github.com/razvanm/vanadium-go-1.3@v0.0.0-20160721203343-4a65068e5915/src/sort/sort.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package sort provides primitives for sorting slices and user-defined
     6  // collections.
     7  package sort
     8  
     9  // A type, typically a collection, that satisfies sort.Interface can be
    10  // sorted by the routines in this package.  The methods require that the
    11  // elements of the collection be enumerated by an integer index.
    12  type Interface interface {
    13  	// Len is the number of elements in the collection.
    14  	Len() int
    15  	// Less reports whether the element with
    16  	// index i should sort before the element with index j.
    17  	Less(i, j int) bool
    18  	// Swap swaps the elements with indexes i and j.
    19  	Swap(i, j int)
    20  }
    21  
    22  func min(a, b int) int {
    23  	if a < b {
    24  		return a
    25  	}
    26  	return b
    27  }
    28  
    29  // Insertion sort
    30  func insertionSort(data Interface, a, b int) {
    31  	for i := a + 1; i < b; i++ {
    32  		for j := i; j > a && data.Less(j, j-1); j-- {
    33  			data.Swap(j, j-1)
    34  		}
    35  	}
    36  }
    37  
    38  // siftDown implements the heap property on data[lo, hi).
    39  // first is an offset into the array where the root of the heap lies.
    40  func siftDown(data Interface, lo, hi, first int) {
    41  	root := lo
    42  	for {
    43  		child := 2*root + 1
    44  		if child >= hi {
    45  			break
    46  		}
    47  		if child+1 < hi && data.Less(first+child, first+child+1) {
    48  			child++
    49  		}
    50  		if !data.Less(first+root, first+child) {
    51  			return
    52  		}
    53  		data.Swap(first+root, first+child)
    54  		root = child
    55  	}
    56  }
    57  
    58  func heapSort(data Interface, a, b int) {
    59  	first := a
    60  	lo := 0
    61  	hi := b - a
    62  
    63  	// Build heap with greatest element at top.
    64  	for i := (hi - 1) / 2; i >= 0; i-- {
    65  		siftDown(data, i, hi, first)
    66  	}
    67  
    68  	// Pop elements, largest first, into end of data.
    69  	for i := hi - 1; i >= 0; i-- {
    70  		data.Swap(first, first+i)
    71  		siftDown(data, lo, i, first)
    72  	}
    73  }
    74  
    75  // Quicksort, following Bentley and McIlroy,
    76  // ``Engineering a Sort Function,'' SP&E November 1993.
    77  
    78  // medianOfThree moves the median of the three values data[a], data[b], data[c] into data[a].
    79  func medianOfThree(data Interface, a, b, c int) {
    80  	m0 := b
    81  	m1 := a
    82  	m2 := c
    83  	// bubble sort on 3 elements
    84  	if data.Less(m1, m0) {
    85  		data.Swap(m1, m0)
    86  	}
    87  	if data.Less(m2, m1) {
    88  		data.Swap(m2, m1)
    89  	}
    90  	if data.Less(m1, m0) {
    91  		data.Swap(m1, m0)
    92  	}
    93  	// now data[m0] <= data[m1] <= data[m2]
    94  }
    95  
    96  func swapRange(data Interface, a, b, n int) {
    97  	for i := 0; i < n; i++ {
    98  		data.Swap(a+i, b+i)
    99  	}
   100  }
   101  
   102  func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
   103  	m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.
   104  	if hi-lo > 40 {
   105  		// Tukey's ``Ninther,'' median of three medians of three.
   106  		s := (hi - lo) / 8
   107  		medianOfThree(data, lo, lo+s, lo+2*s)
   108  		medianOfThree(data, m, m-s, m+s)
   109  		medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
   110  	}
   111  	medianOfThree(data, lo, m, hi-1)
   112  
   113  	// Invariants are:
   114  	//	data[lo] = pivot (set up by ChoosePivot)
   115  	//	data[lo <= i < a] = pivot
   116  	//	data[a <= i < b] < pivot
   117  	//	data[b <= i < c] is unexamined
   118  	//	data[c <= i < d] > pivot
   119  	//	data[d <= i < hi] = pivot
   120  	//
   121  	// Once b meets c, can swap the "= pivot" sections
   122  	// into the middle of the slice.
   123  	pivot := lo
   124  	a, b, c, d := lo+1, lo+1, hi, hi
   125  	for {
   126  		for b < c {
   127  			if data.Less(b, pivot) { // data[b] < pivot
   128  				b++
   129  			} else if !data.Less(pivot, b) { // data[b] = pivot
   130  				data.Swap(a, b)
   131  				a++
   132  				b++
   133  			} else {
   134  				break
   135  			}
   136  		}
   137  		for b < c {
   138  			if data.Less(pivot, c-1) { // data[c-1] > pivot
   139  				c--
   140  			} else if !data.Less(c-1, pivot) { // data[c-1] = pivot
   141  				data.Swap(c-1, d-1)
   142  				c--
   143  				d--
   144  			} else {
   145  				break
   146  			}
   147  		}
   148  		if b >= c {
   149  			break
   150  		}
   151  		// data[b] > pivot; data[c-1] < pivot
   152  		data.Swap(b, c-1)
   153  		b++
   154  		c--
   155  	}
   156  
   157  	n := min(b-a, a-lo)
   158  	swapRange(data, lo, b-n, n)
   159  
   160  	n = min(hi-d, d-c)
   161  	swapRange(data, c, hi-n, n)
   162  
   163  	return lo + b - a, hi - (d - c)
   164  }
   165  
   166  func quickSort(data Interface, a, b, maxDepth int) {
   167  	for b-a > 7 {
   168  		if maxDepth == 0 {
   169  			heapSort(data, a, b)
   170  			return
   171  		}
   172  		maxDepth--
   173  		mlo, mhi := doPivot(data, a, b)
   174  		// Avoiding recursion on the larger subproblem guarantees
   175  		// a stack depth of at most lg(b-a).
   176  		if mlo-a < b-mhi {
   177  			quickSort(data, a, mlo, maxDepth)
   178  			a = mhi // i.e., quickSort(data, mhi, b)
   179  		} else {
   180  			quickSort(data, mhi, b, maxDepth)
   181  			b = mlo // i.e., quickSort(data, a, mlo)
   182  		}
   183  	}
   184  	if b-a > 1 {
   185  		insertionSort(data, a, b)
   186  	}
   187  }
   188  
   189  // Sort sorts data.
   190  // It makes one call to data.Len to determine n, and O(n*log(n)) calls to
   191  // data.Less and data.Swap. The sort is not guaranteed to be stable.
   192  func Sort(data Interface) {
   193  	// Switch to heapsort if depth of 2*ceil(lg(n+1)) is reached.
   194  	n := data.Len()
   195  	maxDepth := 0
   196  	for i := n; i > 0; i >>= 1 {
   197  		maxDepth++
   198  	}
   199  	maxDepth *= 2
   200  	quickSort(data, 0, n, maxDepth)
   201  }
   202  
   203  type reverse struct {
   204  	// This embedded Interface permits Reverse to use the methods of
   205  	// another Interface implementation.
   206  	Interface
   207  }
   208  
   209  // Less returns the opposite of the embedded implementation's Less method.
   210  func (r reverse) Less(i, j int) bool {
   211  	return r.Interface.Less(j, i)
   212  }
   213  
   214  // Reverse returns the reverse order for data.
   215  func Reverse(data Interface) Interface {
   216  	return &reverse{data}
   217  }
   218  
   219  // IsSorted reports whether data is sorted.
   220  func IsSorted(data Interface) bool {
   221  	n := data.Len()
   222  	for i := n - 1; i > 0; i-- {
   223  		if data.Less(i, i-1) {
   224  			return false
   225  		}
   226  	}
   227  	return true
   228  }
   229  
   230  // Convenience types for common cases
   231  
   232  // IntSlice attaches the methods of Interface to []int, sorting in increasing order.
   233  type IntSlice []int
   234  
   235  func (p IntSlice) Len() int           { return len(p) }
   236  func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
   237  func (p IntSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   238  
   239  // Sort is a convenience method.
   240  func (p IntSlice) Sort() { Sort(p) }
   241  
   242  // Float64Slice attaches the methods of Interface to []float64, sorting in increasing order.
   243  type Float64Slice []float64
   244  
   245  func (p Float64Slice) Len() int           { return len(p) }
   246  func (p Float64Slice) Less(i, j int) bool { return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j]) }
   247  func (p Float64Slice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   248  
   249  // isNaN is a copy of math.IsNaN to avoid a dependency on the math package.
   250  func isNaN(f float64) bool {
   251  	return f != f
   252  }
   253  
   254  // Sort is a convenience method.
   255  func (p Float64Slice) Sort() { Sort(p) }
   256  
   257  // StringSlice attaches the methods of Interface to []string, sorting in increasing order.
   258  type StringSlice []string
   259  
   260  func (p StringSlice) Len() int           { return len(p) }
   261  func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
   262  func (p StringSlice) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   263  
   264  // Sort is a convenience method.
   265  func (p StringSlice) Sort() { Sort(p) }
   266  
   267  // Convenience wrappers for common cases
   268  
   269  // Ints sorts a slice of ints in increasing order.
   270  func Ints(a []int) { Sort(IntSlice(a)) }
   271  
   272  // Float64s sorts a slice of float64s in increasing order.
   273  func Float64s(a []float64) { Sort(Float64Slice(a)) }
   274  
   275  // Strings sorts a slice of strings in increasing order.
   276  func Strings(a []string) { Sort(StringSlice(a)) }
   277  
   278  // IntsAreSorted tests whether a slice of ints is sorted in increasing order.
   279  func IntsAreSorted(a []int) bool { return IsSorted(IntSlice(a)) }
   280  
   281  // Float64sAreSorted tests whether a slice of float64s is sorted in increasing order.
   282  func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Slice(a)) }
   283  
   284  // StringsAreSorted tests whether a slice of strings is sorted in increasing order.
   285  func StringsAreSorted(a []string) bool { return IsSorted(StringSlice(a)) }
   286  
   287  // Notes on stable sorting:
   288  // The used algorithms are simple and provable correct on all input and use
   289  // only logarithmic additional stack space.  They perform well if compared
   290  // experimentally to other stable in-place sorting algorithms.
   291  //
   292  // Remarks on other algorithms evaluated:
   293  //  - GCC's 4.6.3 stable_sort with merge_without_buffer from libstdc++:
   294  //    Not faster.
   295  //  - GCC's __rotate for block rotations: Not faster.
   296  //  - "Practical in-place mergesort" from  Jyrki Katajainen, Tomi A. Pasanen
   297  //    and Jukka Teuhola; Nordic Journal of Computing 3,1 (1996), 27-40:
   298  //    The given algorithms are in-place, number of Swap and Assignments
   299  //    grow as n log n but the algorithm is not stable.
   300  //  - "Fast Stable In-Plcae Sorting with O(n) Data Moves" J.I. Munro and
   301  //    V. Raman in Algorithmica (1996) 16, 115-160:
   302  //    This algorithm either needs additional 2n bits or works only if there
   303  //    are enough different elements available to encode some permutations
   304  //    which have to be undone later (so not stable an any input).
   305  //  - All the optimal in-place sorting/merging algorithms I found are either
   306  //    unstable or rely on enough different elements in each step to encode the
   307  //    performed block rearrangements. See also "In-Place Merging Algorithms",
   308  //    Denham Coates-Evely, Department of Computer Science, Kings College,
   309  //    January 2004 and the reverences in there.
   310  //  - Often "optimal" algorithms are optimal in the number of assignments
   311  //    but Interface has only Swap as operation.
   312  
   313  // Stable sorts data while keeping the original order of equal elements.
   314  //
   315  // It makes one call to data.Len to determine n, O(n*log(n)) calls to
   316  // data.Less and O(n*log(n)*log(n)) calls to data.Swap.
   317  func Stable(data Interface) {
   318  	n := data.Len()
   319  	blockSize := 20
   320  	a, b := 0, blockSize
   321  	for b <= n {
   322  		insertionSort(data, a, b)
   323  		a = b
   324  		b += blockSize
   325  	}
   326  	insertionSort(data, a, n)
   327  
   328  	for blockSize < n {
   329  		a, b = 0, 2*blockSize
   330  		for b <= n {
   331  			symMerge(data, a, a+blockSize, b)
   332  			a = b
   333  			b += 2 * blockSize
   334  		}
   335  		symMerge(data, a, a+blockSize, n)
   336  		blockSize *= 2
   337  	}
   338  }
   339  
   340  // SymMerge merges the two sorted subsequences data[a:m] and data[m:b] using
   341  // the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
   342  // Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
   343  // Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
   344  // Computer Science, pages 714-723. Springer, 2004.
   345  //
   346  // Let M = m-a and N = b-n. Wolog M < N.
   347  // The recursion depth is bound by ceil(log(N+M)).
   348  // The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
   349  // The algorithm needs O((M+N)*log(M)) calls to data.Swap.
   350  //
   351  // The paper gives O((M+N)*log(M)) as the number of assignments assuming a
   352  // rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
   353  // in the paper carries through for Swap operations, especially as the block
   354  // swapping rotate uses only O(M+N) Swaps.
   355  func symMerge(data Interface, a, m, b int) {
   356  	if a >= m || m >= b {
   357  		return
   358  	}
   359  
   360  	mid := a + (b-a)/2
   361  	n := mid + m
   362  	start := 0
   363  	if m > mid {
   364  		start = n - b
   365  		r, p := mid, n-1
   366  		for start < r {
   367  			c := start + (r-start)/2
   368  			if !data.Less(p-c, c) {
   369  				start = c + 1
   370  			} else {
   371  				r = c
   372  			}
   373  		}
   374  	} else {
   375  		start = a
   376  		r, p := m, n-1
   377  		for start < r {
   378  			c := start + (r-start)/2
   379  			if !data.Less(p-c, c) {
   380  				start = c + 1
   381  			} else {
   382  				r = c
   383  			}
   384  		}
   385  	}
   386  	end := n - start
   387  	rotate(data, start, m, end)
   388  	symMerge(data, a, start, mid)
   389  	symMerge(data, mid, end, b)
   390  }
   391  
   392  // Rotate two consecutives blocks u = data[a:m] and v = data[m:b] in data:
   393  // Data of the form 'x u v y' is changed to 'x v u y'.
   394  // Rotate performs at most b-a many calls to data.Swap.
   395  func rotate(data Interface, a, m, b int) {
   396  	i := m - a
   397  	if i == 0 {
   398  		return
   399  	}
   400  	j := b - m
   401  	if j == 0 {
   402  		return
   403  	}
   404  
   405  	if i == j {
   406  		swapRange(data, a, m, i)
   407  		return
   408  	}
   409  
   410  	p := a + i
   411  	for i != j {
   412  		if i > j {
   413  			swapRange(data, p-i, p, j)
   414  			i -= j
   415  		} else {
   416  			swapRange(data, p-i, p+j-i, i)
   417  			j -= i
   418  		}
   419  	}
   420  	swapRange(data, p-i, p, i)
   421  }
   422  
   423  /*
   424  Complexity of Stable Sorting
   425  
   426  
   427  Complexity of block swapping rotation
   428  
   429  Each Swap puts one new element into its correct, final position.
   430  Elements which reach their final position are no longer moved.
   431  Thus block swapping rotation needs |u|+|v| calls to Swaps.
   432  This is best possible as each element might need a move.
   433  
   434  Pay attention when comparing to other optimal algorithms which
   435  typically count the number of assignments instead of swaps:
   436  E.g. the optimal algorithm of Dudzinski and Dydek for in-place
   437  rotations uses O(u + v + gcd(u,v)) assignments which is
   438  better than our O(3 * (u+v)) as gcd(u,v) <= u.
   439  
   440  
   441  Stable sorting by SymMerge and BlockSwap rotations
   442  
   443  SymMerg complexity for same size input M = N:
   444  Calls to Less:  O(M*log(N/M+1)) = O(N*log(2)) = O(N)
   445  Calls to Swap:  O((M+N)*log(M)) = O(2*N*log(N)) = O(N*log(N))
   446  
   447  (The following argument does not fuzz over a missing -1 or
   448  other stuff which does not impact the final result).
   449  
   450  Let n = data.Len(). Assume n = 2^k.
   451  
   452  Plain merge sort performs log(n) = k iterations.
   453  On iteration i the algorithm merges 2^(k-i) blocks, each of size 2^i.
   454  
   455  Thus iteration i of merge sort performs:
   456  Calls to Less  O(2^(k-i) * 2^i) = O(2^k) = O(2^log(n)) = O(n)
   457  Calls to Swap  O(2^(k-i) * 2^i * log(2^i)) = O(2^k * i) = O(n*i)
   458  
   459  In total k = log(n) iterations are performed; so in total:
   460  Calls to Less O(log(n) * n)
   461  Calls to Swap O(n + 2*n + 3*n + ... + (k-1)*n + k*n)
   462     = O((k/2) * k * n) = O(n * k^2) = O(n * log^2(n))
   463  
   464  
   465  Above results should generalize to arbitrary n = 2^k + p
   466  and should not be influenced by the initial insertion sort phase:
   467  Insertion sort is O(n^2) on Swap and Less, thus O(bs^2) per block of
   468  size bs at n/bs blocks:  O(bs*n) Swaps and Less during insertion sort.
   469  Merge sort iterations start at i = log(bs). With t = log(bs) constant:
   470  Calls to Less O((log(n)-t) * n + bs*n) = O(log(n)*n + (bs-t)*n)
   471     = O(n * log(n))
   472  Calls to Swap O(n * log^2(n) - (t^2+t)/2*n) = O(n * log^2(n))
   473  
   474  */