github.com/reiver/go@v0.0.0-20150109200633-1d0c7792f172/src/cmd/8g/reg.c (about)

     1  // Derived from Inferno utils/6c/reg.c
     2  // http://code.google.com/p/inferno-os/source/browse/utils/6c/reg.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors.  All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  #include <u.h>
    32  #include <libc.h>
    33  #include "gg.h"
    34  #include "opt.h"
    35  
    36  #define	NREGVAR	16	/* 8 integer + 8 floating */
    37  #define	REGBITS	((uint64)0xffffull)
    38  /*c2go enum {
    39  	NREGVAR = 16,
    40  	REGBITS = (1<<NREGVAR) - 1,
    41  };
    42  */
    43  
    44  static	Reg*	firstr;
    45  static	int	first	= 1;
    46  
    47  int
    48  rcmp(const void *a1, const void *a2)
    49  {
    50  	Rgn *p1, *p2;
    51  	int c1, c2;
    52  
    53  	p1 = (Rgn*)a1;
    54  	p2 = (Rgn*)a2;
    55  	c1 = p2->cost;
    56  	c2 = p1->cost;
    57  	if(c1 -= c2)
    58  		return c1;
    59  	return p2->varno - p1->varno;
    60  }
    61  
    62  static void
    63  setaddrs(Bits bit)
    64  {
    65  	int i, n;
    66  	Var *v;
    67  	Node *node;
    68  
    69  	while(bany(&bit)) {
    70  		// convert each bit to a variable
    71  		i = bnum(bit);
    72  		node = var[i].node;
    73  		n = var[i].name;
    74  		biclr(&bit, i);
    75  
    76  		// disable all pieces of that variable
    77  		for(i=0; i<nvar; i++) {
    78  			v = var+i;
    79  			if(v->node == node && v->name == n)
    80  				v->addr = 2;
    81  		}
    82  	}
    83  }
    84  
    85  static char* regname[] = {
    86  	".ax", ".cx", ".dx", ".bx", ".sp", ".bp", ".si", ".di",
    87  	".x0", ".x1", ".x2", ".x3", ".x4", ".x5", ".x6", ".x7",
    88  };
    89  
    90  static Node* regnodes[NREGVAR];
    91  
    92  static void walkvardef(Node *n, Reg *r, int active);
    93  
    94  void
    95  regopt(Prog *firstp)
    96  {
    97  	Reg *r, *r1;
    98  	Prog *p;
    99  	Graph *g;
   100  	ProgInfo info;
   101  	int i, z, active;
   102  	uint32 vreg;
   103  	Bits bit;
   104  
   105  	if(first) {
   106  		fmtinstall('Q', Qconv);
   107  		exregoffset = D_DI;	// no externals
   108  		first = 0;
   109  	}
   110  
   111  	mergetemp(firstp);
   112  
   113  	/*
   114  	 * control flow is more complicated in generated go code
   115  	 * than in generated c code.  define pseudo-variables for
   116  	 * registers, so we have complete register usage information.
   117  	 */
   118  	nvar = NREGVAR;
   119  	memset(var, 0, NREGVAR*sizeof var[0]);
   120  	for(i=0; i<NREGVAR; i++) {
   121  		if(regnodes[i] == N)
   122  			regnodes[i] = newname(lookup(regname[i]));
   123  		var[i].node = regnodes[i];
   124  	}
   125  
   126  	regbits = RtoB(D_SP);
   127  	for(z=0; z<BITS; z++) {
   128  		externs.b[z] = 0;
   129  		params.b[z] = 0;
   130  		consts.b[z] = 0;
   131  		addrs.b[z] = 0;
   132  		ivar.b[z] = 0;
   133  		ovar.b[z] = 0;
   134  	}
   135  
   136  	/*
   137  	 * pass 1
   138  	 * build aux data structure
   139  	 * allocate pcs
   140  	 * find use and set of variables
   141  	 */
   142  	g = flowstart(firstp, sizeof(Reg));
   143  	if(g == nil) {
   144  		for(i=0; i<nvar; i++)
   145  			var[i].node->opt = nil;
   146  		return;
   147  	}
   148  
   149  	firstr = (Reg*)g->start;
   150  
   151  	for(r = firstr; r != R; r = (Reg*)r->f.link) {
   152  		p = r->f.prog;
   153  		if(p->as == AVARDEF || p->as == AVARKILL)
   154  			continue;
   155  		proginfo(&info, p);
   156  
   157  		// Avoid making variables for direct-called functions.
   158  		if(p->as == ACALL && p->to.type == D_EXTERN)
   159  			continue;
   160  
   161  		r->use1.b[0] |= info.reguse | info.regindex;
   162  		r->set.b[0] |= info.regset;
   163  
   164  		bit = mkvar(r, &p->from);
   165  		if(bany(&bit)) {
   166  			if(info.flags & LeftAddr)
   167  				setaddrs(bit);
   168  			if(info.flags & LeftRead)
   169  				for(z=0; z<BITS; z++)
   170  					r->use1.b[z] |= bit.b[z];
   171  			if(info.flags & LeftWrite)
   172  				for(z=0; z<BITS; z++)
   173  					r->set.b[z] |= bit.b[z];
   174  		}
   175  
   176  		bit = mkvar(r, &p->to);
   177  		if(bany(&bit)) {	
   178  			if(info.flags & RightAddr)
   179  				setaddrs(bit);
   180  			if(info.flags & RightRead)
   181  				for(z=0; z<BITS; z++)
   182  					r->use2.b[z] |= bit.b[z];
   183  			if(info.flags & RightWrite)
   184  				for(z=0; z<BITS; z++)
   185  					r->set.b[z] |= bit.b[z];
   186  		}
   187  	}
   188  	if(firstr == R)
   189  		return;
   190  
   191  	for(i=0; i<nvar; i++) {
   192  		Var *v = var+i;
   193  		if(v->addr) {
   194  			bit = blsh(i);
   195  			for(z=0; z<BITS; z++)
   196  				addrs.b[z] |= bit.b[z];
   197  		}
   198  
   199  		if(debug['R'] && debug['v'])
   200  			print("bit=%2d addr=%d et=%-6E w=%-2d s=%N + %lld\n",
   201  				i, v->addr, v->etype, v->width, v->node, v->offset);
   202  	}
   203  
   204  	if(debug['R'] && debug['v'])
   205  		dumpit("pass1", &firstr->f, 1);
   206  
   207  	/*
   208  	 * pass 2
   209  	 * find looping structure
   210  	 */
   211  	flowrpo(g);
   212  
   213  	if(debug['R'] && debug['v'])
   214  		dumpit("pass2", &firstr->f, 1);
   215  
   216  	/*
   217  	 * pass 2.5
   218  	 * iterate propagating fat vardef covering forward
   219  	 * r->act records vars with a VARDEF since the last CALL.
   220  	 * (r->act will be reused in pass 5 for something else,
   221  	 * but we'll be done with it by then.)
   222  	 */
   223  	active = 0;
   224  	for(r = firstr; r != R; r = (Reg*)r->f.link) {
   225  		r->f.active = 0;
   226  		r->act = zbits;
   227  	}
   228  	for(r = firstr; r != R; r = (Reg*)r->f.link) {
   229  		p = r->f.prog;
   230  		if(p->as == AVARDEF && isfat(p->to.node->type) && p->to.node->opt != nil) {
   231  			active++;
   232  			walkvardef(p->to.node, r, active);
   233  		}
   234  	}
   235  
   236  	/*
   237  	 * pass 3
   238  	 * iterate propagating usage
   239  	 * 	back until flow graph is complete
   240  	 */
   241  loop1:
   242  	change = 0;
   243  	for(r = firstr; r != R; r = (Reg*)r->f.link)
   244  		r->f.active = 0;
   245  	for(r = firstr; r != R; r = (Reg*)r->f.link)
   246  		if(r->f.prog->as == ARET)
   247  			prop(r, zbits, zbits);
   248  loop11:
   249  	/* pick up unreachable code */
   250  	i = 0;
   251  	for(r = firstr; r != R; r = r1) {
   252  		r1 = (Reg*)r->f.link;
   253  		if(r1 && r1->f.active && !r->f.active) {
   254  			prop(r, zbits, zbits);
   255  			i = 1;
   256  		}
   257  	}
   258  	if(i)
   259  		goto loop11;
   260  	if(change)
   261  		goto loop1;
   262  
   263  	if(debug['R'] && debug['v'])
   264  		dumpit("pass3", &firstr->f, 1);
   265  
   266  	/*
   267  	 * pass 4
   268  	 * iterate propagating register/variable synchrony
   269  	 * 	forward until graph is complete
   270  	 */
   271  loop2:
   272  	change = 0;
   273  	for(r = firstr; r != R; r = (Reg*)r->f.link)
   274  		r->f.active = 0;
   275  	synch(firstr, zbits);
   276  	if(change)
   277  		goto loop2;
   278  
   279  	if(debug['R'] && debug['v'])
   280  		dumpit("pass4", &firstr->f, 1);
   281  
   282  	/*
   283  	 * pass 4.5
   284  	 * move register pseudo-variables into regu.
   285  	 */
   286  	for(r = firstr; r != R; r = (Reg*)r->f.link) {
   287  		r->regu = (r->refbehind.b[0] | r->set.b[0]) & REGBITS;
   288  
   289  		r->set.b[0] &= ~REGBITS;
   290  		r->use1.b[0] &= ~REGBITS;
   291  		r->use2.b[0] &= ~REGBITS;
   292  		r->refbehind.b[0] &= ~REGBITS;
   293  		r->refahead.b[0] &= ~REGBITS;
   294  		r->calbehind.b[0] &= ~REGBITS;
   295  		r->calahead.b[0] &= ~REGBITS;
   296  		r->regdiff.b[0] &= ~REGBITS;
   297  		r->act.b[0] &= ~REGBITS;
   298  	}
   299  
   300  	/*
   301  	 * pass 5
   302  	 * isolate regions
   303  	 * calculate costs (paint1)
   304  	 */
   305  	r = firstr;
   306  	if(r) {
   307  		for(z=0; z<BITS; z++)
   308  			bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) &
   309  			  ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]);
   310  		if(bany(&bit) && !r->f.refset) {
   311  			// should never happen - all variables are preset
   312  			if(debug['w'])
   313  				print("%L: used and not set: %Q\n", r->f.prog->lineno, bit);
   314  			r->f.refset = 1;
   315  		}
   316  	}
   317  	for(r = firstr; r != R; r = (Reg*)r->f.link)
   318  		r->act = zbits;
   319  	rgp = region;
   320  	nregion = 0;
   321  	for(r = firstr; r != R; r = (Reg*)r->f.link) {
   322  		for(z=0; z<BITS; z++)
   323  			bit.b[z] = r->set.b[z] &
   324  			  ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]);
   325  		if(bany(&bit) && !r->f.refset) {
   326  			if(debug['w'])
   327  				print("%L: set and not used: %Q\n", r->f.prog->lineno, bit);
   328  			r->f.refset = 1;
   329  			excise(&r->f);
   330  		}
   331  		for(z=0; z<BITS; z++)
   332  			bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]);
   333  		while(bany(&bit)) {
   334  			i = bnum(bit);
   335  			rgp->enter = r;
   336  			rgp->varno = i;
   337  			change = 0;
   338  			paint1(r, i);
   339  			biclr(&bit, i);
   340  			if(change <= 0)
   341  				continue;
   342  			rgp->cost = change;
   343  			nregion++;
   344  			if(nregion >= NRGN) {
   345  				if(debug['R'] && debug['v'])
   346  					print("too many regions\n");
   347  				goto brk;
   348  			}
   349  			rgp++;
   350  		}
   351  	}
   352  brk:
   353  	qsort(region, nregion, sizeof(region[0]), rcmp);
   354  
   355  	/*
   356  	 * pass 6
   357  	 * determine used registers (paint2)
   358  	 * replace code (paint3)
   359  	 */
   360  	rgp = region;
   361  	if(debug['R'] && debug['v'])
   362  		print("\nregisterizing\n");
   363  	for(i=0; i<nregion; i++) {
   364  		if(debug['R'] && debug['v'])
   365  			print("region %d: cost %d varno %d enter %lld\n", i, rgp->cost, rgp->varno, rgp->enter->f.prog->pc);
   366  		bit = blsh(rgp->varno);
   367  		vreg = paint2(rgp->enter, rgp->varno, 0);
   368  		vreg = allreg(vreg, rgp);
   369  		if(rgp->regno != 0)
   370  			paint3(rgp->enter, rgp->varno, vreg, rgp->regno);
   371  		rgp++;
   372  	}
   373  
   374  	/*
   375  	 * free aux structures. peep allocates new ones.
   376  	 */
   377  	for(i=0; i<nvar; i++)
   378  		var[i].node->opt = nil;
   379  	flowend(g);
   380  	firstr = R;
   381  
   382  	if(debug['R'] && debug['v']) {
   383  		// Rebuild flow graph, since we inserted instructions
   384  		g = flowstart(firstp, sizeof(Reg));
   385  		firstr = (Reg*)g->start;
   386  		dumpit("pass6", &firstr->f, 1);
   387  		flowend(g);
   388  		firstr = R;
   389  	}
   390  
   391  	/*
   392  	 * pass 7
   393  	 * peep-hole on basic block
   394  	 */
   395  	if(!debug['R'] || debug['P'])
   396  		peep(firstp);
   397  
   398  	/*
   399  	 * eliminate nops
   400  	 */
   401  	for(p=firstp; p!=P; p=p->link) {
   402  		while(p->link != P && p->link->as == ANOP)
   403  			p->link = p->link->link;
   404  		if(p->to.type == D_BRANCH)
   405  			while(p->to.u.branch != P && p->to.u.branch->as == ANOP)
   406  				p->to.u.branch = p->to.u.branch->link;
   407  	}
   408  
   409  	if(!use_sse)
   410  	for(p=firstp; p!=P; p=p->link) {
   411  		if(p->from.type >= D_X0 && p->from.type <= D_X7)
   412  			fatal("invalid use of %R with GO386=387: %P", p->from.type, p);
   413  		if(p->to.type >= D_X0 && p->to.type <= D_X7)
   414  			fatal("invalid use of %R with GO386=387: %P", p->to.type, p);
   415  	}
   416  
   417  	if(debug['R']) {
   418  		if(ostats.ncvtreg ||
   419  		   ostats.nspill ||
   420  		   ostats.nreload ||
   421  		   ostats.ndelmov ||
   422  		   ostats.nvar ||
   423  		   ostats.naddr ||
   424  		   0)
   425  			print("\nstats\n");
   426  
   427  		if(ostats.ncvtreg)
   428  			print("	%4d cvtreg\n", ostats.ncvtreg);
   429  		if(ostats.nspill)
   430  			print("	%4d spill\n", ostats.nspill);
   431  		if(ostats.nreload)
   432  			print("	%4d reload\n", ostats.nreload);
   433  		if(ostats.ndelmov)
   434  			print("	%4d delmov\n", ostats.ndelmov);
   435  		if(ostats.nvar)
   436  			print("	%4d var\n", ostats.nvar);
   437  		if(ostats.naddr)
   438  			print("	%4d addr\n", ostats.naddr);
   439  
   440  		memset(&ostats, 0, sizeof(ostats));
   441  	}
   442  }
   443  
   444  static void
   445  walkvardef(Node *n, Reg *r, int active)
   446  {
   447  	Reg *r1, *r2;
   448  	int bn;
   449  	Var *v;
   450  	
   451  	for(r1=r; r1!=R; r1=(Reg*)r1->f.s1) {
   452  		if(r1->f.active == active)
   453  			break;
   454  		r1->f.active = active;
   455  		if(r1->f.prog->as == AVARKILL && r1->f.prog->to.node == n)
   456  			break;
   457  		for(v=n->opt; v!=nil; v=v->nextinnode) {
   458  			bn = v - var;
   459  			biset(&r1->act, bn);
   460  		}
   461  		if(r1->f.prog->as == ACALL)
   462  			break;
   463  	}
   464  
   465  	for(r2=r; r2!=r1; r2=(Reg*)r2->f.s1)
   466  		if(r2->f.s2 != nil)
   467  			walkvardef(n, (Reg*)r2->f.s2, active);
   468  }
   469  
   470  /*
   471   * add mov b,rn
   472   * just after r
   473   */
   474  void
   475  addmove(Reg *r, int bn, int rn, int f)
   476  {
   477  	Prog *p, *p1;
   478  	Adr *a;
   479  	Var *v;
   480  
   481  	p1 = mal(sizeof(*p1));
   482  	clearp(p1);
   483  	p1->pc = 9999;
   484  
   485  	p = r->f.prog;
   486  	p1->link = p->link;
   487  	p->link = p1;
   488  	p1->lineno = p->lineno;
   489  
   490  	v = var + bn;
   491  
   492  	a = &p1->to;
   493  	a->offset = v->offset;
   494  	a->etype = v->etype;
   495  	a->type = v->name;
   496  	a->node = v->node;
   497  	a->sym = linksym(v->node->sym);
   498  
   499  	// need to clean this up with wptr and
   500  	// some of the defaults
   501  	p1->as = AMOVL;
   502  	switch(v->etype) {
   503  	default:
   504  		fatal("unknown type %E", v->etype);
   505  	case TINT8:
   506  	case TUINT8:
   507  	case TBOOL:
   508  		p1->as = AMOVB;
   509  		break;
   510  	case TINT16:
   511  	case TUINT16:
   512  		p1->as = AMOVW;
   513  		break;
   514  	case TFLOAT32:
   515  		p1->as = AMOVSS;
   516  		break;
   517  	case TFLOAT64:
   518  		p1->as = AMOVSD;
   519  		break;
   520  	case TINT:
   521  	case TUINT:
   522  	case TINT32:
   523  	case TUINT32:
   524  	case TPTR32:
   525  		break;
   526  	}
   527  
   528  	p1->from.type = rn;
   529  	if(!f) {
   530  		p1->from = *a;
   531  		*a = zprog.from;
   532  		a->type = rn;
   533  		if(v->etype == TUINT8)
   534  			p1->as = AMOVB;
   535  		if(v->etype == TUINT16)
   536  			p1->as = AMOVW;
   537  	}
   538  	if(debug['R'] && debug['v'])
   539  		print("%P ===add=== %P\n", p, p1);
   540  	ostats.nspill++;
   541  }
   542  
   543  uint32
   544  doregbits(int r)
   545  {
   546  	uint32 b;
   547  
   548  	b = 0;
   549  	if(r >= D_INDIR)
   550  		r -= D_INDIR;
   551  	if(r >= D_AX && r <= D_DI)
   552  		b |= RtoB(r);
   553  	else
   554  	if(r >= D_AL && r <= D_BL)
   555  		b |= RtoB(r-D_AL+D_AX);
   556  	else
   557  	if(r >= D_AH && r <= D_BH)
   558  		b |= RtoB(r-D_AH+D_AX);
   559  	else
   560  	if(r >= D_X0 && r <= D_X0+7)
   561  		b |= FtoB(r);
   562  	return b;
   563  }
   564  
   565  static int
   566  overlap(int32 o1, int w1, int32 o2, int w2)
   567  {
   568  	int32 t1, t2;
   569  
   570  	t1 = o1+w1;
   571  	t2 = o2+w2;
   572  
   573  	if(!(t1 > o2 && t2 > o1))
   574  		return 0;
   575  
   576  	return 1;
   577  }
   578  
   579  Bits
   580  mkvar(Reg *r, Adr *a)
   581  {
   582  	Var *v;
   583  	int i, t, n, et, z, w, flag, regu;
   584  	int32 o;
   585  	Bits bit;
   586  	Node *node;
   587  
   588  	/*
   589  	 * mark registers used
   590  	 */
   591  	t = a->type;
   592  	if(t == D_NONE)
   593  		goto none;
   594  
   595  	if(r != R)
   596  		r->use1.b[0] |= doregbits(a->index);
   597  
   598  	switch(t) {
   599  	default:
   600  		regu = doregbits(t);
   601  		if(regu == 0)
   602  			goto none;
   603  		bit = zbits;
   604  		bit.b[0] = regu;
   605  		return bit;
   606  
   607  	case D_ADDR:
   608  		a->type = a->index;
   609  		bit = mkvar(r, a);
   610  		setaddrs(bit);
   611  		a->type = t;
   612  		ostats.naddr++;
   613  		goto none;
   614  
   615  	case D_EXTERN:
   616  	case D_STATIC:
   617  	case D_PARAM:
   618  	case D_AUTO:
   619  		n = t;
   620  		break;
   621  	}
   622  
   623  	node = a->node;
   624  	if(node == N || node->op != ONAME || node->orig == N)
   625  		goto none;
   626  	node = node->orig;
   627  	if(node->orig != node)
   628  		fatal("%D: bad node", a);
   629  	if(node->sym == S || node->sym->name[0] == '.')
   630  		goto none;
   631  	et = a->etype;
   632  	o = a->offset;
   633  	w = a->width;
   634  	if(w < 0)
   635  		fatal("bad width %d for %D", w, a);
   636  
   637  	flag = 0;
   638  	for(i=0; i<nvar; i++) {
   639  		v = var+i;
   640  		if(v->node == node && v->name == n) {
   641  			if(v->offset == o)
   642  			if(v->etype == et)
   643  			if(v->width == w)
   644  				return blsh(i);
   645  
   646  			// if they overlap, disable both
   647  			if(overlap(v->offset, v->width, o, w)) {
   648  				if(debug['R'])
   649  					print("disable %s\n", node->sym->name);
   650  				v->addr = 1;
   651  				flag = 1;
   652  			}
   653  		}
   654  	}
   655  
   656  	switch(et) {
   657  	case 0:
   658  	case TFUNC:
   659  		goto none;
   660  	}
   661  
   662  	if(nvar >= NVAR) {
   663  		if(debug['w'] > 1 && node != N)
   664  			fatal("variable not optimized: %D", a);
   665  		
   666  		// If we're not tracking a word in a variable, mark the rest as
   667  		// having its address taken, so that we keep the whole thing
   668  		// live at all calls. otherwise we might optimize away part of
   669  		// a variable but not all of it.
   670  		for(i=0; i<nvar; i++) {
   671  			v = var+i;
   672  			if(v->node == node)
   673  				v->addr = 1;
   674  		}
   675  		goto none;
   676  	}
   677  
   678  	i = nvar;
   679  	nvar++;
   680  	v = var+i;
   681  	v->offset = o;
   682  	v->name = n;
   683  	v->etype = et;
   684  	v->width = w;
   685  	v->addr = flag;		// funny punning
   686  	v->node = node;
   687  	
   688  	// node->opt is the head of a linked list
   689  	// of Vars within the given Node, so that
   690  	// we can start at a Var and find all the other
   691  	// Vars in the same Go variable.
   692  	v->nextinnode = node->opt;
   693  	node->opt = v;
   694  
   695  	bit = blsh(i);
   696  	if(n == D_EXTERN || n == D_STATIC)
   697  		for(z=0; z<BITS; z++)
   698  			externs.b[z] |= bit.b[z];
   699  	if(n == D_PARAM)
   700  		for(z=0; z<BITS; z++)
   701  			params.b[z] |= bit.b[z];
   702  		
   703  	if(node->class == PPARAM)
   704  		for(z=0; z<BITS; z++)
   705  			ivar.b[z] |= bit.b[z];
   706  	if(node->class == PPARAMOUT)
   707  		for(z=0; z<BITS; z++)
   708  			ovar.b[z] |= bit.b[z];
   709  
   710  	// Treat values with their address taken as live at calls,
   711  	// because the garbage collector's liveness analysis in ../gc/plive.c does.
   712  	// These must be consistent or else we will elide stores and the garbage
   713  	// collector will see uninitialized data.
   714  	// The typical case where our own analysis is out of sync is when the
   715  	// node appears to have its address taken but that code doesn't actually
   716  	// get generated and therefore doesn't show up as an address being
   717  	// taken when we analyze the instruction stream.
   718  	// One instance of this case is when a closure uses the same name as
   719  	// an outer variable for one of its own variables declared with :=.
   720  	// The parser flags the outer variable as possibly shared, and therefore
   721  	// sets addrtaken, even though it ends up not being actually shared.
   722  	// If we were better about _ elision, _ = &x would suffice too.
   723  	// The broader := in a closure problem is mentioned in a comment in
   724  	// closure.c:/^typecheckclosure and dcl.c:/^oldname.
   725  	if(node->addrtaken)
   726  		v->addr = 1;
   727  
   728  	// Disable registerization for globals, because:
   729  	// (1) we might panic at any time and we want the recovery code
   730  	// to see the latest values (issue 1304).
   731  	// (2) we don't know what pointers might point at them and we want
   732  	// loads via those pointers to see updated values and vice versa (issue 7995).
   733  	//
   734  	// Disable registerization for results if using defer, because the deferred func
   735  	// might recover and return, causing the current values to be used.
   736  	if(node->class == PEXTERN || (hasdefer && node->class == PPARAMOUT))
   737  		v->addr = 1;
   738  
   739  	if(debug['R'])
   740  		print("bit=%2d et=%2E w=%d+%d %#N %D flag=%d\n", i, et, o, w, node, a, v->addr);
   741  	ostats.nvar++;
   742  
   743  	return bit;
   744  
   745  none:
   746  	return zbits;
   747  }
   748  
   749  void
   750  prop(Reg *r, Bits ref, Bits cal)
   751  {
   752  	Reg *r1, *r2;
   753  	int z, i, j;
   754  	Var *v, *v1;
   755  
   756  	for(r1 = r; r1 != R; r1 = (Reg*)r1->f.p1) {
   757  		for(z=0; z<BITS; z++) {
   758  			ref.b[z] |= r1->refahead.b[z];
   759  			if(ref.b[z] != r1->refahead.b[z]) {
   760  				r1->refahead.b[z] = ref.b[z];
   761  				change++;
   762  			}
   763  			cal.b[z] |= r1->calahead.b[z];
   764  			if(cal.b[z] != r1->calahead.b[z]) {
   765  				r1->calahead.b[z] = cal.b[z];
   766  				change++;
   767  			}
   768  		}
   769  		switch(r1->f.prog->as) {
   770  		case ACALL:
   771  			if(noreturn(r1->f.prog))
   772  				break;
   773  
   774  			// Mark all input variables (ivar) as used, because that's what the
   775  			// liveness bitmaps say. The liveness bitmaps say that so that a
   776  			// panic will not show stale values in the parameter dump.
   777  			// Mark variables with a recent VARDEF (r1->act) as used,
   778  			// so that the optimizer flushes initializations to memory,
   779  			// so that if a garbage collection happens during this CALL,
   780  			// the collector will see initialized memory. Again this is to
   781  			// match what the liveness bitmaps say.
   782  			for(z=0; z<BITS; z++) {
   783  				cal.b[z] |= ref.b[z] | externs.b[z] | ivar.b[z] | r1->act.b[z];
   784  				ref.b[z] = 0;
   785  			}
   786  			
   787  			// cal.b is the current approximation of what's live across the call.
   788  			// Every bit in cal.b is a single stack word. For each such word,
   789  			// find all the other tracked stack words in the same Go variable
   790  			// (struct/slice/string/interface) and mark them live too.
   791  			// This is necessary because the liveness analysis for the garbage
   792  			// collector works at variable granularity, not at word granularity.
   793  			// It is fundamental for slice/string/interface: the garbage collector
   794  			// needs the whole value, not just some of the words, in order to
   795  			// interpret the other bits correctly. Specifically, slice needs a consistent
   796  			// ptr and cap, string needs a consistent ptr and len, and interface
   797  			// needs a consistent type word and data word.
   798  			for(z=0; z<BITS; z++) {
   799  				if(cal.b[z] == 0)
   800  					continue;
   801  				for(i=0; i<64; i++) {
   802  					if(z*64+i >= nvar || ((cal.b[z]>>i)&1) == 0)
   803  						continue;
   804  					v = var+z*64+i;
   805  					if(v->node->opt == nil) // v represents fixed register, not Go variable
   806  						continue;
   807  
   808  					// v->node->opt is the head of a linked list of Vars
   809  					// corresponding to tracked words from the Go variable v->node.
   810  					// Walk the list and set all the bits.
   811  					// For a large struct this could end up being quadratic:
   812  					// after the first setting, the outer loop (for z, i) would see a 1 bit
   813  					// for all of the remaining words in the struct, and for each such
   814  					// word would go through and turn on all the bits again.
   815  					// To avoid the quadratic behavior, we only turn on the bits if
   816  					// v is the head of the list or if the head's bit is not yet turned on.
   817  					// This will set the bits at most twice, keeping the overall loop linear.
   818  					v1 = v->node->opt;
   819  					j = v1 - var;
   820  					if(v == v1 || !btest(&cal, j)) {
   821  						for(; v1 != nil; v1 = v1->nextinnode) {
   822  							j = v1 - var;
   823  							biset(&cal, j);
   824  						}
   825  					}
   826  				}
   827  			}
   828  			break;
   829  
   830  		case ATEXT:
   831  			for(z=0; z<BITS; z++) {
   832  				cal.b[z] = 0;
   833  				ref.b[z] = 0;
   834  			}
   835  			break;
   836  
   837  		case ARET:
   838  			for(z=0; z<BITS; z++) {
   839  				cal.b[z] = externs.b[z] | ovar.b[z];
   840  				ref.b[z] = 0;
   841  			}
   842  			break;
   843  		}
   844  		for(z=0; z<BITS; z++) {
   845  			ref.b[z] = (ref.b[z] & ~r1->set.b[z]) |
   846  				r1->use1.b[z] | r1->use2.b[z];
   847  			cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]);
   848  			r1->refbehind.b[z] = ref.b[z];
   849  			r1->calbehind.b[z] = cal.b[z];
   850  		}
   851  		if(r1->f.active)
   852  			break;
   853  		r1->f.active = 1;
   854  	}
   855  	for(; r != r1; r = (Reg*)r->f.p1)
   856  		for(r2 = (Reg*)r->f.p2; r2 != R; r2 = (Reg*)r2->f.p2link)
   857  			prop(r2, r->refbehind, r->calbehind);
   858  }
   859  
   860  void
   861  synch(Reg *r, Bits dif)
   862  {
   863  	Reg *r1;
   864  	int z;
   865  
   866  	for(r1 = r; r1 != R; r1 = (Reg*)r1->f.s1) {
   867  		for(z=0; z<BITS; z++) {
   868  			dif.b[z] = (dif.b[z] &
   869  				~(~r1->refbehind.b[z] & r1->refahead.b[z])) |
   870  					r1->set.b[z] | r1->regdiff.b[z];
   871  			if(dif.b[z] != r1->regdiff.b[z]) {
   872  				r1->regdiff.b[z] = dif.b[z];
   873  				change++;
   874  			}
   875  		}
   876  		if(r1->f.active)
   877  			break;
   878  		r1->f.active = 1;
   879  		for(z=0; z<BITS; z++)
   880  			dif.b[z] &= ~(~r1->calbehind.b[z] & r1->calahead.b[z]);
   881  		if((Reg*)r1->f.s2 != R)
   882  			synch((Reg*)r1->f.s2, dif);
   883  	}
   884  }
   885  
   886  uint32
   887  allreg(uint32 b, Rgn *r)
   888  {
   889  	Var *v;
   890  	int i;
   891  
   892  	v = var + r->varno;
   893  	r->regno = 0;
   894  	switch(v->etype) {
   895  
   896  	default:
   897  		fatal("unknown etype %d/%E", bitno(b), v->etype);
   898  		break;
   899  
   900  	case TINT8:
   901  	case TUINT8:
   902  	case TINT16:
   903  	case TUINT16:
   904  	case TINT32:
   905  	case TUINT32:
   906  	case TINT64:
   907  	case TINT:
   908  	case TUINT:
   909  	case TUINTPTR:
   910  	case TBOOL:
   911  	case TPTR32:
   912  		i = BtoR(~b);
   913  		if(i && r->cost > 0) {
   914  			r->regno = i;
   915  			return RtoB(i);
   916  		}
   917  		break;
   918  
   919  	case TFLOAT32:
   920  	case TFLOAT64:
   921  		if(!use_sse)
   922  			break;
   923  		i = BtoF(~b);
   924  		if(i && r->cost > 0) {
   925  			r->regno = i;
   926  			return FtoB(i);
   927  		}
   928  		break;
   929  	}
   930  	return 0;
   931  }
   932  
   933  void
   934  paint1(Reg *r, int bn)
   935  {
   936  	Reg *r1;
   937  	Prog *p;
   938  	int z;
   939  	uint64 bb, rbz;
   940  
   941  	z = bn/64;
   942  	bb = 1LL<<(bn%64);
   943  	if(r->act.b[z] & bb)
   944  		return;
   945  	for(;;) {
   946  		if(!(r->refbehind.b[z] & bb))
   947  			break;
   948  		r1 = (Reg*)r->f.p1;
   949  		if(r1 == R)
   950  			break;
   951  		if(!(r1->refahead.b[z] & bb))
   952  			break;
   953  		if(r1->act.b[z] & bb)
   954  			break;
   955  		r = r1;
   956  	}
   957  
   958  	rbz = ~(r->set.b[z]&~(r->use1.b[z]|r->use2.b[z]));
   959  	if(LOAD(r) & rbz & bb) {
   960  		change -= CLOAD * r->f.loop;
   961  	}
   962  	for(;;) {
   963  		r->act.b[z] |= bb;
   964  		p = r->f.prog;
   965  
   966  		if(r->f.prog->as != ANOP) { // don't give credit for NOPs
   967  			if(r->use1.b[z] & bb) {
   968  				change += CREF * r->f.loop;
   969  				if(p->as == AFMOVL || p->as == AFMOVW)
   970  					if(BtoR(bb) != D_F0)
   971  						change = -CINF;
   972  			}
   973  			if((r->use2.b[z]|r->set.b[z]) & bb) {
   974  				change += CREF * r->f.loop;
   975  				if(p->as == AFMOVL || p->as == AFMOVW)
   976  					if(BtoR(bb) != D_F0)
   977  						change = -CINF;
   978  			}
   979  		}
   980  
   981  		if(STORE(r) & r->regdiff.b[z] & bb) {
   982  			change -= CLOAD * r->f.loop;
   983  			if(p->as == AFMOVL || p->as == AFMOVW)
   984  				if(BtoR(bb) != D_F0)
   985  					change = -CINF;
   986  		}
   987  
   988  		if(r->refbehind.b[z] & bb)
   989  			for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
   990  				if(r1->refahead.b[z] & bb)
   991  					paint1(r1, bn);
   992  
   993  		if(!(r->refahead.b[z] & bb))
   994  			break;
   995  		r1 = (Reg*)r->f.s2;
   996  		if(r1 != R)
   997  			if(r1->refbehind.b[z] & bb)
   998  				paint1(r1, bn);
   999  		r = (Reg*)r->f.s1;
  1000  		if(r == R)
  1001  			break;
  1002  		if(r->act.b[z] & bb)
  1003  			break;
  1004  		if(!(r->refbehind.b[z] & bb))
  1005  			break;
  1006  	}
  1007  }
  1008  
  1009  uint32
  1010  paint2(Reg *r, int bn, int depth)
  1011  {
  1012  	Reg *r1;
  1013  	int z;
  1014  	uint64 bb, vreg;
  1015  
  1016  	z = bn/64;
  1017  	bb = 1LL << (bn%64);
  1018  	vreg = regbits;
  1019  	if(!(r->act.b[z] & bb))
  1020  		return vreg;
  1021  	for(;;) {
  1022  		if(!(r->refbehind.b[z] & bb))
  1023  			break;
  1024  		r1 = (Reg*)r->f.p1;
  1025  		if(r1 == R)
  1026  			break;
  1027  		if(!(r1->refahead.b[z] & bb))
  1028  			break;
  1029  		if(!(r1->act.b[z] & bb))
  1030  			break;
  1031  		r = r1;
  1032  	}
  1033  	for(;;) {
  1034  		if(debug['R'] && debug['v'])
  1035  			print("  paint2 %d %P\n", depth, r->f.prog);
  1036  
  1037  		r->act.b[z] &= ~bb;
  1038  
  1039  		vreg |= r->regu;
  1040  
  1041  		if(r->refbehind.b[z] & bb)
  1042  			for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
  1043  				if(r1->refahead.b[z] & bb)
  1044  					vreg |= paint2(r1, bn, depth+1);
  1045  
  1046  		if(!(r->refahead.b[z] & bb))
  1047  			break;
  1048  		r1 = (Reg*)r->f.s2;
  1049  		if(r1 != R)
  1050  			if(r1->refbehind.b[z] & bb)
  1051  				vreg |= paint2(r1, bn, depth+1);
  1052  		r = (Reg*)r->f.s1;
  1053  		if(r == R)
  1054  			break;
  1055  		if(!(r->act.b[z] & bb))
  1056  			break;
  1057  		if(!(r->refbehind.b[z] & bb))
  1058  			break;
  1059  	}
  1060  
  1061  	return vreg;
  1062  }
  1063  
  1064  void
  1065  paint3(Reg *r, int bn, uint32 rb, int rn)
  1066  {
  1067  	Reg *r1;
  1068  	Prog *p;
  1069  	int z;
  1070  	uint64 bb, rbz;
  1071  
  1072  	z = bn/64;
  1073  	bb = 1LL << (bn%64);
  1074  	if(r->act.b[z] & bb)
  1075  		return;
  1076  	for(;;) {
  1077  		if(!(r->refbehind.b[z] & bb))
  1078  			break;
  1079  		r1 = (Reg*)r->f.p1;
  1080  		if(r1 == R)
  1081  			break;
  1082  		if(!(r1->refahead.b[z] & bb))
  1083  			break;
  1084  		if(r1->act.b[z] & bb)
  1085  			break;
  1086  		r = r1;
  1087  	}
  1088  
  1089  	rbz = ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z]));
  1090  	if(LOAD(r) & rbz & bb)
  1091  		addmove(r, bn, rn, 0);
  1092  	for(;;) {
  1093  		r->act.b[z] |= bb;
  1094  		p = r->f.prog;
  1095  
  1096  		if(r->use1.b[z] & bb) {
  1097  			if(debug['R'] && debug['v'])
  1098  				print("%P", p);
  1099  			addreg(&p->from, rn);
  1100  			if(debug['R'] && debug['v'])
  1101  				print(" ===change== %P\n", p);
  1102  		}
  1103  		if((r->use2.b[z]|r->set.b[z]) & bb) {
  1104  			if(debug['R'] && debug['v'])
  1105  				print("%P", p);
  1106  			addreg(&p->to, rn);
  1107  			if(debug['R'] && debug['v'])
  1108  				print(" ===change== %P\n", p);
  1109  		}
  1110  
  1111  		if(STORE(r) & r->regdiff.b[z] & bb)
  1112  			addmove(r, bn, rn, 1);
  1113  		r->regu |= rb;
  1114  
  1115  		if(r->refbehind.b[z] & bb)
  1116  			for(r1 = (Reg*)r->f.p2; r1 != R; r1 = (Reg*)r1->f.p2link)
  1117  				if(r1->refahead.b[z] & bb)
  1118  					paint3(r1, bn, rb, rn);
  1119  
  1120  		if(!(r->refahead.b[z] & bb))
  1121  			break;
  1122  		r1 = (Reg*)r->f.s2;
  1123  		if(r1 != R)
  1124  			if(r1->refbehind.b[z] & bb)
  1125  				paint3(r1, bn, rb, rn);
  1126  		r = (Reg*)r->f.s1;
  1127  		if(r == R)
  1128  			break;
  1129  		if(r->act.b[z] & bb)
  1130  			break;
  1131  		if(!(r->refbehind.b[z] & bb))
  1132  			break;
  1133  	}
  1134  }
  1135  
  1136  void
  1137  addreg(Adr *a, int rn)
  1138  {
  1139  	a->sym = nil;
  1140  	a->node = nil;
  1141  	a->offset = 0;
  1142  	a->type = rn;
  1143  
  1144  	ostats.ncvtreg++;
  1145  }
  1146  
  1147  uint32
  1148  RtoB(int r)
  1149  {
  1150  
  1151  	if(r < D_AX || r > D_DI)
  1152  		return 0;
  1153  	return 1L << (r-D_AX);
  1154  }
  1155  
  1156  int
  1157  BtoR(uint32 b)
  1158  {
  1159  
  1160  	b &= 0xffL;
  1161  	if(b == 0)
  1162  		return 0;
  1163  	return bitno(b) + D_AX;
  1164  }
  1165  
  1166  uint32
  1167  FtoB(int f)
  1168  {
  1169  	if(f < D_X0 || f > D_X7)
  1170  		return 0;
  1171  	return 1L << (f - D_X0 + 8);
  1172  }
  1173  
  1174  int
  1175  BtoF(uint32 b)
  1176  {
  1177  	b &= 0xFF00L;
  1178  	if(b == 0)
  1179  		return 0;
  1180  	return bitno(b) - 8 + D_X0;
  1181  }
  1182  
  1183  void
  1184  dumpone(Flow *f, int isreg)
  1185  {
  1186  	int z;
  1187  	Bits bit;
  1188  	Reg *r;
  1189  
  1190  	print("%d:%P", f->loop, f->prog);
  1191  	if(isreg) {
  1192  		r = (Reg*)f;
  1193  		for(z=0; z<BITS; z++)
  1194  			bit.b[z] =
  1195  				r->set.b[z] |
  1196  				r->use1.b[z] |
  1197  				r->use2.b[z] |
  1198  				r->refbehind.b[z] |
  1199  				r->refahead.b[z] |
  1200  				r->calbehind.b[z] |
  1201  				r->calahead.b[z] |
  1202  				r->regdiff.b[z] |
  1203  				r->act.b[z] |
  1204  					0;
  1205  		if(bany(&bit)) {
  1206  			print("\t");
  1207  			if(bany(&r->set))
  1208  				print(" s:%Q", r->set);
  1209  			if(bany(&r->use1))
  1210  				print(" u1:%Q", r->use1);
  1211  			if(bany(&r->use2))
  1212  				print(" u2:%Q", r->use2);
  1213  			if(bany(&r->refbehind))
  1214  				print(" rb:%Q ", r->refbehind);
  1215  			if(bany(&r->refahead))
  1216  				print(" ra:%Q ", r->refahead);
  1217  			if(bany(&r->calbehind))
  1218  				print(" cb:%Q ", r->calbehind);
  1219  			if(bany(&r->calahead))
  1220  				print(" ca:%Q ", r->calahead);
  1221  			if(bany(&r->regdiff))
  1222  				print(" d:%Q ", r->regdiff);
  1223  			if(bany(&r->act))
  1224  				print(" a:%Q ", r->act);
  1225  		}
  1226  	}
  1227  	print("\n");
  1228  }
  1229  
  1230  void
  1231  dumpit(char *str, Flow *r0, int isreg)
  1232  {
  1233  	Flow *r, *r1;
  1234  
  1235  	print("\n%s\n", str);
  1236  	for(r = r0; r != nil; r = r->link) {
  1237  		dumpone(r, isreg);
  1238  		r1 = r->p2;
  1239  		if(r1 != nil) {
  1240  			print("	pred:");
  1241  			for(; r1 != nil; r1 = r1->p2link)
  1242  				print(" %.4ud", (int)r1->prog->pc);
  1243  			print("\n");
  1244  		}
  1245  		// Print successors if it's not just the next one
  1246  		if(r->s1 != r->link || r->s2 != nil) {
  1247  			print("	succ:");
  1248  			if(r->s1 != nil)
  1249  				print(" %.4ud", (int)r->s1->prog->pc);
  1250  			if(r->s2 != nil)
  1251  				print(" %.4ud", (int)r->s2->prog->pc);
  1252  			print("\n");
  1253  		}
  1254  	}
  1255  }