github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/cmd/compile/internal/ssa/schedule.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import "container/heap"
     8  
     9  const (
    10  	ScorePhi = iota // towards top of block
    11  	ScoreNilCheck
    12  	ScoreReadTuple
    13  	ScoreVarDef
    14  	ScoreMemory
    15  	ScoreDefault
    16  	ScoreFlags
    17  	ScoreControl // towards bottom of block
    18  )
    19  
    20  type ValHeap struct {
    21  	a     []*Value
    22  	score []int8
    23  }
    24  
    25  func (h ValHeap) Len() int      { return len(h.a) }
    26  func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
    27  
    28  func (h *ValHeap) Push(x interface{}) {
    29  	// Push and Pop use pointer receivers because they modify the slice's length,
    30  	// not just its contents.
    31  	v := x.(*Value)
    32  	h.a = append(h.a, v)
    33  }
    34  func (h *ValHeap) Pop() interface{} {
    35  	old := h.a
    36  	n := len(old)
    37  	x := old[n-1]
    38  	h.a = old[0 : n-1]
    39  	return x
    40  }
    41  func (h ValHeap) Less(i, j int) bool {
    42  	x := h.a[i]
    43  	y := h.a[j]
    44  	sx := h.score[x.ID]
    45  	sy := h.score[y.ID]
    46  	if c := sx - sy; c != 0 {
    47  		return c > 0 // higher score comes later.
    48  	}
    49  	if x.Pos != y.Pos { // Favor in-order line stepping
    50  		return x.Pos.After(y.Pos)
    51  	}
    52  	if x.Op != OpPhi {
    53  		if c := len(x.Args) - len(y.Args); c != 0 {
    54  			return c < 0 // smaller args comes later
    55  		}
    56  	}
    57  	return x.ID > y.ID
    58  }
    59  
    60  // Schedule the Values in each Block. After this phase returns, the
    61  // order of b.Values matters and is the order in which those values
    62  // will appear in the assembly output. For now it generates a
    63  // reasonable valid schedule using a priority queue. TODO(khr):
    64  // schedule smarter.
    65  func schedule(f *Func) {
    66  	// For each value, the number of times it is used in the block
    67  	// by values that have not been scheduled yet.
    68  	uses := make([]int32, f.NumValues())
    69  
    70  	// reusable priority queue
    71  	priq := new(ValHeap)
    72  
    73  	// "priority" for a value
    74  	score := make([]int8, f.NumValues())
    75  
    76  	// scheduling order. We queue values in this list in reverse order.
    77  	var order []*Value
    78  
    79  	// maps mem values to the next live memory value
    80  	nextMem := make([]*Value, f.NumValues())
    81  	// additional pretend arguments for each Value. Used to enforce load/store ordering.
    82  	additionalArgs := make([][]*Value, f.NumValues())
    83  
    84  	for _, b := range f.Blocks {
    85  		// Compute score. Larger numbers are scheduled closer to the end of the block.
    86  		for _, v := range b.Values {
    87  			switch {
    88  			case v.Op == OpAMD64LoweredGetClosurePtr || v.Op == OpPPC64LoweredGetClosurePtr ||
    89  				v.Op == OpARMLoweredGetClosurePtr || v.Op == OpARM64LoweredGetClosurePtr ||
    90  				v.Op == Op386LoweredGetClosurePtr || v.Op == OpMIPS64LoweredGetClosurePtr ||
    91  				v.Op == OpS390XLoweredGetClosurePtr || v.Op == OpMIPSLoweredGetClosurePtr ||
    92  				v.Op == OpRISCVLoweredGetClosurePtr:
    93  				// We also score GetLoweredClosurePtr as early as possible to ensure that the
    94  				// context register is not stomped. GetLoweredClosurePtr should only appear
    95  				// in the entry block where there are no phi functions, so there is no
    96  				// conflict or ambiguity here.
    97  				if b != f.Entry {
    98  					f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
    99  				}
   100  				score[v.ID] = ScorePhi
   101  			case v.Op == OpAMD64LoweredNilCheck || v.Op == OpPPC64LoweredNilCheck ||
   102  				v.Op == OpARMLoweredNilCheck || v.Op == OpARM64LoweredNilCheck ||
   103  				v.Op == Op386LoweredNilCheck || v.Op == OpMIPS64LoweredNilCheck ||
   104  				v.Op == OpS390XLoweredNilCheck || v.Op == OpMIPSLoweredNilCheck ||
   105  				v.Op == OpRISCVLoweredNilCheck:
   106  				// Nil checks must come before loads from the same address.
   107  				score[v.ID] = ScoreNilCheck
   108  			case v.Op == OpPhi:
   109  				// We want all the phis first.
   110  				score[v.ID] = ScorePhi
   111  			case v.Op == OpVarDef:
   112  				// We want all the vardefs next.
   113  				score[v.ID] = ScoreVarDef
   114  			case v.Type.IsMemory():
   115  				// Schedule stores as early as possible. This tends to
   116  				// reduce register pressure. It also helps make sure
   117  				// VARDEF ops are scheduled before the corresponding LEA.
   118  				score[v.ID] = ScoreMemory
   119  			case v.Op == OpSelect0 || v.Op == OpSelect1:
   120  				// Schedule the pseudo-op of reading part of a tuple
   121  				// immediately after the tuple-generating op, since
   122  				// this value is already live. This also removes its
   123  				// false dependency on the other part of the tuple.
   124  				// Also ensures tuple is never spilled.
   125  				score[v.ID] = ScoreReadTuple
   126  			case v.Type.IsFlags() || v.Type.IsTuple():
   127  				// Schedule flag register generation as late as possible.
   128  				// This makes sure that we only have one live flags
   129  				// value at a time.
   130  				score[v.ID] = ScoreFlags
   131  			default:
   132  				score[v.ID] = ScoreDefault
   133  			}
   134  		}
   135  	}
   136  
   137  	for _, b := range f.Blocks {
   138  		// Find store chain for block.
   139  		// Store chains for different blocks overwrite each other, so
   140  		// the calculated store chain is good only for this block.
   141  		for _, v := range b.Values {
   142  			if v.Op != OpPhi && v.Type.IsMemory() {
   143  				mem := v
   144  				if v.Op == OpSelect1 {
   145  					v = v.Args[0]
   146  				}
   147  				for _, w := range v.Args {
   148  					if w.Type.IsMemory() {
   149  						nextMem[w.ID] = mem
   150  					}
   151  				}
   152  			}
   153  		}
   154  
   155  		// Compute uses.
   156  		for _, v := range b.Values {
   157  			if v.Op == OpPhi {
   158  				// If a value is used by a phi, it does not induce
   159  				// a scheduling edge because that use is from the
   160  				// previous iteration.
   161  				continue
   162  			}
   163  			for _, w := range v.Args {
   164  				if w.Block == b {
   165  					uses[w.ID]++
   166  				}
   167  				// Any load must come before the following store.
   168  				if v.Type.IsMemory() || !w.Type.IsMemory() {
   169  					continue // not a load
   170  				}
   171  				s := nextMem[w.ID]
   172  				if s == nil || s.Block != b {
   173  					continue
   174  				}
   175  				additionalArgs[s.ID] = append(additionalArgs[s.ID], v)
   176  				uses[v.ID]++
   177  			}
   178  		}
   179  
   180  		if b.Control != nil && b.Control.Op != OpPhi {
   181  			// Force the control value to be scheduled at the end,
   182  			// unless it is a phi value (which must be first).
   183  			score[b.Control.ID] = ScoreControl
   184  
   185  			// Schedule values dependent on the control value at the end.
   186  			// This reduces the number of register spills. We don't find
   187  			// all values that depend on the control, just values with a
   188  			// direct dependency. This is cheaper and in testing there
   189  			// was no difference in the number of spills.
   190  			for _, v := range b.Values {
   191  				if v.Op != OpPhi {
   192  					for _, a := range v.Args {
   193  						if a == b.Control {
   194  							score[v.ID] = ScoreControl
   195  						}
   196  					}
   197  				}
   198  			}
   199  		}
   200  
   201  		// To put things into a priority queue
   202  		// The values that should come last are least.
   203  		priq.score = score
   204  		priq.a = priq.a[:0]
   205  
   206  		// Initialize priority queue with schedulable values.
   207  		for _, v := range b.Values {
   208  			if uses[v.ID] == 0 {
   209  				heap.Push(priq, v)
   210  			}
   211  		}
   212  
   213  		// Schedule highest priority value, update use counts, repeat.
   214  		order = order[:0]
   215  		tuples := make(map[ID][]*Value)
   216  		for {
   217  			// Find highest priority schedulable value.
   218  			// Note that schedule is assembled backwards.
   219  
   220  			if priq.Len() == 0 {
   221  				break
   222  			}
   223  
   224  			v := heap.Pop(priq).(*Value)
   225  
   226  			// Add it to the schedule.
   227  			// Do not emit tuple-reading ops until we're ready to emit the tuple-generating op.
   228  			//TODO: maybe remove ReadTuple score above, if it does not help on performance
   229  			switch {
   230  			case v.Op == OpSelect0:
   231  				if tuples[v.Args[0].ID] == nil {
   232  					tuples[v.Args[0].ID] = make([]*Value, 2)
   233  				}
   234  				tuples[v.Args[0].ID][0] = v
   235  			case v.Op == OpSelect1:
   236  				if tuples[v.Args[0].ID] == nil {
   237  					tuples[v.Args[0].ID] = make([]*Value, 2)
   238  				}
   239  				tuples[v.Args[0].ID][1] = v
   240  			case v.Type.IsTuple() && tuples[v.ID] != nil:
   241  				if tuples[v.ID][1] != nil {
   242  					order = append(order, tuples[v.ID][1])
   243  				}
   244  				if tuples[v.ID][0] != nil {
   245  					order = append(order, tuples[v.ID][0])
   246  				}
   247  				delete(tuples, v.ID)
   248  				fallthrough
   249  			default:
   250  				order = append(order, v)
   251  			}
   252  
   253  			// Update use counts of arguments.
   254  			for _, w := range v.Args {
   255  				if w.Block != b {
   256  					continue
   257  				}
   258  				uses[w.ID]--
   259  				if uses[w.ID] == 0 {
   260  					// All uses scheduled, w is now schedulable.
   261  					heap.Push(priq, w)
   262  				}
   263  			}
   264  			for _, w := range additionalArgs[v.ID] {
   265  				uses[w.ID]--
   266  				if uses[w.ID] == 0 {
   267  					// All uses scheduled, w is now schedulable.
   268  					heap.Push(priq, w)
   269  				}
   270  			}
   271  		}
   272  		if len(order) != len(b.Values) {
   273  			f.Fatalf("schedule does not include all values")
   274  		}
   275  		for i := 0; i < len(b.Values); i++ {
   276  			b.Values[i] = order[len(b.Values)-1-i]
   277  		}
   278  	}
   279  
   280  	f.scheduled = true
   281  }