to any of its exported identifiers. To import a package solely for
  5883  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  5884  identifier as explicit package name:
  5885  </p>
  5886  
  5887  <pre>
  5888  import _ "lib/math"
  5889  </pre>
  5890  
  5891  
  5892  <h3 id="An_example_package">An example package</h3>
  5893  
  5894  <p>
  5895  Here is a complete Go package that implements a concurrent prime sieve.
  5896  </p>
  5897  
  5898  <pre>
  5899  package main
  5900  
  5901  import "fmt"
  5902  
  5903  // Send the sequence 2, 3, 4, … to channel 'ch'.
  5904  func generate(ch chan&lt;- int) {
  5905  	for i := 2; ; i++ {
  5906  		ch &lt;- i  // Send 'i' to channel 'ch'.
  5907  	}
  5908  }
  5909  
  5910  // Copy the values from channel 'src' to channel 'dst',
  5911  // removing those divisible by 'prime'.
  5912  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  5913  	for i := range src {  // Loop over values received from 'src'.
  5914  		if i%prime != 0 {
  5915  			dst &lt;- i  // Send 'i' to channel 'dst'.
  5916  		}
  5917  	}
  5918  }
  5919  
  5920  // The prime sieve: Daisy-chain filter processes together.
  5921  func sieve() {
  5922  	ch := make(chan int)  // Create a new channel.
  5923  	go generate(ch)       // Start generate() as a subprocess.
  5924  	for {
  5925  		prime := &lt;-ch
  5926  		fmt.Print(prime, "\n")
  5927  		ch1 := make(chan int)
  5928  		go filter(ch, ch1, prime)
  5929  		ch = ch1
  5930  	}
  5931  }
  5932  
  5933  func main() {
  5934  	sieve()
  5935  }
  5936  </pre>
  5937  
  5938  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  5939  
  5940  <h3 id="The_zero_value">The zero value</h3>
  5941  <p>
  5942  When storage is allocated for a <a href="#Variables">variable</a>,
  5943  either through a declaration or a call of <code>new</code>, or when
  5944  a new value is created, either through a composite literal or a call
  5945  of <code>make</code>,
  5946  and no explicit initialization is provided, the variable or value is
  5947  given a default value.  Each element of such a variable or value is
  5948  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  5949  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  5950  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  5951  This initialization is done recursively, so for instance each element of an
  5952  array of structs will have its fields zeroed if no value is specified.
  5953  </p>
  5954  <p>
  5955  These two simple declarations are equivalent:
  5956  </p>
  5957  
  5958  <pre>
  5959  var i int
  5960  var i int = 0
  5961  </pre>
  5962  
  5963  <p>
  5964  After
  5965  </p>
  5966  
  5967  <pre>
  5968  type T struct { i int; f float64; next *T }
  5969  t := new(T)
  5970  </pre>
  5971  
  5972  <p>
  5973  the following holds:
  5974  </p>
  5975  
  5976  <pre>
  5977  t.i == 0
  5978  t.f == 0.0
  5979  t.next == nil
  5980  </pre>
  5981  
  5982  <p>
  5983  The same would also be true after
  5984  </p>
  5985  
  5986  <pre>
  5987  var t T
  5988  </pre>
  5989  
  5990  <h3 id="Package_initialization">Package initialization</h3>
  5991  
  5992  <p>
  5993  Within a package, package-level variables are initialized in
  5994  <i>declaration order</i> but after any of the variables
  5995  they <i>depend</i> on.
  5996  </p>
  5997  
  5998  <p>
  5999  More precisely, a package-level variable is considered <i>ready for
  6000  initialization</i> if it is not yet initialized and either has
  6001  no <a href="#Variable_declarations">initialization expression</a> or
  6002  its initialization expression has no dependencies on uninitialized variables.
  6003  Initialization proceeds by repeatedly initializing the next package-level
  6004  variable that is earliest in declaration order and ready for initialization,
  6005  until there are no variables ready for initialization.
  6006  </p>
  6007  
  6008  <p>
  6009  If any variables are still uninitialized when this
  6010  process ends, those variables are part of one or more initialization cycles,
  6011  and the program is not valid.
  6012  </p>
  6013  
  6014  <p>
  6015  The declaration order of variables declared in multiple files is determined
  6016  by the order in which the files are presented to the compiler: Variables
  6017  declared in the first file are declared before any of the variables declared
  6018  in the second file, and so on.
  6019  </p>
  6020  
  6021  <p>
  6022  Dependency analysis does not rely on the actual values of the
  6023  variables, only on lexical <i>references</i> to them in the source,
  6024  analyzed transitively. For instance, if a variable <code>x</code>'s
  6025  initialization expression refers to a function whose body refers to
  6026  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6027  Specifically:
  6028  </p>
  6029  
  6030  <ul>
  6031  <li>
  6032  A reference to a variable or function is an identifier denoting that
  6033  variable or function.
  6034  </li>
  6035  
  6036  <li>
  6037  A reference to a method <code>m</code> is a
  6038  <a href="#Method_values">method value</a> or
  6039  <a href="#Method_expressions">method expression</a> of the form
  6040  <code>t.m</code>, where the (static) type of <code>t</code> is
  6041  not an interface type, and the method <code>m</code> is in the
  6042  <a href="#Method_sets">method set</a> of <code>t</code>.
  6043  It is immaterial whether the resulting function value
  6044  <code>t.m</code> is invoked.
  6045  </li>
  6046  
  6047  <li>
  6048  A variable, function, or method <code>x</code> depends on a variable
  6049  <code>y</code> if <code>x</code>'s initialization expression or body
  6050  (for functions and methods) contains a reference to <code>y</code>
  6051  or to a function or method that depends on <code>y</code>.
  6052  </li>
  6053  </ul>
  6054  
  6055  <p>
  6056  Dependency analysis is performed per package; only references referring
  6057  to variables, functions, and methods declared in the current package
  6058  are considered.
  6059  </p>
  6060  
  6061  <p>
  6062  For example, given the declarations
  6063  </p>
  6064  
  6065  <pre>
  6066  var (
  6067  	a = c + b
  6068  	b = f()
  6069  	c = f()
  6070  	d = 3
  6071  )
  6072  
  6073  func f() int {
  6074  	d++
  6075  	return d
  6076  }
  6077  </pre>
  6078  
  6079  <p>
  6080  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6081  </p>
  6082  
  6083  <p>
  6084  Variables may also be initialized using functions named <code>init</code>
  6085  declared in the package block, with no arguments and no result parameters.
  6086  </p>
  6087  
  6088  <pre>
  6089  func init() { … }
  6090  </pre>
  6091  
  6092  <p>
  6093  Multiple such functions may be defined, even within a single
  6094  source file. The <code>init</code> identifier is not
  6095  <a href="#Declarations_and_scope">declared</a> and thus
  6096  <code>init</code> functions cannot be referred to from anywhere
  6097  in a program.
  6098  </p>
  6099  
  6100  <p>
  6101  A package with no imports is initialized by assigning initial values
  6102  to all its package-level variables followed by calling all <code>init</code>
  6103  functions in the order they appear in the source, possibly in multiple files,
  6104  as presented to the compiler.
  6105  If a package has imports, the imported packages are initialized
  6106  before initializing the package itself. If multiple packages import
  6107  a package, the imported package will be initialized only once.
  6108  The importing of packages, by construction, guarantees that there
  6109  can be no cyclic initialization dependencies.
  6110  </p>
  6111  
  6112  <p>
  6113  Package initialization&mdash;variable initialization and the invocation of
  6114  <code>init</code> functions&mdash;happens in a single goroutine,
  6115  sequentially, one package at a time.
  6116  An <code>init</code> function may launch other goroutines, which can run
  6117  concurrently with the initialization code. However, initialization
  6118  always sequences
  6119  the <code>init</code> functions: it will not invoke the next one
  6120  until the previous one has returned.
  6121  </p>
  6122  
  6123  <p>
  6124  To ensure reproducible initialization behavior, build systems are encouraged
  6125  to present multiple files belonging to the same package in lexical file name
  6126  order to a compiler.
  6127  </p>
  6128  
  6129  
  6130  <h3 id="Program_execution">Program execution</h3>
  6131  <p>
  6132  A complete program is created by linking a single, unimported package
  6133  called the <i>main package</i> with all the packages it imports, transitively.
  6134  The main package must
  6135  have package name <code>main</code> and
  6136  declare a function <code>main</code> that takes no
  6137  arguments and returns no value.
  6138  </p>
  6139  
  6140  <pre>
  6141  func main() { … }
  6142  </pre>
  6143  
  6144  <p>
  6145  Program execution begins by initializing the main package and then
  6146  invoking the function <code>main</code>.
  6147  When that function invocation returns, the program exits.
  6148  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6149  </p>
  6150  
  6151  <h2 id="Errors">Errors</h2>
  6152  
  6153  <p>
  6154  The predeclared type <code>error</code> is defined as
  6155  </p>
  6156  
  6157  <pre>
  6158  type error interface {
  6159  	Error() string
  6160  }
  6161  </pre>
  6162  
  6163  <p>
  6164  It is the conventional interface for representing an error condition,
  6165  with the nil value representing no error.
  6166  For instance, a function to read data from a file might be defined:
  6167  </p>
  6168  
  6169  <pre>
  6170  func Read(f *File, b []byte) (n int, err error)
  6171  </pre>
  6172  
  6173  <h2 id="Run_time_panics">Run-time panics</h2>
  6174  
  6175  <p>
  6176  Execution errors such as attempting to index an array out
  6177  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6178  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6179  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6180  That type satisfies the predeclared interface type
  6181  <a href="#Errors"><code>error</code></a>.
  6182  The exact error values that
  6183  represent distinct run-time error conditions are unspecified.
  6184  </p>
  6185  
  6186  <pre>
  6187  package runtime
  6188  
  6189  type Error interface {
  6190  	error
  6191  	// and perhaps other methods
  6192  }
  6193  </pre>
  6194  
  6195  <h2 id="System_considerations">System considerations</h2>
  6196  
  6197  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6198  
  6199  <p>
  6200  The built-in package <code>unsafe</code>, known to the compiler,
  6201  provides facilities for low-level programming including operations
  6202  that violate the type system. A package using <code>unsafe</code>
  6203  must be vetted manually for type safety and may not be portable.
  6204  The package provides the following interface:
  6205  </p>
  6206  
  6207  <pre class="grammar">
  6208  package unsafe
  6209  
  6210  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6211  type Pointer *ArbitraryType
  6212  
  6213  func Alignof(variable ArbitraryType) uintptr
  6214  func Offsetof(selector ArbitraryType) uintptr
  6215  func Sizeof(variable ArbitraryType) uintptr
  6216  </pre>
  6217  
  6218  <p>
  6219  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6220  value may not be <a href="#Address_operators">dereferenced</a>.
  6221  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6222  a <code>Pointer</code> type and vice versa.
  6223  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6224  </p>
  6225  
  6226  <pre>
  6227  var f float64
  6228  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6229  
  6230  type ptr unsafe.Pointer
  6231  bits = *(*uint64)(ptr(&amp;f))
  6232  
  6233  var p ptr = nil
  6234  </pre>
  6235  
  6236  <p>
  6237  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6238  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6239  as if <code>v</code> was declared via <code>var v = x</code>.
  6240  </p>
  6241  <p>
  6242  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6243  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6244  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6245  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6246  without pointer indirections through fields of the struct.
  6247  For a struct <code>s</code> with field <code>f</code>:
  6248  </p>
  6249  
  6250  <pre>
  6251  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6252  </pre>
  6253  
  6254  <p>
  6255  Computer architectures may require memory addresses to be <i>aligned</i>;
  6256  that is, for addresses of a variable to be a multiple of a factor,
  6257  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6258  takes an expression denoting a variable of any type and returns the
  6259  alignment of the (type of the) variable in bytes.  For a variable
  6260  <code>x</code>:
  6261  </p>
  6262  
  6263  <pre>
  6264  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6265  </pre>
  6266  
  6267  <p>
  6268  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6269  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6270  </p>
  6271  
  6272  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6273  
  6274  <p>
  6275  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6276  </p>
  6277  
  6278  <pre class="grammar">
  6279  type                                 size in bytes
  6280  
  6281  byte, uint8, int8                     1
  6282  uint16, int16                         2
  6283  uint32, int32, float32                4
  6284  uint64, int64, float64, complex64     8
  6285  complex128                           16
  6286  </pre>
  6287  
  6288  <p>
  6289  The following minimal alignment properties are guaranteed:
  6290  </p>
  6291  <ol>
  6292  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6293  </li>
  6294  
  6295  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6296     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6297  </li>
  6298  
  6299  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6300     <code>unsafe.Alignof(x[0])</code>, but at least 1.
  6301  </li>
  6302  </ol>
  6303  
  6304  <p>
  6305  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6306  </p>