github.com/remobjects/goldbaselibrary@v0.0.0-20230924164425-d458680a936b/Source/Gold/printer/nodes.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements printing of AST nodes; specifically 6 // expressions, statements, declarations, and files. It uses 7 // the print functionality implemented in printer.go. 8 9 package printer 10 11 import ( 12 "bytes" 13 "go/ast" 14 "go/token" 15 "math" 16 "strconv" 17 "strings" 18 "unicode" 19 "unicode/utf8" 20 ) 21 22 // Formatting issues: 23 // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) 24 // when the comment spans multiple lines; if such a comment is just two lines, formatting is 25 // not idempotent 26 // - formatting of expression lists 27 // - should use blank instead of tab to separate one-line function bodies from 28 // the function header unless there is a group of consecutive one-liners 29 30 // ---------------------------------------------------------------------------- 31 // Common AST nodes. 32 33 // Print as many newlines as necessary (but at least min newlines) to get to 34 // the current line. ws is printed before the first line break. If newSection 35 // is set, the first line break is printed as formfeed. Returns 0 if no line 36 // breaks were printed, returns 1 if there was exactly one newline printed, 37 // and returns a value > 1 if there was a formfeed or more than one newline 38 // printed. 39 // 40 // TODO(gri): linebreak may add too many lines if the next statement at "line" 41 // is preceded by comments because the computation of n assumes 42 // the current position before the comment and the target position 43 // after the comment. Thus, after interspersing such comments, the 44 // space taken up by them is not considered to reduce the number of 45 // linebreaks. At the moment there is no easy way to know about 46 // future (not yet interspersed) comments in this function. 47 // 48 func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (nbreaks int) { 49 n := nlimit(line - p.pos.Line) 50 if n < min { 51 n = min 52 } 53 if n > 0 { 54 p.print(ws) 55 if newSection { 56 p.print(formfeed) 57 n-- 58 nbreaks = 2 59 } 60 nbreaks += n 61 for ; n > 0; n-- { 62 p.print(newline) 63 } 64 } 65 return 66 } 67 68 // setComment sets g as the next comment if g != nil and if node comments 69 // are enabled - this mode is used when printing source code fragments such 70 // as exports only. It assumes that there is no pending comment in p.comments 71 // and at most one pending comment in the p.comment cache. 72 func (p *printer) setComment(g *ast.CommentGroup) { 73 if g == nil || !p.useNodeComments { 74 return 75 } 76 if p.comments == nil { 77 // initialize p.comments lazily 78 p.comments = make([]*ast.CommentGroup, 1) 79 } else if p.cindex < len(p.comments) { 80 // for some reason there are pending comments; this 81 // should never happen - handle gracefully and flush 82 // all comments up to g, ignore anything after that 83 p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL) 84 p.comments = p.comments[0:1] 85 // in debug mode, report error 86 p.internalError("setComment found pending comments") 87 } 88 p.comments[0] = g 89 p.cindex = 0 90 // don't overwrite any pending comment in the p.comment cache 91 // (there may be a pending comment when a line comment is 92 // immediately followed by a lead comment with no other 93 // tokens between) 94 if p.commentOffset == infinity { 95 p.nextComment() // get comment ready for use 96 } 97 } 98 99 type exprListMode uint 100 101 const ( 102 commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma 103 noIndent // no extra indentation in multi-line lists 104 ) 105 106 // If indent is set, a multi-line identifier list is indented after the 107 // first linebreak encountered. 108 func (p *printer) identList(list []*ast.Ident, indent bool) { 109 // convert into an expression list so we can re-use exprList formatting 110 xlist := make([]ast.Expr, len(list)) 111 for i, x := range list { 112 xlist[i] = x 113 } 114 var mode exprListMode 115 if !indent { 116 mode = noIndent 117 } 118 p.exprList(token.NoPos, xlist, 1, mode, token.NoPos, false) 119 } 120 121 const filteredMsg = "contains filtered or unexported fields" 122 123 // Print a list of expressions. If the list spans multiple 124 // source lines, the original line breaks are respected between 125 // expressions. 126 // 127 // TODO(gri) Consider rewriting this to be independent of []ast.Expr 128 // so that we can use the algorithm for any kind of list 129 // (e.g., pass list via a channel over which to range). 130 func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos, isIncomplete bool) { 131 if len(list) == 0 { 132 if isIncomplete { 133 prev := p.posFor(prev0) 134 next := p.posFor(next0) 135 if prev.IsValid() && prev.Line == next.Line { 136 p.print("/* " + filteredMsg + " */") 137 } else { 138 p.print(newline) 139 p.print(indent, "// "+filteredMsg, unindent, newline) 140 } 141 } 142 return 143 } 144 145 prev := p.posFor(prev0) 146 next := p.posFor(next0) 147 line := p.lineFor(list[0].Pos()) 148 endLine := p.lineFor(list[len(list)-1].End()) 149 150 if prev.IsValid() && prev.Line == line && line == endLine { 151 // all list entries on a single line 152 for i, x := range list { 153 if i > 0 { 154 // use position of expression following the comma as 155 // comma position for correct comment placement 156 p.print(x.Pos(), token.COMMA, blank) 157 } 158 p.expr0(x, depth) 159 } 160 if isIncomplete { 161 p.print(token.COMMA, blank, "/* "+filteredMsg+" */") 162 } 163 return 164 } 165 166 // list entries span multiple lines; 167 // use source code positions to guide line breaks 168 169 // Don't add extra indentation if noIndent is set; 170 // i.e., pretend that the first line is already indented. 171 ws := ignore 172 if mode&noIndent == 0 { 173 ws = indent 174 } 175 176 // The first linebreak is always a formfeed since this section must not 177 // depend on any previous formatting. 178 prevBreak := -1 // index of last expression that was followed by a linebreak 179 if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) > 0 { 180 ws = ignore 181 prevBreak = 0 182 } 183 184 // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line 185 size := 0 186 187 // We use the ratio between the geometric mean of the previous key sizes and 188 // the current size to determine if there should be a break in the alignment. 189 // To compute the geometric mean we accumulate the ln(size) values (lnsum) 190 // and the number of sizes included (count). 191 lnsum := 0.0 192 count := 0 193 194 // print all list elements 195 prevLine := prev.Line 196 for i, x := range list { 197 line = p.lineFor(x.Pos()) 198 199 // Determine if the next linebreak, if any, needs to use formfeed: 200 // in general, use the entire node size to make the decision; for 201 // key:value expressions, use the key size. 202 // TODO(gri) for a better result, should probably incorporate both 203 // the key and the node size into the decision process 204 useFF := true 205 206 // Determine element size: All bets are off if we don't have 207 // position information for the previous and next token (likely 208 // generated code - simply ignore the size in this case by setting 209 // it to 0). 210 prevSize := size 211 const infinity = 1e6 // larger than any source line 212 size = p.nodeSize(x, infinity) 213 pair, isPair := x.(*ast.KeyValueExpr) 214 if size <= infinity && prev.IsValid() && next.IsValid() { 215 // x fits on a single line 216 if isPair { 217 size = p.nodeSize(pair.Key, infinity) // size <= infinity 218 } 219 } else { 220 // size too large or we don't have good layout information 221 size = 0 222 } 223 224 // If the previous line and the current line had single- 225 // line-expressions and the key sizes are small or the 226 // ratio between the current key and the geometric mean 227 // if the previous key sizes does not exceed a threshold, 228 // align columns and do not use formfeed. 229 if prevSize > 0 && size > 0 { 230 const smallSize = 40 231 if count == 0 || prevSize <= smallSize && size <= smallSize { 232 useFF = false 233 } else { 234 const r = 2.5 // threshold 235 geomean := math.Exp(lnsum / float64(count)) // count > 0 236 ratio := float64(size) / geomean 237 useFF = r*ratio <= 1 || r <= ratio 238 } 239 } 240 241 needsLinebreak := 0 < prevLine && prevLine < line 242 if i > 0 { 243 // Use position of expression following the comma as 244 // comma position for correct comment placement, but 245 // only if the expression is on the same line. 246 if !needsLinebreak { 247 p.print(x.Pos()) 248 } 249 p.print(token.COMMA) 250 needsBlank := true 251 if needsLinebreak { 252 // Lines are broken using newlines so comments remain aligned 253 // unless useFF is set or there are multiple expressions on 254 // the same line in which case formfeed is used. 255 nbreaks := p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) 256 if nbreaks > 0 { 257 ws = ignore 258 prevBreak = i 259 needsBlank = false // we got a line break instead 260 } 261 // If there was a new section or more than one new line 262 // (which means that the tabwriter will implicitly break 263 // the section), reset the geomean variables since we are 264 // starting a new group of elements with the next element. 265 if nbreaks > 1 { 266 lnsum = 0 267 count = 0 268 } 269 } 270 if needsBlank { 271 p.print(blank) 272 } 273 } 274 275 if len(list) > 1 && isPair && size > 0 && needsLinebreak { 276 // We have a key:value expression that fits onto one line 277 // and it's not on the same line as the prior expression: 278 // Use a column for the key such that consecutive entries 279 // can align if possible. 280 // (needsLinebreak is set if we started a new line before) 281 p.expr(pair.Key) 282 p.print(pair.Colon, token.COLON, vtab) 283 p.expr(pair.Value) 284 } else { 285 p.expr0(x, depth) 286 } 287 288 if size > 0 { 289 lnsum += math.Log(float64(size)) 290 count++ 291 } 292 293 prevLine = line 294 } 295 296 if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { 297 // Print a terminating comma if the next token is on a new line. 298 p.print(token.COMMA) 299 if isIncomplete { 300 p.print(newline) 301 p.print("// " + filteredMsg) 302 } 303 if ws == ignore && mode&noIndent == 0 { 304 // unindent if we indented 305 p.print(unindent) 306 } 307 p.print(formfeed) // terminating comma needs a line break to look good 308 return 309 } 310 311 if isIncomplete { 312 p.print(token.COMMA, newline) 313 p.print("// "+filteredMsg, newline) 314 } 315 316 if ws == ignore && mode&noIndent == 0 { 317 // unindent if we indented 318 p.print(unindent) 319 } 320 } 321 322 func (p *printer) parameters(fields *ast.FieldList) { 323 p.print(fields.Opening, token.LPAREN) 324 if len(fields.List) > 0 { 325 prevLine := p.lineFor(fields.Opening) 326 ws := indent 327 for i, par := range fields.List { 328 // determine par begin and end line (may be different 329 // if there are multiple parameter names for this par 330 // or the type is on a separate line) 331 var parLineBeg int 332 if len(par.Names) > 0 { 333 parLineBeg = p.lineFor(par.Names[0].Pos()) 334 } else { 335 parLineBeg = p.lineFor(par.Type.Pos()) 336 } 337 var parLineEnd = p.lineFor(par.Type.End()) 338 // separating "," if needed 339 needsLinebreak := 0 < prevLine && prevLine < parLineBeg 340 if i > 0 { 341 // use position of parameter following the comma as 342 // comma position for correct comma placement, but 343 // only if the next parameter is on the same line 344 if !needsLinebreak { 345 p.print(par.Pos()) 346 } 347 p.print(token.COMMA) 348 } 349 // separator if needed (linebreak or blank) 350 if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) > 0 { 351 // break line if the opening "(" or previous parameter ended on a different line 352 ws = ignore 353 } else if i > 0 { 354 p.print(blank) 355 } 356 // parameter names 357 if len(par.Names) > 0 { 358 // Very subtle: If we indented before (ws == ignore), identList 359 // won't indent again. If we didn't (ws == indent), identList will 360 // indent if the identList spans multiple lines, and it will outdent 361 // again at the end (and still ws == indent). Thus, a subsequent indent 362 // by a linebreak call after a type, or in the next multi-line identList 363 // will do the right thing. 364 p.identList(par.Names, ws == indent) 365 p.print(blank) 366 } 367 // parameter type 368 p.expr(stripParensAlways(par.Type)) 369 prevLine = parLineEnd 370 } 371 // if the closing ")" is on a separate line from the last parameter, 372 // print an additional "," and line break 373 if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing { 374 p.print(token.COMMA) 375 p.linebreak(closing, 0, ignore, true) 376 } 377 // unindent if we indented 378 if ws == ignore { 379 p.print(unindent) 380 } 381 } 382 p.print(fields.Closing, token.RPAREN) 383 } 384 385 func (p *printer) signature(params, result *ast.FieldList) { 386 if params != nil { 387 p.parameters(params) 388 } else { 389 p.print(token.LPAREN, token.RPAREN) 390 } 391 n := result.NumFields() 392 if n > 0 { 393 // result != nil 394 p.print(blank) 395 if n == 1 && result.List[0].Names == nil { 396 // single anonymous result; no ()'s 397 p.expr(stripParensAlways(result.List[0].Type)) 398 return 399 } 400 p.parameters(result) 401 } 402 } 403 404 func identListSize(list []*ast.Ident, maxSize int) (size int) { 405 for i, x := range list { 406 if i > 0 { 407 size += len(", ") 408 } 409 size += utf8.RuneCountInString(x.Name) 410 if size >= maxSize { 411 break 412 } 413 } 414 return 415 } 416 417 func (p *printer) isOneLineFieldList(list []*ast.Field) bool { 418 if len(list) != 1 { 419 return false // allow only one field 420 } 421 f := list[0] 422 if f.Tag != nil || f.Comment != nil { 423 return false // don't allow tags or comments 424 } 425 // only name(s) and type 426 const maxSize = 30 // adjust as appropriate, this is an approximate value 427 namesSize := identListSize(f.Names, maxSize) 428 if namesSize > 0 { 429 namesSize = 1 // blank between names and types 430 } 431 typeSize := p.nodeSize(f.Type, maxSize) 432 return namesSize+typeSize <= maxSize 433 } 434 435 func (p *printer) setLineComment(text string) { 436 p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}}) 437 } 438 439 func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) { 440 lbrace := fields.Opening 441 list := fields.List 442 rbrace := fields.Closing 443 hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace)) 444 srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace) 445 446 if !hasComments && srcIsOneLine { 447 // possibly a one-line struct/interface 448 if len(list) == 0 { 449 // no blank between keyword and {} in this case 450 p.print(lbrace, token.LBRACE, rbrace, token.RBRACE) 451 return 452 } else if p.isOneLineFieldList(list) { 453 // small enough - print on one line 454 // (don't use identList and ignore source line breaks) 455 p.print(lbrace, token.LBRACE, blank) 456 f := list[0] 457 if isStruct { 458 for i, x := range f.Names { 459 if i > 0 { 460 // no comments so no need for comma position 461 p.print(token.COMMA, blank) 462 } 463 p.expr(x) 464 } 465 if len(f.Names) > 0 { 466 p.print(blank) 467 } 468 p.expr(f.Type) 469 } else { // interface 470 if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { 471 // method 472 p.expr(f.Names[0]) 473 p.signature(ftyp.Params, ftyp.Results) 474 } else { 475 // embedded interface 476 p.expr(f.Type) 477 } 478 } 479 p.print(blank, rbrace, token.RBRACE) 480 return 481 } 482 } 483 // hasComments || !srcIsOneLine 484 485 p.print(blank, lbrace, token.LBRACE, indent) 486 if hasComments || len(list) > 0 { 487 p.print(formfeed) 488 } 489 490 if isStruct { 491 492 sep := vtab 493 if len(list) == 1 { 494 sep = blank 495 } 496 var line int 497 for i, f := range list { 498 if i > 0 { 499 p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0) 500 } 501 extraTabs := 0 502 p.setComment(f.Doc) 503 p.recordLine(&line) 504 if len(f.Names) > 0 { 505 // named fields 506 p.identList(f.Names, false) 507 p.print(sep) 508 p.expr(f.Type) 509 extraTabs = 1 510 } else { 511 // anonymous field 512 p.expr(f.Type) 513 extraTabs = 2 514 } 515 if f.Tag != nil { 516 if len(f.Names) > 0 && sep == vtab { 517 p.print(sep) 518 } 519 p.print(sep) 520 p.expr(f.Tag) 521 extraTabs = 0 522 } 523 if f.Comment != nil { 524 for ; extraTabs > 0; extraTabs-- { 525 p.print(sep) 526 } 527 p.setComment(f.Comment) 528 } 529 } 530 if isIncomplete { 531 if len(list) > 0 { 532 p.print(formfeed) 533 } 534 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 535 p.setLineComment("// " + filteredMsg) 536 } 537 538 } else { // interface 539 540 var line int 541 for i, f := range list { 542 if i > 0 { 543 p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0) 544 } 545 p.setComment(f.Doc) 546 p.recordLine(&line) 547 if ftyp, isFtyp := f.Type.(*ast.FuncType); isFtyp { 548 // method 549 p.expr(f.Names[0]) 550 p.signature(ftyp.Params, ftyp.Results) 551 } else { 552 // embedded interface 553 p.expr(f.Type) 554 } 555 p.setComment(f.Comment) 556 } 557 if isIncomplete { 558 if len(list) > 0 { 559 p.print(formfeed) 560 } 561 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 562 p.setLineComment("// contains filtered or unexported methods") 563 } 564 565 } 566 p.print(unindent, formfeed, rbrace, token.RBRACE) 567 } 568 569 // ---------------------------------------------------------------------------- 570 // Expressions 571 572 func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) { 573 switch e.Op.Precedence() { 574 case 4: 575 has4 = true 576 case 5: 577 has5 = true 578 } 579 580 switch l := e.X.(type) { 581 case *ast.BinaryExpr: 582 if l.Op.Precedence() < e.Op.Precedence() { 583 // parens will be inserted. 584 // pretend this is an *ast.ParenExpr and do nothing. 585 break 586 } 587 h4, h5, mp := walkBinary(l) 588 has4 = has4 || h4 589 has5 = has5 || h5 590 if maxProblem < mp { 591 maxProblem = mp 592 } 593 } 594 595 switch r := e.Y.(type) { 596 case *ast.BinaryExpr: 597 if r.Op.Precedence() <= e.Op.Precedence() { 598 // parens will be inserted. 599 // pretend this is an *ast.ParenExpr and do nothing. 600 break 601 } 602 h4, h5, mp := walkBinary(r) 603 has4 = has4 || h4 604 has5 = has5 || h5 605 if maxProblem < mp { 606 maxProblem = mp 607 } 608 609 case *ast.StarExpr: 610 if e.Op == token.QUO { // `*/` 611 maxProblem = 5 612 } 613 614 case *ast.UnaryExpr: 615 switch e.Op.String() + r.Op.String() { 616 case "/*", "&&", "&^": 617 maxProblem = 5 618 case "++", "--": 619 if maxProblem < 4 { 620 maxProblem = 4 621 } 622 } 623 } 624 return 625 } 626 627 func cutoff(e *ast.BinaryExpr, depth int) int { 628 has4, has5, maxProblem := walkBinary(e) 629 if maxProblem > 0 { 630 return maxProblem + 1 631 } 632 if has4 && has5 { 633 if depth == 1 { 634 return 5 635 } 636 return 4 637 } 638 if depth == 1 { 639 return 6 640 } 641 return 4 642 } 643 644 func diffPrec(expr ast.Expr, prec int) int { 645 x, ok := expr.(*ast.BinaryExpr) 646 if !ok || prec != x.Op.Precedence() { 647 return 1 648 } 649 return 0 650 } 651 652 func reduceDepth(depth int) int { 653 depth-- 654 if depth < 1 { 655 depth = 1 656 } 657 return depth 658 } 659 660 // Format the binary expression: decide the cutoff and then format. 661 // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. 662 // (Algorithm suggestion by Russ Cox.) 663 // 664 // The precedences are: 665 // 5 * / % << >> & &^ 666 // 4 + - | ^ 667 // 3 == != < <= > >= 668 // 2 && 669 // 1 || 670 // 671 // The only decision is whether there will be spaces around levels 4 and 5. 672 // There are never spaces at level 6 (unary), and always spaces at levels 3 and below. 673 // 674 // To choose the cutoff, look at the whole expression but excluding primary 675 // expressions (function calls, parenthesized exprs), and apply these rules: 676 // 677 // 1) If there is a binary operator with a right side unary operand 678 // that would clash without a space, the cutoff must be (in order): 679 // 680 // /* 6 681 // && 6 682 // &^ 6 683 // ++ 5 684 // -- 5 685 // 686 // (Comparison operators always have spaces around them.) 687 // 688 // 2) If there is a mix of level 5 and level 4 operators, then the cutoff 689 // is 5 (use spaces to distinguish precedence) in Normal mode 690 // and 4 (never use spaces) in Compact mode. 691 // 692 // 3) If there are no level 4 operators or no level 5 operators, then the 693 // cutoff is 6 (always use spaces) in Normal mode 694 // and 4 (never use spaces) in Compact mode. 695 // 696 func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) { 697 prec := x.Op.Precedence() 698 if prec < prec1 { 699 // parenthesis needed 700 // Note: The parser inserts an ast.ParenExpr node; thus this case 701 // can only occur if the AST is created in a different way. 702 p.print(token.LPAREN) 703 p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth 704 p.print(token.RPAREN) 705 return 706 } 707 708 printBlank := prec < cutoff 709 710 ws := indent 711 p.expr1(x.X, prec, depth+diffPrec(x.X, prec)) 712 if printBlank { 713 p.print(blank) 714 } 715 xline := p.pos.Line // before the operator (it may be on the next line!) 716 yline := p.lineFor(x.Y.Pos()) 717 p.print(x.OpPos, x.Op) 718 if xline != yline && xline > 0 && yline > 0 { 719 // at least one line break, but respect an extra empty line 720 // in the source 721 if p.linebreak(yline, 1, ws, true) > 0 { 722 ws = ignore 723 printBlank = false // no blank after line break 724 } 725 } 726 if printBlank { 727 p.print(blank) 728 } 729 p.expr1(x.Y, prec+1, depth+1) 730 if ws == ignore { 731 p.print(unindent) 732 } 733 } 734 735 func isBinary(expr ast.Expr) bool { 736 _, ok := expr.(*ast.BinaryExpr) 737 return ok 738 } 739 740 func (p *printer) expr1(expr ast.Expr, prec1, depth int) { 741 p.print(expr.Pos()) 742 743 switch x := expr.(type) { 744 case *ast.BadExpr: 745 p.print("BadExpr") 746 747 case *ast.Ident: 748 p.print(x) 749 750 case *ast.BinaryExpr: 751 if depth < 1 { 752 p.internalError("depth < 1:", depth) 753 depth = 1 754 } 755 p.binaryExpr(x, prec1, cutoff(x, depth), depth) 756 757 case *ast.KeyValueExpr: 758 p.expr(x.Key) 759 p.print(x.Colon, token.COLON, blank) 760 p.expr(x.Value) 761 762 case *ast.StarExpr: 763 const prec = token.UnaryPrec 764 if prec < prec1 { 765 // parenthesis needed 766 p.print(token.LPAREN) 767 p.print(token.MUL) 768 p.expr(x.X) 769 p.print(token.RPAREN) 770 } else { 771 // no parenthesis needed 772 p.print(token.MUL) 773 p.expr(x.X) 774 } 775 776 case *ast.UnaryExpr: 777 const prec = token.UnaryPrec 778 if prec < prec1 { 779 // parenthesis needed 780 p.print(token.LPAREN) 781 p.expr(x) 782 p.print(token.RPAREN) 783 } else { 784 // no parenthesis needed 785 p.print(x.Op) 786 if x.Op == token.RANGE { 787 // TODO(gri) Remove this code if it cannot be reached. 788 p.print(blank) 789 } 790 p.expr1(x.X, prec, depth) 791 } 792 793 case *ast.BasicLit: 794 p.print(x) 795 796 case *ast.FuncLit: 797 p.expr(x.Type) 798 p.funcBody(p.distanceFrom(x.Type.Pos()), blank, x.Body) 799 800 case *ast.ParenExpr: 801 if _, hasParens := x.X.(*ast.ParenExpr); hasParens { 802 // don't print parentheses around an already parenthesized expression 803 // TODO(gri) consider making this more general and incorporate precedence levels 804 p.expr0(x.X, depth) 805 } else { 806 p.print(token.LPAREN) 807 p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth 808 p.print(x.Rparen, token.RPAREN) 809 } 810 811 case *ast.SelectorExpr: 812 p.selectorExpr(x, depth, false) 813 814 case *ast.TypeAssertExpr: 815 p.expr1(x.X, token.HighestPrec, depth) 816 p.print(token.PERIOD, x.Lparen, token.LPAREN) 817 if x.Type != nil { 818 p.expr(x.Type) 819 } else { 820 p.print(token.TYPE) 821 } 822 p.print(x.Rparen, token.RPAREN) 823 824 case *ast.IndexExpr: 825 // TODO(gri): should treat[] like parentheses and undo one level of depth 826 p.expr1(x.X, token.HighestPrec, 1) 827 p.print(x.Lbrack, token.LBRACK) 828 p.expr0(x.Index, depth+1) 829 p.print(x.Rbrack, token.RBRACK) 830 831 case *ast.SliceExpr: 832 // TODO(gri): should treat[] like parentheses and undo one level of depth 833 p.expr1(x.X, token.HighestPrec, 1) 834 p.print(x.Lbrack, token.LBRACK) 835 indices := []ast.Expr{x.Low, x.High} 836 if x.Max != nil { 837 indices = append(indices, x.Max) 838 } 839 // determine if we need extra blanks around ':' 840 var needsBlanks bool 841 if depth <= 1 { 842 var indexCount int 843 var hasBinaries bool 844 for _, x := range indices { 845 if x != nil { 846 indexCount++ 847 if isBinary(x) { 848 hasBinaries = true 849 } 850 } 851 } 852 if indexCount > 1 && hasBinaries { 853 needsBlanks = true 854 } 855 } 856 for i, x := range indices { 857 if i > 0 { 858 if indices[i-1] != nil && needsBlanks { 859 p.print(blank) 860 } 861 p.print(token.COLON) 862 if x != nil && needsBlanks { 863 p.print(blank) 864 } 865 } 866 if x != nil { 867 p.expr0(x, depth+1) 868 } 869 } 870 p.print(x.Rbrack, token.RBRACK) 871 872 case *ast.CallExpr: 873 if len(x.Args) > 1 { 874 depth++ 875 } 876 var wasIndented bool 877 if _, ok := x.Fun.(*ast.FuncType); ok { 878 // conversions to literal function types require parentheses around the type 879 p.print(token.LPAREN) 880 wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth) 881 p.print(token.RPAREN) 882 } else { 883 wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth) 884 } 885 p.print(x.Lparen, token.LPAREN) 886 if x.Ellipsis.IsValid() { 887 p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis, false) 888 p.print(x.Ellipsis, token.ELLIPSIS) 889 if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) { 890 p.print(token.COMMA, formfeed) 891 } 892 } else { 893 p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen, false) 894 } 895 p.print(x.Rparen, token.RPAREN) 896 if wasIndented { 897 p.print(unindent) 898 } 899 900 case *ast.CompositeLit: 901 // composite literal elements that are composite literals themselves may have the type omitted 902 if x.Type != nil { 903 p.expr1(x.Type, token.HighestPrec, depth) 904 } 905 p.level++ 906 p.print(x.Lbrace, token.LBRACE) 907 p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace, x.Incomplete) 908 // do not insert extra line break following a /*-style comment 909 // before the closing '}' as it might break the code if there 910 // is no trailing ',' 911 mode := noExtraLinebreak 912 // do not insert extra blank following a /*-style comment 913 // before the closing '}' unless the literal is empty 914 if len(x.Elts) > 0 { 915 mode |= noExtraBlank 916 } 917 // need the initial indent to print lone comments with 918 // the proper level of indentation 919 p.print(indent, unindent, mode, x.Rbrace, token.RBRACE, mode) 920 p.level-- 921 922 case *ast.Ellipsis: 923 p.print(token.ELLIPSIS) 924 if x.Elt != nil { 925 p.expr(x.Elt) 926 } 927 928 case *ast.ArrayType: 929 p.print(token.LBRACK) 930 if x.Len != nil { 931 p.expr(x.Len) 932 } 933 p.print(token.RBRACK) 934 p.expr(x.Elt) 935 936 case *ast.StructType: 937 p.print(token.STRUCT) 938 p.fieldList(x.Fields, true, x.Incomplete) 939 940 case *ast.FuncType: 941 p.print(token.FUNC) 942 p.signature(x.Params, x.Results) 943 944 case *ast.InterfaceType: 945 p.print(token.INTERFACE) 946 p.fieldList(x.Methods, false, x.Incomplete) 947 948 case *ast.MapType: 949 p.print(token.MAP, token.LBRACK) 950 p.expr(x.Key) 951 p.print(token.RBRACK) 952 p.expr(x.Value) 953 954 case *ast.ChanType: 955 switch x.Dir { 956 case ast.SEND | ast.RECV: 957 p.print(token.CHAN) 958 case ast.RECV: 959 p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same 960 case ast.SEND: 961 p.print(token.CHAN, x.Arrow, token.ARROW) 962 } 963 p.print(blank) 964 p.expr(x.Value) 965 966 default: 967 panic("unreachable") 968 } 969 } 970 971 func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool { 972 if x, ok := expr.(*ast.SelectorExpr); ok { 973 return p.selectorExpr(x, depth, true) 974 } 975 p.expr1(expr, prec1, depth) 976 return false 977 } 978 979 // selectorExpr handles an *ast.SelectorExpr node and reports whether x spans 980 // multiple lines. 981 func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool { 982 p.expr1(x.X, token.HighestPrec, depth) 983 p.print(token.PERIOD) 984 if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line { 985 p.print(indent, newline, x.Sel.Pos(), x.Sel) 986 if !isMethod { 987 p.print(unindent) 988 } 989 return true 990 } 991 p.print(x.Sel.Pos(), x.Sel) 992 return false 993 } 994 995 func (p *printer) expr0(x ast.Expr, depth int) { 996 p.expr1(x, token.LowestPrec, depth) 997 } 998 999 func (p *printer) expr(x ast.Expr) { 1000 const depth = 1 1001 p.expr1(x, token.LowestPrec, depth) 1002 } 1003 1004 // ---------------------------------------------------------------------------- 1005 // Statements 1006 1007 // Print the statement list indented, but without a newline after the last statement. 1008 // Extra line breaks between statements in the source are respected but at most one 1009 // empty line is printed between statements. 1010 func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) { 1011 if nindent > 0 { 1012 p.print(indent) 1013 } 1014 var line int 1015 i := 0 1016 for _, s := range list { 1017 // ignore empty statements (was issue 3466) 1018 if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty { 1019 // nindent == 0 only for lists of switch/select case clauses; 1020 // in those cases each clause is a new section 1021 if len(p.output) > 0 { 1022 // only print line break if we are not at the beginning of the output 1023 // (i.e., we are not printing only a partial program) 1024 p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0) 1025 } 1026 p.recordLine(&line) 1027 p.stmt(s, nextIsRBrace && i == len(list)-1) 1028 // labeled statements put labels on a separate line, but here 1029 // we only care about the start line of the actual statement 1030 // without label - correct line for each label 1031 for t := s; ; { 1032 lt, _ := t.(*ast.LabeledStmt) 1033 if lt == nil { 1034 break 1035 } 1036 line++ 1037 t = lt.Stmt 1038 } 1039 i++ 1040 } 1041 } 1042 if nindent > 0 { 1043 p.print(unindent) 1044 } 1045 } 1046 1047 // block prints an *ast.BlockStmt; it always spans at least two lines. 1048 func (p *printer) block(b *ast.BlockStmt, nindent int) { 1049 p.print(b.Lbrace, token.LBRACE) 1050 p.stmtList(b.List, nindent, true) 1051 p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true) 1052 p.print(b.Rbrace, token.RBRACE) 1053 } 1054 1055 func isTypeName(x ast.Expr) bool { 1056 switch t := x.(type) { 1057 case *ast.Ident: 1058 return true 1059 case *ast.SelectorExpr: 1060 return isTypeName(t.X) 1061 } 1062 return false 1063 } 1064 1065 func stripParens(x ast.Expr) ast.Expr { 1066 if px, strip := x.(*ast.ParenExpr); strip { 1067 // parentheses must not be stripped if there are any 1068 // unparenthesized composite literals starting with 1069 // a type name 1070 ast.Inspect(px.X, func(node ast.Node) bool { 1071 switch x := node.(type) { 1072 case *ast.ParenExpr: 1073 // parentheses protect enclosed composite literals 1074 return false 1075 case *ast.CompositeLit: 1076 if isTypeName(x.Type) { 1077 strip = false // do not strip parentheses 1078 } 1079 return false 1080 } 1081 // in all other cases, keep inspecting 1082 return true 1083 }) 1084 if strip { 1085 return stripParens(px.X) 1086 } 1087 } 1088 return x 1089 } 1090 1091 func stripParensAlways(x ast.Expr) ast.Expr { 1092 if x, ok := x.(*ast.ParenExpr); ok { 1093 return stripParensAlways(x.X) 1094 } 1095 return x 1096 } 1097 1098 func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { 1099 p.print(blank) 1100 needsBlank := false 1101 if init == nil && post == nil { 1102 // no semicolons required 1103 if expr != nil { 1104 p.expr(stripParens(expr)) 1105 needsBlank = true 1106 } 1107 } else { 1108 // all semicolons required 1109 // (they are not separators, print them explicitly) 1110 if init != nil { 1111 p.stmt(init, false) 1112 } 1113 p.print(token.SEMICOLON, blank) 1114 if expr != nil { 1115 p.expr(stripParens(expr)) 1116 needsBlank = true 1117 } 1118 if isForStmt { 1119 p.print(token.SEMICOLON, blank) 1120 needsBlank = false 1121 if post != nil { 1122 p.stmt(post, false) 1123 needsBlank = true 1124 } 1125 } 1126 } 1127 if needsBlank { 1128 p.print(blank) 1129 } 1130 } 1131 1132 // indentList reports whether an expression list would look better if it 1133 // were indented wholesale (starting with the very first element, rather 1134 // than starting at the first line break). 1135 // 1136 func (p *printer) indentList(list []ast.Expr) bool { 1137 // Heuristic: indentList reports whether there are more than one multi- 1138 // line element in the list, or if there is any element that is not 1139 // starting on the same line as the previous one ends. 1140 if len(list) >= 2 { 1141 var b = p.lineFor(list[0].Pos()) 1142 var e = p.lineFor(list[len(list)-1].End()) 1143 if 0 < b && b < e { 1144 // list spans multiple lines 1145 n := 0 // multi-line element count 1146 line := b 1147 for _, x := range list { 1148 xb := p.lineFor(x.Pos()) 1149 xe := p.lineFor(x.End()) 1150 if line < xb { 1151 // x is not starting on the same 1152 // line as the previous one ended 1153 return true 1154 } 1155 if xb < xe { 1156 // x is a multi-line element 1157 n++ 1158 } 1159 line = xe 1160 } 1161 return n > 1 1162 } 1163 } 1164 return false 1165 } 1166 1167 func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) { 1168 p.print(stmt.Pos()) 1169 1170 switch s := stmt.(type) { 1171 case *ast.BadStmt: 1172 p.print("BadStmt") 1173 1174 case *ast.DeclStmt: 1175 p.decl(s.Decl) 1176 1177 case *ast.EmptyStmt: 1178 // nothing to do 1179 1180 case *ast.LabeledStmt: 1181 // a "correcting" unindent immediately following a line break 1182 // is applied before the line break if there is no comment 1183 // between (see writeWhitespace) 1184 p.print(unindent) 1185 p.expr(s.Label) 1186 p.print(s.Colon, token.COLON, indent) 1187 if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty { 1188 if !nextIsRBrace { 1189 p.print(newline, e.Pos(), token.SEMICOLON) 1190 break 1191 } 1192 } else { 1193 p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true) 1194 } 1195 p.stmt(s.Stmt, nextIsRBrace) 1196 1197 case *ast.ExprStmt: 1198 const depth = 1 1199 p.expr0(s.X, depth) 1200 1201 case *ast.SendStmt: 1202 const depth = 1 1203 p.expr0(s.Chan, depth) 1204 p.print(blank, s.Arrow, token.ARROW, blank) 1205 p.expr0(s.Value, depth) 1206 1207 case *ast.IncDecStmt: 1208 const depth = 1 1209 p.expr0(s.X, depth+1) 1210 p.print(s.TokPos, s.Tok) 1211 1212 case *ast.AssignStmt: 1213 var depth = 1 1214 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { 1215 depth++ 1216 } 1217 p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos, false) 1218 p.print(blank, s.TokPos, s.Tok, blank) 1219 p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos, false) 1220 1221 case *ast.GoStmt: 1222 p.print(token.GO, blank) 1223 p.expr(s.Call) 1224 1225 case *ast.DeferStmt: 1226 p.print(token.DEFER, blank) 1227 p.expr(s.Call) 1228 1229 case *ast.ReturnStmt: 1230 p.print(token.RETURN) 1231 if s.Results != nil { 1232 p.print(blank) 1233 // Use indentList heuristic to make corner cases look 1234 // better (issue 1207). A more systematic approach would 1235 // always indent, but this would cause significant 1236 // reformatting of the code base and not necessarily 1237 // lead to more nicely formatted code in general. 1238 if p.indentList(s.Results) { 1239 p.print(indent) 1240 p.exprList(s.Pos(), s.Results, 1, noIndent, token.NoPos, false) 1241 p.print(unindent) 1242 } else { 1243 p.exprList(s.Pos(), s.Results, 1, 0, token.NoPos, false) 1244 } 1245 } 1246 1247 case *ast.BranchStmt: 1248 p.print(s.Tok) 1249 if s.Label != nil { 1250 p.print(blank) 1251 p.expr(s.Label) 1252 } 1253 1254 case *ast.BlockStmt: 1255 p.block(s, 1) 1256 1257 case *ast.IfStmt: 1258 p.print(token.IF) 1259 p.controlClause(false, s.Init, s.Cond, nil) 1260 p.block(s.Body, 1) 1261 if s.Else != nil { 1262 p.print(blank, token.ELSE, blank) 1263 switch s.Else.(type) { 1264 case *ast.BlockStmt, *ast.IfStmt: 1265 p.stmt(s.Else, nextIsRBrace) 1266 default: 1267 // This can only happen with an incorrectly 1268 // constructed AST. Permit it but print so 1269 // that it can be parsed without errors. 1270 p.print(token.LBRACE, indent, formfeed) 1271 p.stmt(s.Else, true) 1272 p.print(unindent, formfeed, token.RBRACE) 1273 } 1274 } 1275 1276 case *ast.CaseClause: 1277 if s.List != nil { 1278 p.print(token.CASE, blank) 1279 p.exprList(s.Pos(), s.List, 1, 0, s.Colon, false) 1280 } else { 1281 p.print(token.DEFAULT) 1282 } 1283 p.print(s.Colon, token.COLON) 1284 p.stmtList(s.Body, 1, nextIsRBrace) 1285 1286 case *ast.SwitchStmt: 1287 p.print(token.SWITCH) 1288 p.controlClause(false, s.Init, s.Tag, nil) 1289 p.block(s.Body, 0) 1290 1291 case *ast.TypeSwitchStmt: 1292 p.print(token.SWITCH) 1293 if s.Init != nil { 1294 p.print(blank) 1295 p.stmt(s.Init, false) 1296 p.print(token.SEMICOLON) 1297 } 1298 p.print(blank) 1299 p.stmt(s.Assign, false) 1300 p.print(blank) 1301 p.block(s.Body, 0) 1302 1303 case *ast.CommClause: 1304 if s.Comm != nil { 1305 p.print(token.CASE, blank) 1306 p.stmt(s.Comm, false) 1307 } else { 1308 p.print(token.DEFAULT) 1309 } 1310 p.print(s.Colon, token.COLON) 1311 p.stmtList(s.Body, 1, nextIsRBrace) 1312 1313 case *ast.SelectStmt: 1314 p.print(token.SELECT, blank) 1315 body := s.Body 1316 if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) { 1317 // print empty select statement w/o comments on one line 1318 p.print(body.Lbrace, token.LBRACE, body.Rbrace, token.RBRACE) 1319 } else { 1320 p.block(body, 0) 1321 } 1322 1323 case *ast.ForStmt: 1324 p.print(token.FOR) 1325 p.controlClause(true, s.Init, s.Cond, s.Post) 1326 p.block(s.Body, 1) 1327 1328 case *ast.RangeStmt: 1329 p.print(token.FOR, blank) 1330 if s.Key != nil { 1331 p.expr(s.Key) 1332 if s.Value != nil { 1333 // use position of value following the comma as 1334 // comma position for correct comment placement 1335 p.print(s.Value.Pos(), token.COMMA, blank) 1336 p.expr(s.Value) 1337 } 1338 p.print(blank, s.TokPos, s.Tok, blank) 1339 } 1340 p.print(token.RANGE, blank) 1341 p.expr(stripParens(s.X)) 1342 p.print(blank) 1343 p.block(s.Body, 1) 1344 1345 default: 1346 panic("unreachable") 1347 } 1348 } 1349 1350 // ---------------------------------------------------------------------------- 1351 // Declarations 1352 1353 // The keepTypeColumn function determines if the type column of a series of 1354 // consecutive const or var declarations must be kept, or if initialization 1355 // values (V) can be placed in the type column (T) instead. The i'th entry 1356 // in the result slice is true if the type column in spec[i] must be kept. 1357 // 1358 // For example, the declaration: 1359 // 1360 // const ( 1361 // foobar int = 42 // comment 1362 // x = 7 // comment 1363 // foo 1364 // bar = 991 1365 // ) 1366 // 1367 // leads to the type/values matrix below. A run of value columns (V) can 1368 // be moved into the type column if there is no type for any of the values 1369 // in that column (we only move entire columns so that they align properly). 1370 // 1371 // matrix formatted result 1372 // matrix 1373 // T V -> T V -> true there is a T and so the type 1374 // - V - V true column must be kept 1375 // - - - - false 1376 // - V V - false V is moved into T column 1377 // 1378 func keepTypeColumn(specs []ast.Spec) []bool { 1379 m := make([]bool, len(specs)) 1380 1381 populate := func(i, j int, keepType bool) { 1382 if keepType { 1383 for ; i < j; i++ { 1384 m[i] = true 1385 } 1386 } 1387 } 1388 1389 i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run 1390 var keepType bool 1391 for i, s := range specs { 1392 t := s.(*ast.ValueSpec) 1393 if t.Values != nil { 1394 if i0 < 0 { 1395 // start of a run of ValueSpecs with non-nil Values 1396 i0 = i 1397 keepType = false 1398 } 1399 } else { 1400 if i0 >= 0 { 1401 // end of a run 1402 populate(i0, i, keepType) 1403 i0 = -1 1404 } 1405 } 1406 if t.Type != nil { 1407 keepType = true 1408 } 1409 } 1410 if i0 >= 0 { 1411 // end of a run 1412 populate(i0, len(specs), keepType) 1413 } 1414 1415 return m 1416 } 1417 1418 func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) { 1419 p.setComment(s.Doc) 1420 p.identList(s.Names, false) // always present 1421 extraTabs := 3 1422 if s.Type != nil || keepType { 1423 p.print(vtab) 1424 extraTabs-- 1425 } 1426 if s.Type != nil { 1427 p.expr(s.Type) 1428 } 1429 if s.Values != nil { 1430 p.print(vtab, token.ASSIGN, blank) 1431 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false) 1432 extraTabs-- 1433 } 1434 if s.Comment != nil { 1435 for ; extraTabs > 0; extraTabs-- { 1436 p.print(vtab) 1437 } 1438 p.setComment(s.Comment) 1439 } 1440 } 1441 1442 func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit { 1443 // Note: An unmodified AST generated by go/parser will already 1444 // contain a backward- or double-quoted path string that does 1445 // not contain any invalid characters, and most of the work 1446 // here is not needed. However, a modified or generated AST 1447 // may possibly contain non-canonical paths. Do the work in 1448 // all cases since it's not too hard and not speed-critical. 1449 1450 // if we don't have a proper string, be conservative and return whatever we have 1451 if lit.Kind != token.STRING { 1452 return lit 1453 } 1454 s, err := strconv.Unquote(lit.Value) 1455 if err != nil { 1456 return lit 1457 } 1458 1459 // if the string is an invalid path, return whatever we have 1460 // 1461 // spec: "Implementation restriction: A compiler may restrict 1462 // ImportPaths to non-empty strings using only characters belonging 1463 // to Unicode's L, M, N, P, and S general categories (the Graphic 1464 // characters without spaces) and may also exclude the characters 1465 // !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character 1466 // U+FFFD." 1467 if s == "" { 1468 return lit 1469 } 1470 const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD" 1471 for _, r := range s { 1472 if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) { 1473 return lit 1474 } 1475 } 1476 1477 // otherwise, return the double-quoted path 1478 s = strconv.Quote(s) 1479 if s == lit.Value { 1480 return lit // nothing wrong with lit 1481 } 1482 return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s} 1483 } 1484 1485 // The parameter n is the number of specs in the group. If doIndent is set, 1486 // multi-line identifier lists in the spec are indented when the first 1487 // linebreak is encountered. 1488 // 1489 func (p *printer) spec(spec ast.Spec, n int, doIndent bool) { 1490 switch s := spec.(type) { 1491 case *ast.ImportSpec: 1492 p.setComment(s.Doc) 1493 if s.Name != nil { 1494 p.expr(s.Name) 1495 p.print(blank) 1496 } 1497 p.expr(sanitizeImportPath(s.Path)) 1498 p.setComment(s.Comment) 1499 p.print(s.EndPos) 1500 1501 case *ast.ValueSpec: 1502 if n != 1 { 1503 p.internalError("expected n = 1; got", n) 1504 } 1505 p.setComment(s.Doc) 1506 p.identList(s.Names, doIndent) // always present 1507 if s.Type != nil { 1508 p.print(blank) 1509 p.expr(s.Type) 1510 } 1511 if s.Values != nil { 1512 p.print(blank, token.ASSIGN, blank) 1513 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false) 1514 } 1515 p.setComment(s.Comment) 1516 1517 case *ast.TypeSpec: 1518 p.setComment(s.Doc) 1519 p.expr(s.Name) 1520 if n == 1 { 1521 p.print(blank) 1522 } else { 1523 p.print(vtab) 1524 } 1525 if s.Assign.IsValid() { 1526 p.print(token.ASSIGN, blank) 1527 } 1528 p.expr(s.Type) 1529 p.setComment(s.Comment) 1530 1531 default: 1532 panic("unreachable") 1533 } 1534 } 1535 1536 func (p *printer) genDecl(d *ast.GenDecl) { 1537 p.setComment(d.Doc) 1538 p.print(d.Pos(), d.Tok, blank) 1539 1540 if d.Lparen.IsValid() || len(d.Specs) > 1 { 1541 // group of parenthesized declarations 1542 p.print(d.Lparen, token.LPAREN) 1543 if n := len(d.Specs); n > 0 { 1544 p.print(indent, formfeed) 1545 if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) { 1546 // two or more grouped const/var declarations: 1547 // determine if the type column must be kept 1548 keepType := keepTypeColumn(d.Specs) 1549 var line int 1550 for i, s := range d.Specs { 1551 if i > 0 { 1552 p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) 1553 } 1554 p.recordLine(&line) 1555 p.valueSpec(s.(*ast.ValueSpec), keepType[i]) 1556 } 1557 } else { 1558 var line int 1559 for i, s := range d.Specs { 1560 if i > 0 { 1561 p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) 1562 } 1563 p.recordLine(&line) 1564 p.spec(s, n, false) 1565 } 1566 } 1567 p.print(unindent, formfeed) 1568 } 1569 p.print(d.Rparen, token.RPAREN) 1570 1571 } else if len(d.Specs) > 0 { 1572 // single declaration 1573 p.spec(d.Specs[0], 1, true) 1574 } 1575 } 1576 1577 // nodeSize determines the size of n in chars after formatting. 1578 // The result is <= maxSize if the node fits on one line with at 1579 // most maxSize chars and the formatted output doesn't contain 1580 // any control chars. Otherwise, the result is > maxSize. 1581 // 1582 func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { 1583 // nodeSize invokes the printer, which may invoke nodeSize 1584 // recursively. For deep composite literal nests, this can 1585 // lead to an exponential algorithm. Remember previous 1586 // results to prune the recursion (was issue 1628). 1587 if size, found := p.nodeSizes[n]; found { 1588 return size 1589 } 1590 1591 size = maxSize + 1 // assume n doesn't fit 1592 p.nodeSizes[n] = size 1593 1594 // nodeSize computation must be independent of particular 1595 // style so that we always get the same decision; print 1596 // in RawFormat 1597 cfg := Config{Mode: RawFormat} 1598 var buf bytes.Buffer 1599 if err := cfg.fprint(&buf, p.fset, n, p.nodeSizes); err != nil { 1600 return 1601 } 1602 if buf.Len() <= maxSize { 1603 for _, ch := range buf.Bytes() { 1604 if ch < ' ' { 1605 return 1606 } 1607 } 1608 size = buf.Len() // n fits 1609 p.nodeSizes[n] = size 1610 } 1611 return 1612 } 1613 1614 // numLines returns the number of lines spanned by node n in the original source. 1615 func (p *printer) numLines(n ast.Node) int { 1616 if from := n.Pos(); from.IsValid() { 1617 if to := n.End(); to.IsValid() { 1618 return p.lineFor(to) - p.lineFor(from) + 1 1619 } 1620 } 1621 return infinity 1622 } 1623 1624 // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's. 1625 func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int { 1626 pos1 := b.Pos() 1627 pos2 := b.Rbrace 1628 if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) { 1629 // opening and closing brace are on different lines - don't make it a one-liner 1630 return maxSize + 1 1631 } 1632 if len(b.List) > 5 { 1633 // too many statements - don't make it a one-liner 1634 return maxSize + 1 1635 } 1636 // otherwise, estimate body size 1637 bodySize := p.commentSizeBefore(p.posFor(pos2)) 1638 for i, s := range b.List { 1639 if bodySize > maxSize { 1640 break // no need to continue 1641 } 1642 if i > 0 { 1643 bodySize += 2 // space for a semicolon and blank 1644 } 1645 bodySize += p.nodeSize(s, maxSize) 1646 } 1647 return bodySize 1648 } 1649 1650 // funcBody prints a function body following a function header of given headerSize. 1651 // If the header's and block's size are "small enough" and the block is "simple enough", 1652 // the block is printed on the current line, without line breaks, spaced from the header 1653 // by sep. Otherwise the block's opening "{" is printed on the current line, followed by 1654 // lines for the block's statements and its closing "}". 1655 // 1656 func (p *printer) funcBody(headerSize int, sep whiteSpace, b *ast.BlockStmt) { 1657 if b == nil { 1658 return 1659 } 1660 1661 // save/restore composite literal nesting level 1662 defer func(level int) { 1663 p.level = level 1664 }(p.level) 1665 p.level = 0 1666 1667 const maxSize = 100 1668 if headerSize+p.bodySize(b, maxSize) <= maxSize { 1669 p.print(sep, b.Lbrace, token.LBRACE) 1670 if len(b.List) > 0 { 1671 p.print(blank) 1672 for i, s := range b.List { 1673 if i > 0 { 1674 p.print(token.SEMICOLON, blank) 1675 } 1676 p.stmt(s, i == len(b.List)-1) 1677 } 1678 p.print(blank) 1679 } 1680 p.print(noExtraLinebreak, b.Rbrace, token.RBRACE, noExtraLinebreak) 1681 return 1682 } 1683 1684 if sep != ignore { 1685 p.print(blank) // always use blank 1686 } 1687 p.block(b, 1) 1688 } 1689 1690 // distanceFrom returns the column difference between from and p.pos (the current 1691 // estimated position) if both are on the same line; if they are on different lines 1692 // (or unknown) the result is infinity. 1693 func (p *printer) distanceFrom(from token.Pos) int { 1694 if from.IsValid() && p.pos.IsValid() { 1695 if f := p.posFor(from); f.Line == p.pos.Line { 1696 return p.pos.Column - f.Column 1697 } 1698 } 1699 return infinity 1700 } 1701 1702 func (p *printer) funcDecl(d *ast.FuncDecl) { 1703 p.setComment(d.Doc) 1704 p.print(d.Pos(), token.FUNC, blank) 1705 if d.Recv != nil { 1706 p.parameters(d.Recv) // method: print receiver 1707 p.print(blank) 1708 } 1709 p.expr(d.Name) 1710 p.signature(d.Type.Params, d.Type.Results) 1711 p.funcBody(p.distanceFrom(d.Pos()), vtab, d.Body) 1712 } 1713 1714 func (p *printer) decl(decl ast.Decl) { 1715 switch d := decl.(type) { 1716 case *ast.BadDecl: 1717 p.print(d.Pos(), "BadDecl") 1718 case *ast.GenDecl: 1719 p.genDecl(d) 1720 case *ast.FuncDecl: 1721 p.funcDecl(d) 1722 default: 1723 panic("unreachable") 1724 } 1725 } 1726 1727 // ---------------------------------------------------------------------------- 1728 // Files 1729 1730 func declToken(decl ast.Decl) (tok token.Token) { 1731 tok = token.ILLEGAL 1732 switch d := decl.(type) { 1733 case *ast.GenDecl: 1734 tok = d.Tok 1735 case *ast.FuncDecl: 1736 tok = token.FUNC 1737 } 1738 return 1739 } 1740 1741 func (p *printer) declList(list []ast.Decl) { 1742 tok := token.ILLEGAL 1743 for _, d := range list { 1744 prev := tok 1745 tok = declToken(d) 1746 // If the declaration token changed (e.g., from CONST to TYPE) 1747 // or the next declaration has documentation associated with it, 1748 // print an empty line between top-level declarations. 1749 // (because p.linebreak is called with the position of d, which 1750 // is past any documentation, the minimum requirement is satisfied 1751 // even w/o the extra getDoc(d) nil-check - leave it in case the 1752 // linebreak logic improves - there's already a TODO). 1753 if len(p.output) > 0 { 1754 // only print line break if we are not at the beginning of the output 1755 // (i.e., we are not printing only a partial program) 1756 min := 1 1757 if prev != tok || getDoc(d) != nil { 1758 min = 2 1759 } 1760 // start a new section if the next declaration is a function 1761 // that spans multiple lines (see also issue #19544) 1762 p.linebreak(p.lineFor(d.Pos()), min, ignore, tok == token.FUNC && p.numLines(d) > 1) 1763 } 1764 p.decl(d) 1765 } 1766 } 1767 1768 func (p *printer) file(src *ast.File) { 1769 p.setComment(src.Doc) 1770 p.print(src.Pos(), token.PACKAGE, blank) 1771 p.expr(src.Name) 1772 p.declList(src.Decls) 1773 p.print(newline) 1774 }