github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/compress/flate/inflate.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package flate implements the DEFLATE compressed data format, described in
     6  // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
     7  // formats.
     8  package flate
     9  
    10  import (
    11  	"bufio"
    12  	"io"
    13  	"strconv"
    14  	"sync"
    15  )
    16  
    17  const (
    18  	maxCodeLen = 16 // max length of Huffman code
    19  	// The next three numbers come from the RFC section 3.2.7, with the
    20  	// additional proviso in section 3.2.5 which implies that distance codes
    21  	// 30 and 31 should never occur in compressed data.
    22  	maxNumLit  = 286
    23  	maxNumDist = 30
    24  	numCodes   = 19 // number of codes in Huffman meta-code
    25  )
    26  
    27  // Initialize the fixedHuffmanDecoder only once upon first use.
    28  var fixedOnce sync.Once
    29  var fixedHuffmanDecoder huffmanDecoder
    30  
    31  // A CorruptInputError reports the presence of corrupt input at a given offset.
    32  type CorruptInputError int64
    33  
    34  func (e CorruptInputError) Error() string {
    35  	return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
    36  }
    37  
    38  // An InternalError reports an error in the flate code itself.
    39  type InternalError string
    40  
    41  func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
    42  
    43  // A ReadError reports an error encountered while reading input.
    44  //
    45  // Deprecated: No longer returned.
    46  type ReadError struct {
    47  	Offset int64 // byte offset where error occurred
    48  	Err    error // error returned by underlying Read
    49  }
    50  
    51  func (e *ReadError) Error() string {
    52  	return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    53  }
    54  
    55  // A WriteError reports an error encountered while writing output.
    56  //
    57  // Deprecated: No longer returned.
    58  type WriteError struct {
    59  	Offset int64 // byte offset where error occurred
    60  	Err    error // error returned by underlying Write
    61  }
    62  
    63  func (e *WriteError) Error() string {
    64  	return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
    65  }
    66  
    67  // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
    68  // to switch to a new underlying Reader. This permits reusing a ReadCloser
    69  // instead of allocating a new one.
    70  type Resetter interface {
    71  	// Reset discards any buffered data and resets the Resetter as if it was
    72  	// newly initialized with the given reader.
    73  	Reset(r io.Reader, dict []byte) error
    74  }
    75  
    76  // The data structure for decoding Huffman tables is based on that of
    77  // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
    78  // For codes smaller than the table width, there are multiple entries
    79  // (each combination of trailing bits has the same value). For codes
    80  // larger than the table width, the table contains a link to an overflow
    81  // table. The width of each entry in the link table is the maximum code
    82  // size minus the chunk width.
    83  //
    84  // Note that you can do a lookup in the table even without all bits
    85  // filled. Since the extra bits are zero, and the DEFLATE Huffman codes
    86  // have the property that shorter codes come before longer ones, the
    87  // bit length estimate in the result is a lower bound on the actual
    88  // number of bits.
    89  //
    90  // See the following:
    91  //	http://www.gzip.org/algorithm.txt
    92  
    93  // chunk & 15 is number of bits
    94  // chunk >> 4 is value, including table link
    95  
    96  const (
    97  	huffmanChunkBits  = 9
    98  	huffmanNumChunks  = 1 << huffmanChunkBits
    99  	huffmanCountMask  = 15
   100  	huffmanValueShift = 4
   101  )
   102  
   103  type huffmanDecoder struct {
   104  	min      int                      // the minimum code length
   105  	chunks   [huffmanNumChunks]uint32 // chunks as described above
   106  	links    [][]uint32               // overflow links
   107  	linkMask uint32                   // mask the width of the link table
   108  }
   109  
   110  // Initialize Huffman decoding tables from array of code lengths.
   111  // Following this function, h is guaranteed to be initialized into a complete
   112  // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
   113  // degenerate case where the tree has only a single symbol with length 1. Empty
   114  // trees are permitted.
   115  func (h *huffmanDecoder) init(bits []int) bool {
   116  	// Sanity enables additional runtime tests during Huffman
   117  	// table construction. It's intended to be used during
   118  	// development to supplement the currently ad-hoc unit tests.
   119  	const sanity = false
   120  
   121  	if h.min != 0 {
   122  		*h = huffmanDecoder{}
   123  	}
   124  
   125  	// Count number of codes of each length,
   126  	// compute min and max length.
   127  	var count [maxCodeLen]int
   128  	var min, max int
   129  	for _, n := range bits {
   130  		if n == 0 {
   131  			continue
   132  		}
   133  		if min == 0 || n < min {
   134  			min = n
   135  		}
   136  		if n > max {
   137  			max = n
   138  		}
   139  		count[n]++
   140  	}
   141  
   142  	// Empty tree. The decompressor.huffSym function will fail later if the tree
   143  	// is used. Technically, an empty tree is only valid for the HDIST tree and
   144  	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
   145  	// is guaranteed to fail since it will attempt to use the tree to decode the
   146  	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
   147  	// guaranteed to fail later since the compressed data section must be
   148  	// composed of at least one symbol (the end-of-block marker).
   149  	if max == 0 {
   150  		return true
   151  	}
   152  
   153  	code := 0
   154  	var nextcode [maxCodeLen]int
   155  	for i := min; i <= max; i++ {
   156  		code <<= 1
   157  		nextcode[i] = code
   158  		code += count[i]
   159  	}
   160  
   161  	// Check that the coding is complete (i.e., that we've
   162  	// assigned all 2-to-the-max possible bit sequences).
   163  	// Exception: To be compatible with zlib, we also need to
   164  	// accept degenerate single-code codings. See also
   165  	// TestDegenerateHuffmanCoding.
   166  	if code != 1<<uint(max) && !(code == 1 && max == 1) {
   167  		return false
   168  	}
   169  
   170  	h.min = min
   171  	if max > huffmanChunkBits {
   172  		numLinks := 1 << (uint(max) - huffmanChunkBits)
   173  		h.linkMask = uint32(numLinks - 1)
   174  
   175  		// create link tables
   176  		link := nextcode[huffmanChunkBits+1] >> 1
   177  		h.links = make([][]uint32, huffmanNumChunks-link)
   178  		for j := uint(link); j < huffmanNumChunks; j++ {
   179  			reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
   180  			reverse >>= uint(16 - huffmanChunkBits)
   181  			off := j - uint(link)
   182  			if sanity && h.chunks[reverse] != 0 {
   183  				panic("impossible: overwriting existing chunk")
   184  			}
   185  			h.chunks[reverse] = uint32(off<<huffmanValueShift | (huffmanChunkBits + 1))
   186  			h.links[off] = make([]uint32, numLinks)
   187  		}
   188  	}
   189  
   190  	for i, n := range bits {
   191  		if n == 0 {
   192  			continue
   193  		}
   194  		code := nextcode[n]
   195  		nextcode[n]++
   196  		chunk := uint32(i<<huffmanValueShift | n)
   197  		reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
   198  		reverse >>= uint(16 - n)
   199  		if n <= huffmanChunkBits {
   200  			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
   201  				// We should never need to overwrite
   202  				// an existing chunk. Also, 0 is
   203  				// never a valid chunk, because the
   204  				// lower 4 "count" bits should be
   205  				// between 1 and 15.
   206  				if sanity && h.chunks[off] != 0 {
   207  					panic("impossible: overwriting existing chunk")
   208  				}
   209  				h.chunks[off] = chunk
   210  			}
   211  		} else {
   212  			j := reverse & (huffmanNumChunks - 1)
   213  			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
   214  				// Longer codes should have been
   215  				// associated with a link table above.
   216  				panic("impossible: not an indirect chunk")
   217  			}
   218  			value := h.chunks[j] >> huffmanValueShift
   219  			linktab := h.links[value]
   220  			reverse >>= huffmanChunkBits
   221  			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
   222  				if sanity && linktab[off] != 0 {
   223  					panic("impossible: overwriting existing chunk")
   224  				}
   225  				linktab[off] = chunk
   226  			}
   227  		}
   228  	}
   229  
   230  	if sanity {
   231  		// Above we've sanity checked that we never overwrote
   232  		// an existing entry. Here we additionally check that
   233  		// we filled the tables completely.
   234  		for i, chunk := range h.chunks {
   235  			if chunk == 0 {
   236  				// As an exception, in the degenerate
   237  				// single-code case, we allow odd
   238  				// chunks to be missing.
   239  				if code == 1 && i%2 == 1 {
   240  					continue
   241  				}
   242  				panic("impossible: missing chunk")
   243  			}
   244  		}
   245  		for _, linktab := range h.links {
   246  			for _, chunk := range linktab {
   247  				if chunk == 0 {
   248  					panic("impossible: missing chunk")
   249  				}
   250  			}
   251  		}
   252  	}
   253  
   254  	return true
   255  }
   256  
   257  // The actual read interface needed by NewReader.
   258  // If the passed in io.Reader does not also have ReadByte,
   259  // the NewReader will introduce its own buffering.
   260  type Reader interface {
   261  	io.Reader
   262  	io.ByteReader
   263  }
   264  
   265  // Decompress state.
   266  type decompressor struct {
   267  	// Input source.
   268  	r       Reader
   269  	roffset int64
   270  
   271  	// Input bits, in top of b.
   272  	b  uint32
   273  	nb uint
   274  
   275  	// Huffman decoders for literal/length, distance.
   276  	h1, h2 huffmanDecoder
   277  
   278  	// Length arrays used to define Huffman codes.
   279  	bits     *[maxNumLit + maxNumDist]int
   280  	codebits *[numCodes]int
   281  
   282  	// Output history, buffer.
   283  	dict dictDecoder
   284  
   285  	// Temporary buffer (avoids repeated allocation).
   286  	buf [4]byte
   287  
   288  	// Next step in the decompression,
   289  	// and decompression state.
   290  	step      func(*decompressor)
   291  	stepState int
   292  	final     bool
   293  	err       error
   294  	toRead    []byte
   295  	hl, hd    *huffmanDecoder
   296  	copyLen   int
   297  	copyDist  int
   298  }
   299  
   300  func (f *decompressor) nextBlock() {
   301  	for f.nb < 1+2 {
   302  		if f.err = f.moreBits(); f.err != nil {
   303  			return
   304  		}
   305  	}
   306  	f.final = f.b&1 == 1
   307  	f.b >>= 1
   308  	typ := f.b & 3
   309  	f.b >>= 2
   310  	f.nb -= 1 + 2
   311  	switch typ {
   312  	case 0:
   313  		f.dataBlock()
   314  	case 1:
   315  		// compressed, fixed Huffman tables
   316  		f.hl = &fixedHuffmanDecoder
   317  		f.hd = nil
   318  		f.huffmanBlock()
   319  	case 2:
   320  		// compressed, dynamic Huffman tables
   321  		if f.err = f.readHuffman(); f.err != nil {
   322  			break
   323  		}
   324  		f.hl = &f.h1
   325  		f.hd = &f.h2
   326  		f.huffmanBlock()
   327  	default:
   328  		// 3 is reserved.
   329  		f.err = CorruptInputError(f.roffset)
   330  	}
   331  }
   332  
   333  func (f *decompressor) Read(b []byte) (int, error) {
   334  	for {
   335  		if len(f.toRead) > 0 {
   336  			n := copy(b, f.toRead)
   337  			f.toRead = f.toRead[n:]
   338  			if len(f.toRead) == 0 {
   339  				return n, f.err
   340  			}
   341  			return n, nil
   342  		}
   343  		if f.err != nil {
   344  			return 0, f.err
   345  		}
   346  		f.step(f)
   347  		if f.err != nil && len(f.toRead) == 0 {
   348  			f.toRead = f.dict.readFlush() // Flush what's left in case of error
   349  		}
   350  	}
   351  }
   352  
   353  func (f *decompressor) Close() error {
   354  	if f.err == io.EOF {
   355  		return nil
   356  	}
   357  	return f.err
   358  }
   359  
   360  // RFC 1951 section 3.2.7.
   361  // Compression with dynamic Huffman codes
   362  
   363  var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
   364  
   365  func (f *decompressor) readHuffman() error {
   366  	// HLIT[5], HDIST[5], HCLEN[4].
   367  	for f.nb < 5+5+4 {
   368  		if err := f.moreBits(); err != nil {
   369  			return err
   370  		}
   371  	}
   372  	nlit := int(f.b&0x1F) + 257
   373  	if nlit > maxNumLit {
   374  		return CorruptInputError(f.roffset)
   375  	}
   376  	f.b >>= 5
   377  	ndist := int(f.b&0x1F) + 1
   378  	if ndist > maxNumDist {
   379  		return CorruptInputError(f.roffset)
   380  	}
   381  	f.b >>= 5
   382  	nclen := int(f.b&0xF) + 4
   383  	// numCodes is 19, so nclen is always valid.
   384  	f.b >>= 4
   385  	f.nb -= 5 + 5 + 4
   386  
   387  	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
   388  	for i := 0; i < nclen; i++ {
   389  		for f.nb < 3 {
   390  			if err := f.moreBits(); err != nil {
   391  				return err
   392  			}
   393  		}
   394  		f.codebits[codeOrder[i]] = int(f.b & 0x7)
   395  		f.b >>= 3
   396  		f.nb -= 3
   397  	}
   398  	for i := nclen; i < len(codeOrder); i++ {
   399  		f.codebits[codeOrder[i]] = 0
   400  	}
   401  	if !f.h1.init(f.codebits[0:]) {
   402  		return CorruptInputError(f.roffset)
   403  	}
   404  
   405  	// HLIT + 257 code lengths, HDIST + 1 code lengths,
   406  	// using the code length Huffman code.
   407  	for i, n := 0, nlit+ndist; i < n; {
   408  		x, err := f.huffSym(&f.h1)
   409  		if err != nil {
   410  			return err
   411  		}
   412  		if x < 16 {
   413  			// Actual length.
   414  			f.bits[i] = x
   415  			i++
   416  			continue
   417  		}
   418  		// Repeat previous length or zero.
   419  		var rep int
   420  		var nb uint
   421  		var b int
   422  		switch x {
   423  		default:
   424  			return InternalError("unexpected length code")
   425  		case 16:
   426  			rep = 3
   427  			nb = 2
   428  			if i == 0 {
   429  				return CorruptInputError(f.roffset)
   430  			}
   431  			b = f.bits[i-1]
   432  		case 17:
   433  			rep = 3
   434  			nb = 3
   435  			b = 0
   436  		case 18:
   437  			rep = 11
   438  			nb = 7
   439  			b = 0
   440  		}
   441  		for f.nb < nb {
   442  			if err := f.moreBits(); err != nil {
   443  				return err
   444  			}
   445  		}
   446  		rep += int(f.b & uint32(1<<nb-1))
   447  		f.b >>= nb
   448  		f.nb -= nb
   449  		if i+rep > n {
   450  			return CorruptInputError(f.roffset)
   451  		}
   452  		for j := 0; j < rep; j++ {
   453  			f.bits[i] = b
   454  			i++
   455  		}
   456  	}
   457  
   458  	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
   459  		return CorruptInputError(f.roffset)
   460  	}
   461  
   462  	// As an optimization, we can initialize the min bits to read at a time
   463  	// for the HLIT tree to the length of the EOB marker since we know that
   464  	// every block must terminate with one. This preserves the property that
   465  	// we never read any extra bytes after the end of the DEFLATE stream.
   466  	if f.h1.min < f.bits[endBlockMarker] {
   467  		f.h1.min = f.bits[endBlockMarker]
   468  	}
   469  
   470  	return nil
   471  }
   472  
   473  // Decode a single Huffman block from f.
   474  // hl and hd are the Huffman states for the lit/length values
   475  // and the distance values, respectively. If hd == nil, using the
   476  // fixed distance encoding associated with fixed Huffman blocks.
   477  func (f *decompressor) huffmanBlock() {
   478  	const (
   479  		stateInit = iota // Zero value must be stateInit
   480  		stateDict
   481  	)
   482  
   483  	switch f.stepState {
   484  	case stateInit:
   485  		goto readLiteral
   486  	case stateDict:
   487  		goto copyHistory
   488  	}
   489  
   490  readLiteral:
   491  	// Read literal and/or (length, distance) according to RFC section 3.2.3.
   492  	{
   493  		v, err := f.huffSym(f.hl)
   494  		if err != nil {
   495  			f.err = err
   496  			return
   497  		}
   498  		var n uint // number of bits extra
   499  		var length int
   500  		switch {
   501  		case v < 256:
   502  			f.dict.writeByte(byte(v))
   503  			if f.dict.availWrite() == 0 {
   504  				f.toRead = f.dict.readFlush()
   505  				f.step = (*decompressor).huffmanBlock
   506  				f.stepState = stateInit
   507  				return
   508  			}
   509  			goto readLiteral
   510  		case v == 256:
   511  			f.finishBlock()
   512  			return
   513  		// otherwise, reference to older data
   514  		case v < 265:
   515  			length = v - (257 - 3)
   516  			n = 0
   517  		case v < 269:
   518  			length = v*2 - (265*2 - 11)
   519  			n = 1
   520  		case v < 273:
   521  			length = v*4 - (269*4 - 19)
   522  			n = 2
   523  		case v < 277:
   524  			length = v*8 - (273*8 - 35)
   525  			n = 3
   526  		case v < 281:
   527  			length = v*16 - (277*16 - 67)
   528  			n = 4
   529  		case v < 285:
   530  			length = v*32 - (281*32 - 131)
   531  			n = 5
   532  		case v < maxNumLit:
   533  			length = 258
   534  			n = 0
   535  		default:
   536  			f.err = CorruptInputError(f.roffset)
   537  			return
   538  		}
   539  		if n > 0 {
   540  			for f.nb < n {
   541  				if err = f.moreBits(); err != nil {
   542  					f.err = err
   543  					return
   544  				}
   545  			}
   546  			length += int(f.b & uint32(1<<n-1))
   547  			f.b >>= n
   548  			f.nb -= n
   549  		}
   550  
   551  		var dist int
   552  		if f.hd == nil {
   553  			for f.nb < 5 {
   554  				if err = f.moreBits(); err != nil {
   555  					f.err = err
   556  					return
   557  				}
   558  			}
   559  			dist = int(reverseByte[(f.b&0x1F)<<3])
   560  			f.b >>= 5
   561  			f.nb -= 5
   562  		} else {
   563  			if dist, err = f.huffSym(f.hd); err != nil {
   564  				f.err = err
   565  				return
   566  			}
   567  		}
   568  
   569  		switch {
   570  		case dist < 4:
   571  			dist++
   572  		case dist < maxNumDist:
   573  			nb := uint(dist-2) >> 1
   574  			// have 1 bit in bottom of dist, need nb more.
   575  			extra := (dist & 1) << nb
   576  			for f.nb < nb {
   577  				if err = f.moreBits(); err != nil {
   578  					f.err = err
   579  					return
   580  				}
   581  			}
   582  			extra |= int(f.b & uint32(1<<nb-1))
   583  			f.b >>= nb
   584  			f.nb -= nb
   585  			dist = 1<<(nb+1) + 1 + extra
   586  		default:
   587  			f.err = CorruptInputError(f.roffset)
   588  			return
   589  		}
   590  
   591  		// No check on length; encoding can be prescient.
   592  		if dist > f.dict.histSize() {
   593  			f.err = CorruptInputError(f.roffset)
   594  			return
   595  		}
   596  
   597  		f.copyLen, f.copyDist = length, dist
   598  		goto copyHistory
   599  	}
   600  
   601  copyHistory:
   602  	// Perform a backwards copy according to RFC section 3.2.3.
   603  	{
   604  		cnt := f.dict.tryWriteCopy(f.copyDist, f.copyLen)
   605  		if cnt == 0 {
   606  			cnt = f.dict.writeCopy(f.copyDist, f.copyLen)
   607  		}
   608  		f.copyLen -= cnt
   609  
   610  		if f.dict.availWrite() == 0 || f.copyLen > 0 {
   611  			f.toRead = f.dict.readFlush()
   612  			f.step = (*decompressor).huffmanBlock // We need to continue this work
   613  			f.stepState = stateDict
   614  			return
   615  		}
   616  		goto readLiteral
   617  	}
   618  }
   619  
   620  // Copy a single uncompressed data block from input to output.
   621  func (f *decompressor) dataBlock() {
   622  	// Uncompressed.
   623  	// Discard current half-byte.
   624  	f.nb = 0
   625  	f.b = 0
   626  
   627  	// Length then ones-complement of length.
   628  	nr, err := io.ReadFull(f.r, f.buf[0:4])
   629  	f.roffset += int64(nr)
   630  	if err != nil {
   631  		if err == io.EOF {
   632  			err = io.ErrUnexpectedEOF
   633  		}
   634  		f.err = err
   635  		return
   636  	}
   637  	n := int(f.buf[0]) | int(f.buf[1])<<8
   638  	nn := int(f.buf[2]) | int(f.buf[3])<<8
   639  	if uint16(nn) != uint16(^n) {
   640  		f.err = CorruptInputError(f.roffset)
   641  		return
   642  	}
   643  
   644  	if n == 0 {
   645  		f.toRead = f.dict.readFlush()
   646  		f.finishBlock()
   647  		return
   648  	}
   649  
   650  	f.copyLen = n
   651  	f.copyData()
   652  }
   653  
   654  // copyData copies f.copyLen bytes from the underlying reader into f.hist.
   655  // It pauses for reads when f.hist is full.
   656  func (f *decompressor) copyData() {
   657  	buf := f.dict.writeSlice()
   658  	if len(buf) > f.copyLen {
   659  		buf = buf[:f.copyLen]
   660  	}
   661  
   662  	cnt, err := io.ReadFull(f.r, buf)
   663  	f.roffset += int64(cnt)
   664  	f.copyLen -= cnt
   665  	f.dict.writeMark(cnt)
   666  	if err != nil {
   667  		if err == io.EOF {
   668  			err = io.ErrUnexpectedEOF
   669  		}
   670  		f.err = err
   671  		return
   672  	}
   673  
   674  	if f.dict.availWrite() == 0 || f.copyLen > 0 {
   675  		f.toRead = f.dict.readFlush()
   676  		f.step = (*decompressor).copyData
   677  		return
   678  	}
   679  	f.finishBlock()
   680  }
   681  
   682  func (f *decompressor) finishBlock() {
   683  	if f.final {
   684  		if f.dict.availRead() > 0 {
   685  			f.toRead = f.dict.readFlush()
   686  		}
   687  		f.err = io.EOF
   688  	}
   689  	f.step = (*decompressor).nextBlock
   690  }
   691  
   692  func (f *decompressor) moreBits() error {
   693  	c, err := f.r.ReadByte()
   694  	if err != nil {
   695  		if err == io.EOF {
   696  			err = io.ErrUnexpectedEOF
   697  		}
   698  		return err
   699  	}
   700  	f.roffset++
   701  	f.b |= uint32(c) << f.nb
   702  	f.nb += 8
   703  	return nil
   704  }
   705  
   706  // Read the next Huffman-encoded symbol from f according to h.
   707  func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
   708  	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
   709  	// with single element, huffSym must error on these two edge cases. In both
   710  	// cases, the chunks slice will be 0 for the invalid sequence, leading it
   711  	// satisfy the n == 0 check below.
   712  	n := uint(h.min)
   713  	for {
   714  		for f.nb < n {
   715  			if err := f.moreBits(); err != nil {
   716  				return 0, err
   717  			}
   718  		}
   719  		chunk := h.chunks[f.b&(huffmanNumChunks-1)]
   720  		n = uint(chunk & huffmanCountMask)
   721  		if n > huffmanChunkBits {
   722  			chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
   723  			n = uint(chunk & huffmanCountMask)
   724  		}
   725  		if n <= f.nb {
   726  			if n == 0 {
   727  				f.err = CorruptInputError(f.roffset)
   728  				return 0, f.err
   729  			}
   730  			f.b >>= n
   731  			f.nb -= n
   732  			return int(chunk >> huffmanValueShift), nil
   733  		}
   734  	}
   735  }
   736  
   737  func makeReader(r io.Reader) Reader {
   738  	if rr, ok := r.(Reader); ok {
   739  		return rr
   740  	}
   741  	return bufio.NewReader(r)
   742  }
   743  
   744  func fixedHuffmanDecoderInit() {
   745  	fixedOnce.Do(func() {
   746  		// These come from the RFC section 3.2.6.
   747  		var bits [288]int
   748  		for i := 0; i < 144; i++ {
   749  			bits[i] = 8
   750  		}
   751  		for i := 144; i < 256; i++ {
   752  			bits[i] = 9
   753  		}
   754  		for i := 256; i < 280; i++ {
   755  			bits[i] = 7
   756  		}
   757  		for i := 280; i < 288; i++ {
   758  			bits[i] = 8
   759  		}
   760  		fixedHuffmanDecoder.init(bits[:])
   761  	})
   762  }
   763  
   764  func (f *decompressor) Reset(r io.Reader, dict []byte) error {
   765  	*f = decompressor{
   766  		r:        makeReader(r),
   767  		bits:     f.bits,
   768  		codebits: f.codebits,
   769  		dict:     f.dict,
   770  		step:     (*decompressor).nextBlock,
   771  	}
   772  	f.dict.init(maxMatchOffset, dict)
   773  	return nil
   774  }
   775  
   776  // NewReader returns a new ReadCloser that can be used
   777  // to read the uncompressed version of r.
   778  // If r does not also implement io.ByteReader,
   779  // the decompressor may read more data than necessary from r.
   780  // It is the caller's responsibility to call Close on the ReadCloser
   781  // when finished reading.
   782  //
   783  // The ReadCloser returned by NewReader also implements Resetter.
   784  func NewReader(r io.Reader) io.ReadCloser {
   785  	fixedHuffmanDecoderInit()
   786  
   787  	var f decompressor
   788  	f.r = makeReader(r)
   789  	f.bits = new([maxNumLit + maxNumDist]int)
   790  	f.codebits = new([numCodes]int)
   791  	f.step = (*decompressor).nextBlock
   792  	f.dict.init(maxMatchOffset, nil)
   793  	return &f
   794  }
   795  
   796  // NewReaderDict is like NewReader but initializes the reader
   797  // with a preset dictionary. The returned Reader behaves as if
   798  // the uncompressed data stream started with the given dictionary,
   799  // which has already been read. NewReaderDict is typically used
   800  // to read data compressed by NewWriterDict.
   801  //
   802  // The ReadCloser returned by NewReader also implements Resetter.
   803  func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
   804  	fixedHuffmanDecoderInit()
   805  
   806  	var f decompressor
   807  	f.r = makeReader(r)
   808  	f.bits = new([maxNumLit + maxNumDist]int)
   809  	f.codebits = new([numCodes]int)
   810  	f.step = (*decompressor).nextBlock
   811  	f.dict.init(maxMatchOffset, dict)
   812  	return &f
   813  }