github.com/razvanm/vanadium-go-1.3@v0.0.0-20160721203343-4a65068e5915/src/cmd/6c/reg.c (about) 1 // Inferno utils/6c/reg.c 2 // http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 #include "gc.h" 32 33 static void fixjmp(Reg*); 34 35 Reg* 36 rega(void) 37 { 38 Reg *r; 39 40 r = freer; 41 if(r == R) { 42 r = alloc(sizeof(*r)); 43 } else 44 freer = r->link; 45 46 *r = zreg; 47 return r; 48 } 49 50 int 51 rcmp(const void *a1, const void *a2) 52 { 53 Rgn *p1, *p2; 54 int c1, c2; 55 56 p1 = (Rgn*)a1; 57 p2 = (Rgn*)a2; 58 c1 = p2->cost; 59 c2 = p1->cost; 60 if(c1 -= c2) 61 return c1; 62 return p2->varno - p1->varno; 63 } 64 65 void 66 regopt(Prog *p) 67 { 68 Reg *r, *r1, *r2; 69 Prog *p1; 70 int i, z; 71 int32 initpc, val, npc; 72 uint32 vreg; 73 Bits bit; 74 struct 75 { 76 int32 m; 77 int32 c; 78 Reg* p; 79 } log5[6], *lp; 80 81 firstr = R; 82 lastr = R; 83 nvar = 0; 84 regbits = RtoB(D_SP) | RtoB(D_AX) | RtoB(D_X0); 85 for(z=0; z<BITS; z++) { 86 externs.b[z] = 0; 87 params.b[z] = 0; 88 consts.b[z] = 0; 89 addrs.b[z] = 0; 90 } 91 92 /* 93 * pass 1 94 * build aux data structure 95 * allocate pcs 96 * find use and set of variables 97 */ 98 val = 5L * 5L * 5L * 5L * 5L; 99 lp = log5; 100 for(i=0; i<5; i++) { 101 lp->m = val; 102 lp->c = 0; 103 lp->p = R; 104 val /= 5L; 105 lp++; 106 } 107 val = 0; 108 for(; p != P; p = p->link) { 109 switch(p->as) { 110 case ADATA: 111 case AGLOBL: 112 case ANAME: 113 case ASIGNAME: 114 case AFUNCDATA: 115 continue; 116 } 117 r = rega(); 118 if(firstr == R) { 119 firstr = r; 120 lastr = r; 121 } else { 122 lastr->link = r; 123 r->p1 = lastr; 124 lastr->s1 = r; 125 lastr = r; 126 } 127 r->prog = p; 128 r->pc = val; 129 val++; 130 131 lp = log5; 132 for(i=0; i<5; i++) { 133 lp->c--; 134 if(lp->c <= 0) { 135 lp->c = lp->m; 136 if(lp->p != R) 137 lp->p->log5 = r; 138 lp->p = r; 139 (lp+1)->c = 0; 140 break; 141 } 142 lp++; 143 } 144 145 r1 = r->p1; 146 if(r1 != R) 147 switch(r1->prog->as) { 148 case ARET: 149 case AJMP: 150 case AIRETL: 151 case AIRETQ: 152 r->p1 = R; 153 r1->s1 = R; 154 } 155 156 bit = mkvar(r, &p->from); 157 if(bany(&bit)) 158 switch(p->as) { 159 /* 160 * funny 161 */ 162 case ALEAL: 163 case ALEAQ: 164 for(z=0; z<BITS; z++) 165 addrs.b[z] |= bit.b[z]; 166 break; 167 168 /* 169 * left side read 170 */ 171 default: 172 for(z=0; z<BITS; z++) 173 r->use1.b[z] |= bit.b[z]; 174 break; 175 } 176 177 bit = mkvar(r, &p->to); 178 if(bany(&bit)) 179 switch(p->as) { 180 default: 181 diag(Z, "reg: unknown op: %A", p->as); 182 break; 183 184 /* 185 * right side read 186 */ 187 case ACMPB: 188 case ACMPL: 189 case ACMPQ: 190 case ACMPW: 191 case APREFETCHT0: 192 case APREFETCHT1: 193 case APREFETCHT2: 194 case APREFETCHNTA: 195 case ACOMISS: 196 case ACOMISD: 197 case AUCOMISS: 198 case AUCOMISD: 199 for(z=0; z<BITS; z++) 200 r->use2.b[z] |= bit.b[z]; 201 break; 202 203 /* 204 * right side write 205 */ 206 case ANOP: 207 case AMOVL: 208 case AMOVQ: 209 case AMOVB: 210 case AMOVW: 211 case AMOVBLSX: 212 case AMOVBLZX: 213 case AMOVBQSX: 214 case AMOVBQZX: 215 case AMOVLQSX: 216 case AMOVLQZX: 217 case AMOVWLSX: 218 case AMOVWLZX: 219 case AMOVWQSX: 220 case AMOVWQZX: 221 case AMOVQL: 222 223 case AMOVSS: 224 case AMOVSD: 225 case ACVTSD2SL: 226 case ACVTSD2SQ: 227 case ACVTSD2SS: 228 case ACVTSL2SD: 229 case ACVTSL2SS: 230 case ACVTSQ2SD: 231 case ACVTSQ2SS: 232 case ACVTSS2SD: 233 case ACVTSS2SL: 234 case ACVTSS2SQ: 235 case ACVTTSD2SL: 236 case ACVTTSD2SQ: 237 case ACVTTSS2SL: 238 case ACVTTSS2SQ: 239 for(z=0; z<BITS; z++) 240 r->set.b[z] |= bit.b[z]; 241 break; 242 243 /* 244 * right side read+write 245 */ 246 case AADDB: 247 case AADDL: 248 case AADDQ: 249 case AADDW: 250 case AANDB: 251 case AANDL: 252 case AANDQ: 253 case AANDW: 254 case ASUBB: 255 case ASUBL: 256 case ASUBQ: 257 case ASUBW: 258 case AORB: 259 case AORL: 260 case AORQ: 261 case AORW: 262 case AXORB: 263 case AXORL: 264 case AXORQ: 265 case AXORW: 266 case ASALB: 267 case ASALL: 268 case ASALQ: 269 case ASALW: 270 case ASARB: 271 case ASARL: 272 case ASARQ: 273 case ASARW: 274 case AROLB: 275 case AROLL: 276 case AROLQ: 277 case AROLW: 278 case ARORB: 279 case ARORL: 280 case ARORQ: 281 case ARORW: 282 case ASHLB: 283 case ASHLL: 284 case ASHLQ: 285 case ASHLW: 286 case ASHRB: 287 case ASHRL: 288 case ASHRQ: 289 case ASHRW: 290 case AIMULL: 291 case AIMULQ: 292 case AIMULW: 293 case ANEGL: 294 case ANEGQ: 295 case ANOTL: 296 case ANOTQ: 297 case AADCL: 298 case AADCQ: 299 case ASBBL: 300 case ASBBQ: 301 302 case AADDSD: 303 case AADDSS: 304 case ACMPSD: 305 case ACMPSS: 306 case ADIVSD: 307 case ADIVSS: 308 case AMAXSD: 309 case AMAXSS: 310 case AMINSD: 311 case AMINSS: 312 case AMULSD: 313 case AMULSS: 314 case ARCPSS: 315 case ARSQRTSS: 316 case ASQRTSD: 317 case ASQRTSS: 318 case ASUBSD: 319 case ASUBSS: 320 case AXORPD: 321 for(z=0; z<BITS; z++) { 322 r->set.b[z] |= bit.b[z]; 323 r->use2.b[z] |= bit.b[z]; 324 } 325 break; 326 327 /* 328 * funny 329 */ 330 case ACALL: 331 for(z=0; z<BITS; z++) 332 addrs.b[z] |= bit.b[z]; 333 break; 334 } 335 336 switch(p->as) { 337 case AIMULL: 338 case AIMULQ: 339 case AIMULW: 340 if(p->to.type != D_NONE) 341 break; 342 343 case AIDIVB: 344 case AIDIVL: 345 case AIDIVQ: 346 case AIDIVW: 347 case AIMULB: 348 case ADIVB: 349 case ADIVL: 350 case ADIVQ: 351 case ADIVW: 352 case AMULB: 353 case AMULL: 354 case AMULQ: 355 case AMULW: 356 357 case ACWD: 358 case ACDQ: 359 case ACQO: 360 r->regu |= RtoB(D_AX) | RtoB(D_DX); 361 break; 362 363 case AREP: 364 case AREPN: 365 case ALOOP: 366 case ALOOPEQ: 367 case ALOOPNE: 368 r->regu |= RtoB(D_CX); 369 break; 370 371 case AMOVSB: 372 case AMOVSL: 373 case AMOVSQ: 374 case AMOVSW: 375 case ACMPSB: 376 case ACMPSL: 377 case ACMPSQ: 378 case ACMPSW: 379 r->regu |= RtoB(D_SI) | RtoB(D_DI); 380 break; 381 382 case ASTOSB: 383 case ASTOSL: 384 case ASTOSQ: 385 case ASTOSW: 386 case ASCASB: 387 case ASCASL: 388 case ASCASQ: 389 case ASCASW: 390 r->regu |= RtoB(D_AX) | RtoB(D_DI); 391 break; 392 393 case AINSB: 394 case AINSL: 395 case AINSW: 396 case AOUTSB: 397 case AOUTSL: 398 case AOUTSW: 399 r->regu |= RtoB(D_DI) | RtoB(D_DX); 400 break; 401 } 402 } 403 if(firstr == R) 404 return; 405 initpc = pc - val; 406 npc = val; 407 408 /* 409 * pass 2 410 * turn branch references to pointers 411 * build back pointers 412 */ 413 for(r = firstr; r != R; r = r->link) { 414 p = r->prog; 415 if(p->to.type == D_BRANCH) { 416 val = p->to.offset - initpc; 417 r1 = firstr; 418 while(r1 != R) { 419 r2 = r1->log5; 420 if(r2 != R && val >= r2->pc) { 421 r1 = r2; 422 continue; 423 } 424 if(r1->pc == val) 425 break; 426 r1 = r1->link; 427 } 428 if(r1 == R) { 429 nearln = p->lineno; 430 diag(Z, "ref not found\n%P", p); 431 continue; 432 } 433 if(r1 == r) { 434 nearln = p->lineno; 435 diag(Z, "ref to self\n%P", p); 436 continue; 437 } 438 r->s2 = r1; 439 r->p2link = r1->p2; 440 r1->p2 = r; 441 } 442 } 443 if(debug['R']) { 444 p = firstr->prog; 445 print("\n%L %D\n", p->lineno, &p->from); 446 } 447 448 /* 449 * pass 2.1 450 * fix jumps 451 */ 452 fixjmp(firstr); 453 454 /* 455 * pass 2.5 456 * find looping structure 457 */ 458 for(r = firstr; r != R; r = r->link) 459 r->active = 0; 460 change = 0; 461 loopit(firstr, npc); 462 if(debug['R'] && debug['v']) { 463 print("\nlooping structure:\n"); 464 for(r = firstr; r != R; r = r->link) { 465 print("%d:%P", r->loop, r->prog); 466 for(z=0; z<BITS; z++) 467 bit.b[z] = r->use1.b[z] | 468 r->use2.b[z] | 469 r->set.b[z]; 470 if(bany(&bit)) { 471 print("\t"); 472 if(bany(&r->use1)) 473 print(" u1=%B", r->use1); 474 if(bany(&r->use2)) 475 print(" u2=%B", r->use2); 476 if(bany(&r->set)) 477 print(" st=%B", r->set); 478 } 479 print("\n"); 480 } 481 } 482 483 /* 484 * pass 3 485 * iterate propagating usage 486 * back until flow graph is complete 487 */ 488 loop1: 489 change = 0; 490 for(r = firstr; r != R; r = r->link) 491 r->active = 0; 492 for(r = firstr; r != R; r = r->link) 493 if(r->prog->as == ARET) 494 prop(r, zbits, zbits); 495 loop11: 496 /* pick up unreachable code */ 497 i = 0; 498 for(r = firstr; r != R; r = r1) { 499 r1 = r->link; 500 if(r1 && r1->active && !r->active) { 501 prop(r, zbits, zbits); 502 i = 1; 503 } 504 } 505 if(i) 506 goto loop11; 507 if(change) 508 goto loop1; 509 510 511 /* 512 * pass 4 513 * iterate propagating register/variable synchrony 514 * forward until graph is complete 515 */ 516 loop2: 517 change = 0; 518 for(r = firstr; r != R; r = r->link) 519 r->active = 0; 520 synch(firstr, zbits); 521 if(change) 522 goto loop2; 523 524 525 /* 526 * pass 5 527 * isolate regions 528 * calculate costs (paint1) 529 */ 530 r = firstr; 531 if(r) { 532 for(z=0; z<BITS; z++) 533 bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) & 534 ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]); 535 if(bany(&bit)) { 536 nearln = r->prog->lineno; 537 warn(Z, "used and not set: %B", bit); 538 if(debug['R'] && !debug['w']) 539 print("used and not set: %B\n", bit); 540 } 541 } 542 if(debug['R'] && debug['v']) 543 print("\nprop structure:\n"); 544 for(r = firstr; r != R; r = r->link) 545 r->act = zbits; 546 rgp = region; 547 nregion = 0; 548 for(r = firstr; r != R; r = r->link) { 549 if(debug['R'] && debug['v']) { 550 print("%P\t", r->prog); 551 if(bany(&r->set)) 552 print("s:%B ", r->set); 553 if(bany(&r->refahead)) 554 print("ra:%B ", r->refahead); 555 if(bany(&r->calahead)) 556 print("ca:%B ", r->calahead); 557 print("\n"); 558 } 559 for(z=0; z<BITS; z++) 560 bit.b[z] = r->set.b[z] & 561 ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]); 562 if(bany(&bit)) { 563 nearln = r->prog->lineno; 564 warn(Z, "set and not used: %B", bit); 565 if(debug['R']) 566 print("set and not used: %B\n", bit); 567 excise(r); 568 } 569 for(z=0; z<BITS; z++) 570 bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]); 571 while(bany(&bit)) { 572 i = bnum(bit); 573 rgp->enter = r; 574 rgp->varno = i; 575 change = 0; 576 if(debug['R'] && debug['v']) 577 print("\n"); 578 paint1(r, i); 579 bit.b[i/32] &= ~(1L<<(i%32)); 580 if(change <= 0) { 581 if(debug['R']) 582 print("%L$%d: %B\n", 583 r->prog->lineno, change, blsh(i)); 584 continue; 585 } 586 rgp->cost = change; 587 nregion++; 588 if(nregion >= NRGN) 589 fatal(Z, "too many regions"); 590 rgp++; 591 } 592 } 593 qsort(region, nregion, sizeof(region[0]), rcmp); 594 595 /* 596 * pass 6 597 * determine used registers (paint2) 598 * replace code (paint3) 599 */ 600 rgp = region; 601 for(i=0; i<nregion; i++) { 602 bit = blsh(rgp->varno); 603 vreg = paint2(rgp->enter, rgp->varno); 604 vreg = allreg(vreg, rgp); 605 if(debug['R']) { 606 print("%L$%d %R: %B\n", 607 rgp->enter->prog->lineno, 608 rgp->cost, 609 rgp->regno, 610 bit); 611 } 612 if(rgp->regno != 0) 613 paint3(rgp->enter, rgp->varno, vreg, rgp->regno); 614 rgp++; 615 } 616 /* 617 * pass 7 618 * peep-hole on basic block 619 */ 620 if(!debug['R'] || debug['P']) 621 peep(); 622 623 /* 624 * pass 8 625 * recalculate pc 626 */ 627 val = initpc; 628 for(r = firstr; r != R; r = r1) { 629 r->pc = val; 630 p = r->prog; 631 p1 = P; 632 r1 = r->link; 633 if(r1 != R) 634 p1 = r1->prog; 635 for(; p != p1; p = p->link) { 636 switch(p->as) { 637 default: 638 val++; 639 break; 640 641 case ANOP: 642 case ADATA: 643 case AGLOBL: 644 case ANAME: 645 case ASIGNAME: 646 case AFUNCDATA: 647 break; 648 } 649 } 650 } 651 pc = val; 652 653 /* 654 * fix up branches 655 */ 656 if(debug['R']) 657 if(bany(&addrs)) 658 print("addrs: %B\n", addrs); 659 660 r1 = 0; /* set */ 661 for(r = firstr; r != R; r = r->link) { 662 p = r->prog; 663 if(p->to.type == D_BRANCH) { 664 p->to.offset = r->s2->pc; 665 p->to.u.branch = r->s2->prog; 666 } 667 r1 = r; 668 } 669 670 /* 671 * last pass 672 * eliminate nops 673 * free aux structures 674 */ 675 for(p = firstr->prog; p != P; p = p->link){ 676 while(p->link && p->link->as == ANOP) 677 p->link = p->link->link; 678 } 679 if(r1 != R) { 680 r1->link = freer; 681 freer = firstr; 682 } 683 } 684 685 /* 686 * add mov b,rn 687 * just after r 688 */ 689 void 690 addmove(Reg *r, int bn, int rn, int f) 691 { 692 Prog *p, *p1; 693 Addr *a; 694 Var *v; 695 696 p1 = alloc(sizeof(*p1)); 697 *p1 = zprog; 698 p = r->prog; 699 700 p1->link = p->link; 701 p->link = p1; 702 p1->lineno = p->lineno; 703 704 v = var + bn; 705 706 a = &p1->to; 707 a->sym = v->sym; 708 a->offset = v->offset; 709 a->etype = v->etype; 710 a->type = v->name; 711 712 p1->as = AMOVL; 713 if(v->etype == TCHAR || v->etype == TUCHAR) 714 p1->as = AMOVB; 715 if(v->etype == TSHORT || v->etype == TUSHORT) 716 p1->as = AMOVW; 717 if(v->etype == TVLONG || v->etype == TUVLONG || (v->etype == TIND && ewidth[TIND] == 8)) 718 p1->as = AMOVQ; 719 if(v->etype == TFLOAT) 720 p1->as = AMOVSS; 721 if(v->etype == TDOUBLE) 722 p1->as = AMOVSD; 723 724 p1->from.type = rn; 725 if(!f) { 726 p1->from = *a; 727 *a = zprog.from; 728 a->type = rn; 729 if(v->etype == TUCHAR) 730 p1->as = AMOVB; 731 if(v->etype == TUSHORT) 732 p1->as = AMOVW; 733 } 734 if(debug['R']) 735 print("%P\t.a%P\n", p, p1); 736 } 737 738 uint32 739 doregbits(int r) 740 { 741 uint32 b; 742 743 b = 0; 744 if(r >= D_INDIR) 745 r -= D_INDIR; 746 if(r >= D_AX && r <= D_R15) 747 b |= RtoB(r); 748 else 749 if(r >= D_AL && r <= D_R15B) 750 b |= RtoB(r-D_AL+D_AX); 751 else 752 if(r >= D_AH && r <= D_BH) 753 b |= RtoB(r-D_AH+D_AX); 754 else 755 if(r >= D_X0 && r <= D_X0+15) 756 b |= FtoB(r); 757 return b; 758 } 759 760 Bits 761 mkvar(Reg *r, Addr *a) 762 { 763 Var *v; 764 int i, t, n, et, z; 765 int32 o; 766 Bits bit; 767 LSym *s; 768 769 /* 770 * mark registers used 771 */ 772 t = a->type; 773 r->regu |= doregbits(t); 774 r->regu |= doregbits(a->index); 775 776 switch(t) { 777 default: 778 goto none; 779 case D_ADDR: 780 a->type = a->index; 781 bit = mkvar(r, a); 782 for(z=0; z<BITS; z++) 783 addrs.b[z] |= bit.b[z]; 784 a->type = t; 785 goto none; 786 case D_EXTERN: 787 case D_STATIC: 788 case D_PARAM: 789 case D_AUTO: 790 n = t; 791 break; 792 } 793 s = a->sym; 794 if(s == nil) 795 goto none; 796 if(s->name[0] == '.') 797 goto none; 798 et = a->etype; 799 o = a->offset; 800 v = var; 801 for(i=0; i<nvar; i++) { 802 if(s == v->sym) 803 if(n == v->name) 804 if(o == v->offset) 805 goto out; 806 v++; 807 } 808 if(nvar >= NVAR) 809 fatal(Z, "variable not optimized: %s", s->name); 810 i = nvar; 811 nvar++; 812 v = &var[i]; 813 v->sym = s; 814 v->offset = o; 815 v->name = n; 816 v->etype = et; 817 if(debug['R']) 818 print("bit=%2d et=%2d %D\n", i, et, a); 819 820 out: 821 bit = blsh(i); 822 if(n == D_EXTERN || n == D_STATIC) 823 for(z=0; z<BITS; z++) 824 externs.b[z] |= bit.b[z]; 825 if(n == D_PARAM) 826 for(z=0; z<BITS; z++) 827 params.b[z] |= bit.b[z]; 828 if(v->etype != et || !(typechlpfd[et] || typev[et])) /* funny punning */ 829 for(z=0; z<BITS; z++) 830 addrs.b[z] |= bit.b[z]; 831 return bit; 832 833 none: 834 return zbits; 835 } 836 837 void 838 prop(Reg *r, Bits ref, Bits cal) 839 { 840 Reg *r1, *r2; 841 int z; 842 843 for(r1 = r; r1 != R; r1 = r1->p1) { 844 for(z=0; z<BITS; z++) { 845 ref.b[z] |= r1->refahead.b[z]; 846 if(ref.b[z] != r1->refahead.b[z]) { 847 r1->refahead.b[z] = ref.b[z]; 848 change++; 849 } 850 cal.b[z] |= r1->calahead.b[z]; 851 if(cal.b[z] != r1->calahead.b[z]) { 852 r1->calahead.b[z] = cal.b[z]; 853 change++; 854 } 855 } 856 switch(r1->prog->as) { 857 case ACALL: 858 for(z=0; z<BITS; z++) { 859 cal.b[z] |= ref.b[z] | externs.b[z]; 860 ref.b[z] = 0; 861 } 862 break; 863 864 case ATEXT: 865 for(z=0; z<BITS; z++) { 866 cal.b[z] = 0; 867 ref.b[z] = 0; 868 } 869 break; 870 871 case ARET: 872 for(z=0; z<BITS; z++) { 873 cal.b[z] = externs.b[z]; 874 ref.b[z] = 0; 875 } 876 } 877 for(z=0; z<BITS; z++) { 878 ref.b[z] = (ref.b[z] & ~r1->set.b[z]) | 879 r1->use1.b[z] | r1->use2.b[z]; 880 cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]); 881 r1->refbehind.b[z] = ref.b[z]; 882 r1->calbehind.b[z] = cal.b[z]; 883 } 884 if(r1->active) 885 break; 886 r1->active = 1; 887 } 888 for(; r != r1; r = r->p1) 889 for(r2 = r->p2; r2 != R; r2 = r2->p2link) 890 prop(r2, r->refbehind, r->calbehind); 891 } 892 893 /* 894 * find looping structure 895 * 896 * 1) find reverse postordering 897 * 2) find approximate dominators, 898 * the actual dominators if the flow graph is reducible 899 * otherwise, dominators plus some other non-dominators. 900 * See Matthew S. Hecht and Jeffrey D. Ullman, 901 * "Analysis of a Simple Algorithm for Global Data Flow Problems", 902 * Conf. Record of ACM Symp. on Principles of Prog. Langs, Boston, Massachusetts, 903 * Oct. 1-3, 1973, pp. 207-217. 904 * 3) find all nodes with a predecessor dominated by the current node. 905 * such a node is a loop head. 906 * recursively, all preds with a greater rpo number are in the loop 907 */ 908 int32 909 postorder(Reg *r, Reg **rpo2r, int32 n) 910 { 911 Reg *r1; 912 913 r->rpo = 1; 914 r1 = r->s1; 915 if(r1 && !r1->rpo) 916 n = postorder(r1, rpo2r, n); 917 r1 = r->s2; 918 if(r1 && !r1->rpo) 919 n = postorder(r1, rpo2r, n); 920 rpo2r[n] = r; 921 n++; 922 return n; 923 } 924 925 int32 926 rpolca(int32 *idom, int32 rpo1, int32 rpo2) 927 { 928 int32 t; 929 930 if(rpo1 == -1) 931 return rpo2; 932 while(rpo1 != rpo2){ 933 if(rpo1 > rpo2){ 934 t = rpo2; 935 rpo2 = rpo1; 936 rpo1 = t; 937 } 938 while(rpo1 < rpo2){ 939 t = idom[rpo2]; 940 if(t >= rpo2) 941 fatal(Z, "bad idom"); 942 rpo2 = t; 943 } 944 } 945 return rpo1; 946 } 947 948 int 949 doms(int32 *idom, int32 r, int32 s) 950 { 951 while(s > r) 952 s = idom[s]; 953 return s == r; 954 } 955 956 int 957 loophead(int32 *idom, Reg *r) 958 { 959 int32 src; 960 961 src = r->rpo; 962 if(r->p1 != R && doms(idom, src, r->p1->rpo)) 963 return 1; 964 for(r = r->p2; r != R; r = r->p2link) 965 if(doms(idom, src, r->rpo)) 966 return 1; 967 return 0; 968 } 969 970 void 971 loopmark(Reg **rpo2r, int32 head, Reg *r) 972 { 973 if(r->rpo < head || r->active == head) 974 return; 975 r->active = head; 976 r->loop += LOOP; 977 if(r->p1 != R) 978 loopmark(rpo2r, head, r->p1); 979 for(r = r->p2; r != R; r = r->p2link) 980 loopmark(rpo2r, head, r); 981 } 982 983 void 984 loopit(Reg *r, int32 nr) 985 { 986 Reg *r1; 987 int32 i, d, me; 988 989 if(nr > maxnr) { 990 rpo2r = alloc(nr * sizeof(Reg*)); 991 idom = alloc(nr * sizeof(int32)); 992 maxnr = nr; 993 } 994 995 d = postorder(r, rpo2r, 0); 996 if(d > nr) 997 fatal(Z, "too many reg nodes"); 998 nr = d; 999 for(i = 0; i < nr / 2; i++){ 1000 r1 = rpo2r[i]; 1001 rpo2r[i] = rpo2r[nr - 1 - i]; 1002 rpo2r[nr - 1 - i] = r1; 1003 } 1004 for(i = 0; i < nr; i++) 1005 rpo2r[i]->rpo = i; 1006 1007 idom[0] = 0; 1008 for(i = 0; i < nr; i++){ 1009 r1 = rpo2r[i]; 1010 me = r1->rpo; 1011 d = -1; 1012 if(r1->p1 != R && r1->p1->rpo < me) 1013 d = r1->p1->rpo; 1014 for(r1 = r1->p2; r1 != nil; r1 = r1->p2link) 1015 if(r1->rpo < me) 1016 d = rpolca(idom, d, r1->rpo); 1017 idom[i] = d; 1018 } 1019 1020 for(i = 0; i < nr; i++){ 1021 r1 = rpo2r[i]; 1022 r1->loop++; 1023 if(r1->p2 != R && loophead(idom, r1)) 1024 loopmark(rpo2r, i, r1); 1025 } 1026 } 1027 1028 void 1029 synch(Reg *r, Bits dif) 1030 { 1031 Reg *r1; 1032 int z; 1033 1034 for(r1 = r; r1 != R; r1 = r1->s1) { 1035 for(z=0; z<BITS; z++) { 1036 dif.b[z] = (dif.b[z] & 1037 ~(~r1->refbehind.b[z] & r1->refahead.b[z])) | 1038 r1->set.b[z] | r1->regdiff.b[z]; 1039 if(dif.b[z] != r1->regdiff.b[z]) { 1040 r1->regdiff.b[z] = dif.b[z]; 1041 change++; 1042 } 1043 } 1044 if(r1->active) 1045 break; 1046 r1->active = 1; 1047 for(z=0; z<BITS; z++) 1048 dif.b[z] &= ~(~r1->calbehind.b[z] & r1->calahead.b[z]); 1049 if(r1->s2 != R) 1050 synch(r1->s2, dif); 1051 } 1052 } 1053 1054 uint32 1055 allreg(uint32 b, Rgn *r) 1056 { 1057 Var *v; 1058 int i; 1059 1060 v = var + r->varno; 1061 r->regno = 0; 1062 switch(v->etype) { 1063 1064 default: 1065 diag(Z, "unknown etype %d/%d", bitno(b), v->etype); 1066 break; 1067 1068 case TCHAR: 1069 case TUCHAR: 1070 case TSHORT: 1071 case TUSHORT: 1072 case TINT: 1073 case TUINT: 1074 case TLONG: 1075 case TULONG: 1076 case TVLONG: 1077 case TUVLONG: 1078 case TIND: 1079 case TARRAY: 1080 i = BtoR(~b); 1081 if(i && r->cost > 0) { 1082 r->regno = i; 1083 return RtoB(i); 1084 } 1085 break; 1086 1087 case TDOUBLE: 1088 case TFLOAT: 1089 i = BtoF(~b); 1090 if(i && r->cost > 0) { 1091 r->regno = i; 1092 return FtoB(i); 1093 } 1094 break; 1095 } 1096 return 0; 1097 } 1098 1099 void 1100 paint1(Reg *r, int bn) 1101 { 1102 Reg *r1; 1103 Prog *p; 1104 int z; 1105 uint32 bb; 1106 1107 z = bn/32; 1108 bb = 1L<<(bn%32); 1109 if(r->act.b[z] & bb) 1110 return; 1111 for(;;) { 1112 if(!(r->refbehind.b[z] & bb)) 1113 break; 1114 r1 = r->p1; 1115 if(r1 == R) 1116 break; 1117 if(!(r1->refahead.b[z] & bb)) 1118 break; 1119 if(r1->act.b[z] & bb) 1120 break; 1121 r = r1; 1122 } 1123 1124 if(LOAD(r) & ~(r->set.b[z]&~(r->use1.b[z]|r->use2.b[z])) & bb) { 1125 change -= CLOAD * r->loop; 1126 if(debug['R'] && debug['v']) 1127 print("%d%P\td %B $%d\n", r->loop, 1128 r->prog, blsh(bn), change); 1129 } 1130 for(;;) { 1131 r->act.b[z] |= bb; 1132 p = r->prog; 1133 1134 if(r->use1.b[z] & bb) { 1135 change += CREF * r->loop; 1136 if(debug['R'] && debug['v']) 1137 print("%d%P\tu1 %B $%d\n", r->loop, 1138 p, blsh(bn), change); 1139 } 1140 1141 if((r->use2.b[z]|r->set.b[z]) & bb) { 1142 change += CREF * r->loop; 1143 if(debug['R'] && debug['v']) 1144 print("%d%P\tu2 %B $%d\n", r->loop, 1145 p, blsh(bn), change); 1146 } 1147 1148 if(STORE(r) & r->regdiff.b[z] & bb) { 1149 change -= CLOAD * r->loop; 1150 if(debug['R'] && debug['v']) 1151 print("%d%P\tst %B $%d\n", r->loop, 1152 p, blsh(bn), change); 1153 } 1154 1155 if(r->refbehind.b[z] & bb) 1156 for(r1 = r->p2; r1 != R; r1 = r1->p2link) 1157 if(r1->refahead.b[z] & bb) 1158 paint1(r1, bn); 1159 1160 if(!(r->refahead.b[z] & bb)) 1161 break; 1162 r1 = r->s2; 1163 if(r1 != R) 1164 if(r1->refbehind.b[z] & bb) 1165 paint1(r1, bn); 1166 r = r->s1; 1167 if(r == R) 1168 break; 1169 if(r->act.b[z] & bb) 1170 break; 1171 if(!(r->refbehind.b[z] & bb)) 1172 break; 1173 } 1174 } 1175 1176 uint32 1177 regset(Reg *r, uint32 bb) 1178 { 1179 uint32 b, set; 1180 Addr v; 1181 int c; 1182 1183 set = 0; 1184 v = zprog.from; 1185 while(b = bb & ~(bb-1)) { 1186 v.type = b & 0xFFFF? BtoR(b): BtoF(b); 1187 if(v.type == 0) 1188 diag(Z, "zero v.type for %#ux", b); 1189 c = copyu(r->prog, &v, A); 1190 if(c == 3) 1191 set |= b; 1192 bb &= ~b; 1193 } 1194 return set; 1195 } 1196 1197 uint32 1198 reguse(Reg *r, uint32 bb) 1199 { 1200 uint32 b, set; 1201 Addr v; 1202 int c; 1203 1204 set = 0; 1205 v = zprog.from; 1206 while(b = bb & ~(bb-1)) { 1207 v.type = b & 0xFFFF? BtoR(b): BtoF(b); 1208 c = copyu(r->prog, &v, A); 1209 if(c == 1 || c == 2 || c == 4) 1210 set |= b; 1211 bb &= ~b; 1212 } 1213 return set; 1214 } 1215 1216 uint32 1217 paint2(Reg *r, int bn) 1218 { 1219 Reg *r1; 1220 int z; 1221 uint32 bb, vreg, x; 1222 1223 z = bn/32; 1224 bb = 1L << (bn%32); 1225 vreg = regbits; 1226 if(!(r->act.b[z] & bb)) 1227 return vreg; 1228 for(;;) { 1229 if(!(r->refbehind.b[z] & bb)) 1230 break; 1231 r1 = r->p1; 1232 if(r1 == R) 1233 break; 1234 if(!(r1->refahead.b[z] & bb)) 1235 break; 1236 if(!(r1->act.b[z] & bb)) 1237 break; 1238 r = r1; 1239 } 1240 for(;;) { 1241 r->act.b[z] &= ~bb; 1242 1243 vreg |= r->regu; 1244 1245 if(r->refbehind.b[z] & bb) 1246 for(r1 = r->p2; r1 != R; r1 = r1->p2link) 1247 if(r1->refahead.b[z] & bb) 1248 vreg |= paint2(r1, bn); 1249 1250 if(!(r->refahead.b[z] & bb)) 1251 break; 1252 r1 = r->s2; 1253 if(r1 != R) 1254 if(r1->refbehind.b[z] & bb) 1255 vreg |= paint2(r1, bn); 1256 r = r->s1; 1257 if(r == R) 1258 break; 1259 if(!(r->act.b[z] & bb)) 1260 break; 1261 if(!(r->refbehind.b[z] & bb)) 1262 break; 1263 } 1264 1265 bb = vreg; 1266 for(; r; r=r->s1) { 1267 x = r->regu & ~bb; 1268 if(x) { 1269 vreg |= reguse(r, x); 1270 bb |= regset(r, x); 1271 } 1272 } 1273 return vreg; 1274 } 1275 1276 void 1277 paint3(Reg *r, int bn, int32 rb, int rn) 1278 { 1279 Reg *r1; 1280 Prog *p; 1281 int z; 1282 uint32 bb; 1283 1284 z = bn/32; 1285 bb = 1L << (bn%32); 1286 if(r->act.b[z] & bb) 1287 return; 1288 for(;;) { 1289 if(!(r->refbehind.b[z] & bb)) 1290 break; 1291 r1 = r->p1; 1292 if(r1 == R) 1293 break; 1294 if(!(r1->refahead.b[z] & bb)) 1295 break; 1296 if(r1->act.b[z] & bb) 1297 break; 1298 r = r1; 1299 } 1300 1301 if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb) 1302 addmove(r, bn, rn, 0); 1303 for(;;) { 1304 r->act.b[z] |= bb; 1305 p = r->prog; 1306 1307 if(r->use1.b[z] & bb) { 1308 if(debug['R']) 1309 print("%P", p); 1310 addreg(&p->from, rn); 1311 if(debug['R']) 1312 print("\t.c%P\n", p); 1313 } 1314 if((r->use2.b[z]|r->set.b[z]) & bb) { 1315 if(debug['R']) 1316 print("%P", p); 1317 addreg(&p->to, rn); 1318 if(debug['R']) 1319 print("\t.c%P\n", p); 1320 } 1321 1322 if(STORE(r) & r->regdiff.b[z] & bb) 1323 addmove(r, bn, rn, 1); 1324 r->regu |= rb; 1325 1326 if(r->refbehind.b[z] & bb) 1327 for(r1 = r->p2; r1 != R; r1 = r1->p2link) 1328 if(r1->refahead.b[z] & bb) 1329 paint3(r1, bn, rb, rn); 1330 1331 if(!(r->refahead.b[z] & bb)) 1332 break; 1333 r1 = r->s2; 1334 if(r1 != R) 1335 if(r1->refbehind.b[z] & bb) 1336 paint3(r1, bn, rb, rn); 1337 r = r->s1; 1338 if(r == R) 1339 break; 1340 if(r->act.b[z] & bb) 1341 break; 1342 if(!(r->refbehind.b[z] & bb)) 1343 break; 1344 } 1345 } 1346 1347 void 1348 addreg(Addr *a, int rn) 1349 { 1350 1351 a->sym = 0; 1352 a->offset = 0; 1353 a->type = rn; 1354 } 1355 1356 int32 1357 RtoB(int r) 1358 { 1359 1360 if(r < D_AX || r > D_R15) 1361 return 0; 1362 return 1L << (r-D_AX); 1363 } 1364 1365 int 1366 BtoR(int32 b) 1367 { 1368 1369 b &= 0xffffL; 1370 if(nacl) 1371 b &= ~((1<<(D_BP-D_AX)) | (1<<(D_R15-D_AX))); 1372 if(b == 0) 1373 return 0; 1374 return bitno(b) + D_AX; 1375 } 1376 1377 /* 1378 * bit reg 1379 * 16 X5 1380 * 17 X6 1381 * 18 X7 1382 */ 1383 int32 1384 FtoB(int f) 1385 { 1386 if(f < FREGMIN || f > FREGEXT) 1387 return 0; 1388 return 1L << (f - FREGMIN + 16); 1389 } 1390 1391 int 1392 BtoF(int32 b) 1393 { 1394 1395 b &= 0x70000L; 1396 if(b == 0) 1397 return 0; 1398 return bitno(b) - 16 + FREGMIN; 1399 } 1400 1401 /* what instruction does a JMP to p eventually land on? */ 1402 static Reg* 1403 chasejmp(Reg *r, int *jmploop) 1404 { 1405 int n; 1406 1407 n = 0; 1408 for(; r; r=r->s2) { 1409 if(r->prog->as != AJMP || r->prog->to.type != D_BRANCH) 1410 break; 1411 if(++n > 10) { 1412 *jmploop = 1; 1413 break; 1414 } 1415 } 1416 return r; 1417 } 1418 1419 /* mark all code reachable from firstp as alive */ 1420 static void 1421 mark(Reg *firstr) 1422 { 1423 Reg *r; 1424 Prog *p; 1425 1426 for(r=firstr; r; r=r->link) { 1427 if(r->active) 1428 break; 1429 r->active = 1; 1430 p = r->prog; 1431 if(p->as != ACALL && p->to.type == D_BRANCH) 1432 mark(r->s2); 1433 if(p->as == AJMP || p->as == ARET || p->as == AUNDEF) 1434 break; 1435 } 1436 } 1437 1438 /* 1439 * the code generator depends on being able to write out JMP 1440 * instructions that it can jump to now but fill in later. 1441 * the linker will resolve them nicely, but they make the code 1442 * longer and more difficult to follow during debugging. 1443 * remove them. 1444 */ 1445 static void 1446 fixjmp(Reg *firstr) 1447 { 1448 int jmploop; 1449 Reg *r; 1450 Prog *p; 1451 1452 if(debug['R'] && debug['v']) 1453 print("\nfixjmp\n"); 1454 1455 // pass 1: resolve jump to AJMP, mark all code as dead. 1456 jmploop = 0; 1457 for(r=firstr; r; r=r->link) { 1458 p = r->prog; 1459 if(debug['R'] && debug['v']) 1460 print("%04d %P\n", (int)r->pc, p); 1461 if(p->as != ACALL && p->to.type == D_BRANCH && r->s2 && r->s2->prog->as == AJMP) { 1462 r->s2 = chasejmp(r->s2, &jmploop); 1463 p->to.offset = r->s2->pc; 1464 p->to.u.branch = r->s2->prog; 1465 if(debug['R'] && debug['v']) 1466 print("->%P\n", p); 1467 } 1468 r->active = 0; 1469 } 1470 if(debug['R'] && debug['v']) 1471 print("\n"); 1472 1473 // pass 2: mark all reachable code alive 1474 mark(firstr); 1475 1476 // pass 3: delete dead code (mostly JMPs). 1477 for(r=firstr; r; r=r->link) { 1478 if(!r->active) { 1479 p = r->prog; 1480 if(p->link == P && p->as == ARET && r->p1 && r->p1->prog->as != ARET) { 1481 // This is the final ARET, and the code so far doesn't have one. 1482 // Let it stay. 1483 } else { 1484 if(debug['R'] && debug['v']) 1485 print("del %04d %P\n", (int)r->pc, p); 1486 p->as = ANOP; 1487 } 1488 } 1489 } 1490 1491 // pass 4: elide JMP to next instruction. 1492 // only safe if there are no jumps to JMPs anymore. 1493 if(!jmploop) { 1494 for(r=firstr; r; r=r->link) { 1495 p = r->prog; 1496 if(p->as == AJMP && p->to.type == D_BRANCH && r->s2 == r->link) { 1497 if(debug['R'] && debug['v']) 1498 print("del %04d %P\n", (int)r->pc, p); 1499 p->as = ANOP; 1500 } 1501 } 1502 } 1503 1504 // fix back pointers. 1505 for(r=firstr; r; r=r->link) { 1506 r->p2 = R; 1507 r->p2link = R; 1508 } 1509 for(r=firstr; r; r=r->link) { 1510 if(r->s2) { 1511 r->p2link = r->s2->p2; 1512 r->s2->p2 = r; 1513 } 1514 } 1515 1516 if(debug['R'] && debug['v']) { 1517 print("\n"); 1518 for(r=firstr; r; r=r->link) 1519 print("%04d %P\n", (int)r->pc, r->prog); 1520 print("\n"); 1521 } 1522 } 1523