github.com/remyoudompheng/bigfft@v0.0.0-20230129092748-24d4a6f8daec/fft.go (about) 1 // Package bigfft implements multiplication of big.Int using FFT. 2 // 3 // The implementation is based on the Schönhage-Strassen method 4 // using integer FFT modulo 2^n+1. 5 package bigfft 6 7 import ( 8 "math/big" 9 "unsafe" 10 ) 11 12 const _W = int(unsafe.Sizeof(big.Word(0)) * 8) 13 14 type nat []big.Word 15 16 func (n nat) String() string { 17 v := new(big.Int) 18 v.SetBits(n) 19 return v.String() 20 } 21 22 // fftThreshold is the size (in words) above which FFT is used over 23 // Karatsuba from math/big. 24 // 25 // TestCalibrate seems to indicate a threshold of 60kbits on 32-bit 26 // arches and 110kbits on 64-bit arches. 27 var fftThreshold = 1800 28 29 // Mul computes the product x*y and returns z. 30 // It can be used instead of the Mul method of 31 // *big.Int from math/big package. 32 func Mul(x, y *big.Int) *big.Int { 33 xwords := len(x.Bits()) 34 ywords := len(y.Bits()) 35 if xwords > fftThreshold && ywords > fftThreshold { 36 return mulFFT(x, y) 37 } 38 return new(big.Int).Mul(x, y) 39 } 40 41 func mulFFT(x, y *big.Int) *big.Int { 42 var xb, yb nat = x.Bits(), y.Bits() 43 zb := fftmul(xb, yb) 44 z := new(big.Int) 45 z.SetBits(zb) 46 if x.Sign()*y.Sign() < 0 { 47 z.Neg(z) 48 } 49 return z 50 } 51 52 // A FFT size of K=1<<k is adequate when K is about 2*sqrt(N) where 53 // N = x.Bitlen() + y.Bitlen(). 54 55 func fftmul(x, y nat) nat { 56 k, m := fftSize(x, y) 57 xp := polyFromNat(x, k, m) 58 yp := polyFromNat(y, k, m) 59 rp := xp.Mul(&yp) 60 return rp.Int() 61 } 62 63 // fftSizeThreshold[i] is the maximal size (in bits) where we should use 64 // fft size i. 65 var fftSizeThreshold = [...]int64{0, 0, 0, 66 4 << 10, 8 << 10, 16 << 10, // 5 67 32 << 10, 64 << 10, 1 << 18, 1 << 20, 3 << 20, // 10 68 8 << 20, 30 << 20, 100 << 20, 300 << 20, 600 << 20, 69 } 70 71 // returns the FFT length k, m the number of words per chunk 72 // such that m << k is larger than the number of words 73 // in x*y. 74 func fftSize(x, y nat) (k uint, m int) { 75 words := len(x) + len(y) 76 bits := int64(words) * int64(_W) 77 k = uint(len(fftSizeThreshold)) 78 for i := range fftSizeThreshold { 79 if fftSizeThreshold[i] > bits { 80 k = uint(i) 81 break 82 } 83 } 84 // The 1<<k chunks of m words must have N bits so that 85 // 2^N-1 is larger than x*y. That is, m<<k > words 86 m = words>>k + 1 87 return 88 } 89 90 // valueSize returns the length (in words) to use for polynomial 91 // coefficients, to compute a correct product of polynomials P*Q 92 // where deg(P*Q) < K (== 1<<k) and where coefficients of P and Q are 93 // less than b^m (== 1 << (m*_W)). 94 // The chosen length (in bits) must be a multiple of 1 << (k-extra). 95 func valueSize(k uint, m int, extra uint) int { 96 // The coefficients of P*Q are less than b^(2m)*K 97 // so we need W * valueSize >= 2*m*W+K 98 n := 2*m*_W + int(k) // necessary bits 99 K := 1 << (k - extra) 100 if K < _W { 101 K = _W 102 } 103 n = ((n / K) + 1) * K // round to a multiple of K 104 return n / _W 105 } 106 107 // poly represents an integer via a polynomial in Z[x]/(x^K+1) 108 // where K is the FFT length and b^m is the computation basis 1<<(m*_W). 109 // If P = a[0] + a[1] x + ... a[n] x^(K-1), the associated natural number 110 // is P(b^m). 111 type poly struct { 112 k uint // k is such that K = 1<<k. 113 m int // the m such that P(b^m) is the original number. 114 a []nat // a slice of at most K m-word coefficients. 115 } 116 117 // polyFromNat slices the number x into a polynomial 118 // with 1<<k coefficients made of m words. 119 func polyFromNat(x nat, k uint, m int) poly { 120 p := poly{k: k, m: m} 121 length := len(x)/m + 1 122 p.a = make([]nat, length) 123 for i := range p.a { 124 if len(x) < m { 125 p.a[i] = make(nat, m) 126 copy(p.a[i], x) 127 break 128 } 129 p.a[i] = x[:m] 130 x = x[m:] 131 } 132 return p 133 } 134 135 // Int evaluates back a poly to its integer value. 136 func (p *poly) Int() nat { 137 length := len(p.a)*p.m + 1 138 if na := len(p.a); na > 0 { 139 length += len(p.a[na-1]) 140 } 141 n := make(nat, length) 142 m := p.m 143 np := n 144 for i := range p.a { 145 l := len(p.a[i]) 146 c := addVV(np[:l], np[:l], p.a[i]) 147 if np[l] < ^big.Word(0) { 148 np[l] += c 149 } else { 150 addVW(np[l:], np[l:], c) 151 } 152 np = np[m:] 153 } 154 n = trim(n) 155 return n 156 } 157 158 func trim(n nat) nat { 159 for i := range n { 160 if n[len(n)-1-i] != 0 { 161 return n[:len(n)-i] 162 } 163 } 164 return nil 165 } 166 167 // Mul multiplies p and q modulo X^K-1, where K = 1<<p.k. 168 // The product is done via a Fourier transform. 169 func (p *poly) Mul(q *poly) poly { 170 // extra=2 because: 171 // * some power of 2 is a K-th root of unity when n is a multiple of K/2. 172 // * 2 itself is a square (see fermat.ShiftHalf) 173 n := valueSize(p.k, p.m, 2) 174 175 pv, qv := p.Transform(n), q.Transform(n) 176 rv := pv.Mul(&qv) 177 r := rv.InvTransform() 178 r.m = p.m 179 return r 180 } 181 182 // A polValues represents the value of a poly at the powers of a 183 // K-th root of unity θ=2^(l/2) in Z/(b^n+1)Z, where b^n = 2^(K/4*l). 184 type polValues struct { 185 k uint // k is such that K = 1<<k. 186 n int // the length of coefficients, n*_W a multiple of K/4. 187 values []fermat // a slice of K (n+1)-word values 188 } 189 190 // Transform evaluates p at θ^i for i = 0...K-1, where 191 // θ is a K-th primitive root of unity in Z/(b^n+1)Z. 192 func (p *poly) Transform(n int) polValues { 193 k := p.k 194 inputbits := make([]big.Word, (n+1)<<k) 195 input := make([]fermat, 1<<k) 196 // Now computed q(ω^i) for i = 0 ... K-1 197 valbits := make([]big.Word, (n+1)<<k) 198 values := make([]fermat, 1<<k) 199 for i := range values { 200 input[i] = inputbits[i*(n+1) : (i+1)*(n+1)] 201 if i < len(p.a) { 202 copy(input[i], p.a[i]) 203 } 204 values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)]) 205 } 206 fourier(values, input, false, n, k) 207 return polValues{k, n, values} 208 } 209 210 // InvTransform reconstructs p (modulo X^K - 1) from its 211 // values at θ^i for i = 0..K-1. 212 func (v *polValues) InvTransform() poly { 213 k, n := v.k, v.n 214 215 // Perform an inverse Fourier transform to recover p. 216 pbits := make([]big.Word, (n+1)<<k) 217 p := make([]fermat, 1<<k) 218 for i := range p { 219 p[i] = fermat(pbits[i*(n+1) : (i+1)*(n+1)]) 220 } 221 fourier(p, v.values, true, n, k) 222 // Divide by K, and untwist q to recover p. 223 u := make(fermat, n+1) 224 a := make([]nat, 1<<k) 225 for i := range p { 226 u.Shift(p[i], -int(k)) 227 copy(p[i], u) 228 a[i] = nat(p[i]) 229 } 230 return poly{k: k, m: 0, a: a} 231 } 232 233 // NTransform evaluates p at θω^i for i = 0...K-1, where 234 // θ is a (2K)-th primitive root of unity in Z/(b^n+1)Z 235 // and ω = θ². 236 func (p *poly) NTransform(n int) polValues { 237 k := p.k 238 if len(p.a) >= 1<<k { 239 panic("Transform: len(p.a) >= 1<<k") 240 } 241 // θ is represented as a shift. 242 θshift := (n * _W) >> k 243 // p(x) = a_0 + a_1 x + ... + a_{K-1} x^(K-1) 244 // p(θx) = q(x) where 245 // q(x) = a_0 + θa_1 x + ... + θ^(K-1) a_{K-1} x^(K-1) 246 // 247 // Twist p by θ to obtain q. 248 tbits := make([]big.Word, (n+1)<<k) 249 twisted := make([]fermat, 1<<k) 250 src := make(fermat, n+1) 251 for i := range twisted { 252 twisted[i] = fermat(tbits[i*(n+1) : (i+1)*(n+1)]) 253 if i < len(p.a) { 254 for i := range src { 255 src[i] = 0 256 } 257 copy(src, p.a[i]) 258 twisted[i].Shift(src, θshift*i) 259 } 260 } 261 262 // Now computed q(ω^i) for i = 0 ... K-1 263 valbits := make([]big.Word, (n+1)<<k) 264 values := make([]fermat, 1<<k) 265 for i := range values { 266 values[i] = fermat(valbits[i*(n+1) : (i+1)*(n+1)]) 267 } 268 fourier(values, twisted, false, n, k) 269 return polValues{k, n, values} 270 } 271 272 // InvTransform reconstructs a polynomial from its values at 273 // roots of x^K+1. The m field of the returned polynomial 274 // is unspecified. 275 func (v *polValues) InvNTransform() poly { 276 k := v.k 277 n := v.n 278 θshift := (n * _W) >> k 279 280 // Perform an inverse Fourier transform to recover q. 281 qbits := make([]big.Word, (n+1)<<k) 282 q := make([]fermat, 1<<k) 283 for i := range q { 284 q[i] = fermat(qbits[i*(n+1) : (i+1)*(n+1)]) 285 } 286 fourier(q, v.values, true, n, k) 287 288 // Divide by K, and untwist q to recover p. 289 u := make(fermat, n+1) 290 a := make([]nat, 1<<k) 291 for i := range q { 292 u.Shift(q[i], -int(k)-i*θshift) 293 copy(q[i], u) 294 a[i] = nat(q[i]) 295 } 296 return poly{k: k, m: 0, a: a} 297 } 298 299 // fourier performs an unnormalized Fourier transform 300 // of src, a length 1<<k vector of numbers modulo b^n+1 301 // where b = 1<<_W. 302 func fourier(dst []fermat, src []fermat, backward bool, n int, k uint) { 303 var rec func(dst, src []fermat, size uint) 304 tmp := make(fermat, n+1) // pre-allocate temporary variables. 305 tmp2 := make(fermat, n+1) // pre-allocate temporary variables. 306 307 // The recursion function of the FFT. 308 // The root of unity used in the transform is ω=1<<(ω2shift/2). 309 // The source array may use shifted indices (i.e. the i-th 310 // element is src[i << idxShift]). 311 rec = func(dst, src []fermat, size uint) { 312 idxShift := k - size 313 ω2shift := (4 * n * _W) >> size 314 if backward { 315 ω2shift = -ω2shift 316 } 317 318 // Easy cases. 319 if len(src[0]) != n+1 || len(dst[0]) != n+1 { 320 panic("len(src[0]) != n+1 || len(dst[0]) != n+1") 321 } 322 switch size { 323 case 0: 324 copy(dst[0], src[0]) 325 return 326 case 1: 327 dst[0].Add(src[0], src[1<<idxShift]) // dst[0] = src[0] + src[1] 328 dst[1].Sub(src[0], src[1<<idxShift]) // dst[1] = src[0] - src[1] 329 return 330 } 331 332 // Let P(x) = src[0] + src[1<<idxShift] * x + ... + src[K-1 << idxShift] * x^(K-1) 333 // The P(x) = Q1(x²) + x*Q2(x²) 334 // where Q1's coefficients are src with indices shifted by 1 335 // where Q2's coefficients are src[1<<idxShift:] with indices shifted by 1 336 337 // Split destination vectors in halves. 338 dst1 := dst[:1<<(size-1)] 339 dst2 := dst[1<<(size-1):] 340 // Transform Q1 and Q2 in the halves. 341 rec(dst1, src, size-1) 342 rec(dst2, src[1<<idxShift:], size-1) 343 344 // Reconstruct P's transform from transforms of Q1 and Q2. 345 // dst[i] is dst1[i] + ω^i * dst2[i] 346 // dst[i + 1<<(k-1)] is dst1[i] + ω^(i+K/2) * dst2[i] 347 // 348 for i := range dst1 { 349 tmp.ShiftHalf(dst2[i], i*ω2shift, tmp2) // ω^i * dst2[i] 350 dst2[i].Sub(dst1[i], tmp) 351 dst1[i].Add(dst1[i], tmp) 352 } 353 } 354 rec(dst, src, k) 355 } 356 357 // Mul returns the pointwise product of p and q. 358 func (p *polValues) Mul(q *polValues) (r polValues) { 359 n := p.n 360 r.k, r.n = p.k, p.n 361 r.values = make([]fermat, len(p.values)) 362 bits := make([]big.Word, len(p.values)*(n+1)) 363 buf := make(fermat, 8*n) 364 for i := range r.values { 365 r.values[i] = bits[i*(n+1) : (i+1)*(n+1)] 366 z := buf.Mul(p.values[i], q.values[i]) 367 copy(r.values[i], z) 368 } 369 return 370 }