github.com/rbisecke/kafka-go@v0.4.27/balancer.go (about) 1 package kafka 2 3 import ( 4 "hash" 5 "hash/crc32" 6 "hash/fnv" 7 "math/rand" 8 "sort" 9 "sync" 10 "sync/atomic" 11 ) 12 13 // The Balancer interface provides an abstraction of the message distribution 14 // logic used by Writer instances to route messages to the partitions available 15 // on a kafka cluster. 16 // 17 // Balancers must be safe to use concurrently from multiple goroutines. 18 type Balancer interface { 19 // Balance receives a message and a set of available partitions and 20 // returns the partition number that the message should be routed to. 21 // 22 // An application should refrain from using a balancer to manage multiple 23 // sets of partitions (from different topics for examples), use one balancer 24 // instance for each partition set, so the balancer can detect when the 25 // partitions change and assume that the kafka topic has been rebalanced. 26 Balance(msg Message, partitions ...int) (partition int) 27 } 28 29 // BalancerFunc is an implementation of the Balancer interface that makes it 30 // possible to use regular functions to distribute messages across partitions. 31 type BalancerFunc func(Message, ...int) int 32 33 // Balance calls f, satisfies the Balancer interface. 34 func (f BalancerFunc) Balance(msg Message, partitions ...int) int { 35 return f(msg, partitions...) 36 } 37 38 // RoundRobin is an Balancer implementation that equally distributes messages 39 // across all available partitions. 40 type RoundRobin struct { 41 // Use a 32 bits integer so RoundRobin values don't need to be aligned to 42 // apply atomic increments. 43 offset uint32 44 } 45 46 // Balance satisfies the Balancer interface. 47 func (rr *RoundRobin) Balance(msg Message, partitions ...int) int { 48 return rr.balance(partitions) 49 } 50 51 func (rr *RoundRobin) balance(partitions []int) int { 52 length := uint32(len(partitions)) 53 offset := atomic.AddUint32(&rr.offset, 1) - 1 54 return partitions[offset%length] 55 } 56 57 // LeastBytes is a Balancer implementation that routes messages to the partition 58 // that has received the least amount of data. 59 // 60 // Note that no coordination is done between multiple producers, having good 61 // balancing relies on the fact that each producer using a LeastBytes balancer 62 // should produce well balanced messages. 63 type LeastBytes struct { 64 mutex sync.Mutex 65 counters []leastBytesCounter 66 } 67 68 type leastBytesCounter struct { 69 partition int 70 bytes uint64 71 } 72 73 // Balance satisfies the Balancer interface. 74 func (lb *LeastBytes) Balance(msg Message, partitions ...int) int { 75 lb.mutex.Lock() 76 defer lb.mutex.Unlock() 77 78 // partitions change 79 if len(partitions) != len(lb.counters) { 80 lb.counters = lb.makeCounters(partitions...) 81 } 82 83 minBytes := lb.counters[0].bytes 84 minIndex := 0 85 86 for i, c := range lb.counters[1:] { 87 if c.bytes < minBytes { 88 minIndex = i + 1 89 minBytes = c.bytes 90 } 91 } 92 93 c := &lb.counters[minIndex] 94 c.bytes += uint64(len(msg.Key)) + uint64(len(msg.Value)) 95 return c.partition 96 } 97 98 func (lb *LeastBytes) makeCounters(partitions ...int) (counters []leastBytesCounter) { 99 counters = make([]leastBytesCounter, len(partitions)) 100 101 for i, p := range partitions { 102 counters[i].partition = p 103 } 104 105 sort.Slice(counters, func(i int, j int) bool { 106 return counters[i].partition < counters[j].partition 107 }) 108 return 109 } 110 111 var ( 112 fnv1aPool = &sync.Pool{ 113 New: func() interface{} { 114 return fnv.New32a() 115 }, 116 } 117 ) 118 119 // Hash is a Balancer that uses the provided hash function to determine which 120 // partition to route messages to. This ensures that messages with the same key 121 // are routed to the same partition. 122 // 123 // The logic to calculate the partition is: 124 // 125 // hasher.Sum32() % len(partitions) => partition 126 // 127 // By default, Hash uses the FNV-1a algorithm. This is the same algorithm used 128 // by the Sarama Producer and ensures that messages produced by kafka-go will 129 // be delivered to the same topics that the Sarama producer would be delivered to 130 type Hash struct { 131 rr RoundRobin 132 Hasher hash.Hash32 133 134 // lock protects Hasher while calculating the hash code. It is assumed that 135 // the Hasher field is read-only once the Balancer is created, so as a 136 // performance optimization, reads of the field are not protected. 137 lock sync.Mutex 138 } 139 140 func (h *Hash) Balance(msg Message, partitions ...int) int { 141 if msg.Key == nil { 142 return h.rr.Balance(msg, partitions...) 143 } 144 145 hasher := h.Hasher 146 if hasher != nil { 147 h.lock.Lock() 148 defer h.lock.Unlock() 149 } else { 150 hasher = fnv1aPool.Get().(hash.Hash32) 151 defer fnv1aPool.Put(hasher) 152 } 153 154 hasher.Reset() 155 if _, err := hasher.Write(msg.Key); err != nil { 156 panic(err) 157 } 158 159 // uses same algorithm that Sarama's hashPartitioner uses 160 // note the type conversions here. if the uint32 hash code is not cast to 161 // an int32, we do not get the same result as sarama. 162 partition := int32(hasher.Sum32()) % int32(len(partitions)) 163 if partition < 0 { 164 partition = -partition 165 } 166 167 return int(partition) 168 } 169 170 type randomBalancer struct { 171 mock int // mocked return value, used for testing 172 } 173 174 func (b randomBalancer) Balance(msg Message, partitions ...int) (partition int) { 175 if b.mock != 0 { 176 return b.mock 177 } 178 return partitions[rand.Int()%len(partitions)] 179 } 180 181 // CRC32Balancer is a Balancer that uses the CRC32 hash function to determine 182 // which partition to route messages to. This ensures that messages with the 183 // same key are routed to the same partition. This balancer is compatible with 184 // the built-in hash partitioners in librdkafka and the language bindings that 185 // are built on top of it, including the 186 // github.com/confluentinc/confluent-kafka-go Go package. 187 // 188 // With the Consistent field false (default), this partitioner is equivalent to 189 // the "consistent_random" setting in librdkafka. When Consistent is true, this 190 // partitioner is equivalent to the "consistent" setting. The latter will hash 191 // empty or nil keys into the same partition. 192 // 193 // Unless you are absolutely certain that all your messages will have keys, it's 194 // best to leave the Consistent flag off. Otherwise, you run the risk of 195 // creating a very hot partition. 196 type CRC32Balancer struct { 197 Consistent bool 198 random randomBalancer 199 } 200 201 func (b CRC32Balancer) Balance(msg Message, partitions ...int) (partition int) { 202 // NOTE: the crc32 balancers in librdkafka don't differentiate between nil 203 // and empty keys. both cases are treated as unset. 204 if len(msg.Key) == 0 && !b.Consistent { 205 return b.random.Balance(msg, partitions...) 206 } 207 208 idx := crc32.ChecksumIEEE(msg.Key) % uint32(len(partitions)) 209 return partitions[idx] 210 } 211 212 // Murmur2Balancer is a Balancer that uses the Murmur2 hash function to 213 // determine which partition to route messages to. This ensures that messages 214 // with the same key are routed to the same partition. This balancer is 215 // compatible with the partitioner used by the Java library and by librdkafka's 216 // "murmur2" and "murmur2_random" partitioners. / 217 // 218 // With the Consistent field false (default), this partitioner is equivalent to 219 // the "murmur2_random" setting in librdkafka. When Consistent is true, this 220 // partitioner is equivalent to the "murmur2" setting. The latter will hash 221 // nil keys into the same partition. Empty, non-nil keys are always hashed to 222 // the same partition regardless of configuration. 223 // 224 // Unless you are absolutely certain that all your messages will have keys, it's 225 // best to leave the Consistent flag off. Otherwise, you run the risk of 226 // creating a very hot partition. 227 // 228 // Note that the librdkafka documentation states that the "murmur2_random" is 229 // functionally equivalent to the default Java partitioner. That's because the 230 // Java partitioner will use a round robin balancer instead of random on nil 231 // keys. We choose librdkafka's implementation because it arguably has a larger 232 // install base. 233 type Murmur2Balancer struct { 234 Consistent bool 235 random randomBalancer 236 } 237 238 func (b Murmur2Balancer) Balance(msg Message, partitions ...int) (partition int) { 239 // NOTE: the murmur2 balancers in java and librdkafka treat a nil key as 240 // non-existent while treating an empty slice as a defined value. 241 if msg.Key == nil && !b.Consistent { 242 return b.random.Balance(msg, partitions...) 243 } 244 245 idx := (murmur2(msg.Key) & 0x7fffffff) % uint32(len(partitions)) 246 return partitions[idx] 247 } 248 249 // Go port of the Java library's murmur2 function. 250 // https://github.com/apache/kafka/blob/1.0/clients/src/main/java/org/apache/kafka/common/utils/Utils.java#L353 251 func murmur2(data []byte) uint32 { 252 length := len(data) 253 const ( 254 seed uint32 = 0x9747b28c 255 // 'm' and 'r' are mixing constants generated offline. 256 // They're not really 'magic', they just happen to work well. 257 m = 0x5bd1e995 258 r = 24 259 ) 260 261 // Initialize the hash to a random value 262 h := seed ^ uint32(length) 263 length4 := length / 4 264 265 for i := 0; i < length4; i++ { 266 i4 := i * 4 267 k := (uint32(data[i4+0]) & 0xff) + ((uint32(data[i4+1]) & 0xff) << 8) + ((uint32(data[i4+2]) & 0xff) << 16) + ((uint32(data[i4+3]) & 0xff) << 24) 268 k *= m 269 k ^= k >> r 270 k *= m 271 h *= m 272 h ^= k 273 } 274 275 // Handle the last few bytes of the input array 276 extra := length % 4 277 if extra >= 3 { 278 h ^= (uint32(data[(length & ^3)+2]) & 0xff) << 16 279 } 280 if extra >= 2 { 281 h ^= (uint32(data[(length & ^3)+1]) & 0xff) << 8 282 } 283 if extra >= 1 { 284 h ^= uint32(data[length & ^3]) & 0xff 285 h *= m 286 } 287 288 h ^= h >> 13 289 h *= m 290 h ^= h >> 15 291 292 return h 293 }