github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/encoding/base32/base32.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package base32 implements base32 encoding as specified by RFC 4648.
     6  package base32
     7  
     8  import (
     9  	"bytes"
    10  	"io"
    11  	"strconv"
    12  	"strings"
    13  )
    14  
    15  /*
    16   * Encodings
    17   */
    18  
    19  // An Encoding is a radix 32 encoding/decoding scheme, defined by a
    20  // 32-character alphabet. The most common is the "base32" encoding
    21  // introduced for SASL GSSAPI and standardized in RFC 4648.
    22  // The alternate "base32hex" encoding is used in DNSSEC.
    23  type Encoding struct {
    24  	encode    string
    25  	decodeMap [256]byte
    26  }
    27  
    28  const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"
    29  const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV"
    30  
    31  // NewEncoding returns a new Encoding defined by the given alphabet,
    32  // which must be a 32-byte string.
    33  func NewEncoding(encoder string) *Encoding {
    34  	e := new(Encoding)
    35  	e.encode = encoder
    36  	for i := 0; i < len(e.decodeMap); i++ {
    37  		e.decodeMap[i] = 0xFF
    38  	}
    39  	for i := 0; i < len(encoder); i++ {
    40  		e.decodeMap[encoder[i]] = byte(i)
    41  	}
    42  	return e
    43  }
    44  
    45  // StdEncoding is the standard base32 encoding, as defined in
    46  // RFC 4648.
    47  var StdEncoding = NewEncoding(encodeStd)
    48  
    49  // HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648.
    50  // It is typically used in DNS.
    51  var HexEncoding = NewEncoding(encodeHex)
    52  
    53  var removeNewlinesMapper = func(r rune) rune {
    54  	if r == '\r' || r == '\n' {
    55  		return -1
    56  	}
    57  	return r
    58  }
    59  
    60  /*
    61   * Encoder
    62   */
    63  
    64  // Encode encodes src using the encoding enc, writing
    65  // EncodedLen(len(src)) bytes to dst.
    66  //
    67  // The encoding pads the output to a multiple of 8 bytes,
    68  // so Encode is not appropriate for use on individual blocks
    69  // of a large data stream. Use NewEncoder() instead.
    70  func (enc *Encoding) Encode(dst, src []byte) {
    71  	if len(src) == 0 {
    72  		return
    73  	}
    74  
    75  	for len(src) > 0 {
    76  		var b0, b1, b2, b3, b4, b5, b6, b7 byte
    77  
    78  		// Unpack 8x 5-bit source blocks into a 5 byte
    79  		// destination quantum
    80  		switch len(src) {
    81  		default:
    82  			b7 = src[4] & 0x1F
    83  			b6 = src[4] >> 5
    84  			fallthrough
    85  		case 4:
    86  			b6 |= (src[3] << 3) & 0x1F
    87  			b5 = (src[3] >> 2) & 0x1F
    88  			b4 = src[3] >> 7
    89  			fallthrough
    90  		case 3:
    91  			b4 |= (src[2] << 1) & 0x1F
    92  			b3 = (src[2] >> 4) & 0x1F
    93  			fallthrough
    94  		case 2:
    95  			b3 |= (src[1] << 4) & 0x1F
    96  			b2 = (src[1] >> 1) & 0x1F
    97  			b1 = (src[1] >> 6) & 0x1F
    98  			fallthrough
    99  		case 1:
   100  			b1 |= (src[0] << 2) & 0x1F
   101  			b0 = src[0] >> 3
   102  		}
   103  
   104  		// Encode 5-bit blocks using the base32 alphabet
   105  		dst[0] = enc.encode[b0]
   106  		dst[1] = enc.encode[b1]
   107  		dst[2] = enc.encode[b2]
   108  		dst[3] = enc.encode[b3]
   109  		dst[4] = enc.encode[b4]
   110  		dst[5] = enc.encode[b5]
   111  		dst[6] = enc.encode[b6]
   112  		dst[7] = enc.encode[b7]
   113  
   114  		// Pad the final quantum
   115  		if len(src) < 5 {
   116  			dst[7] = '='
   117  			if len(src) < 4 {
   118  				dst[6] = '='
   119  				dst[5] = '='
   120  				if len(src) < 3 {
   121  					dst[4] = '='
   122  					if len(src) < 2 {
   123  						dst[3] = '='
   124  						dst[2] = '='
   125  					}
   126  				}
   127  			}
   128  			break
   129  		}
   130  		src = src[5:]
   131  		dst = dst[8:]
   132  	}
   133  }
   134  
   135  // EncodeToString returns the base32 encoding of src.
   136  func (enc *Encoding) EncodeToString(src []byte) string {
   137  	buf := make([]byte, enc.EncodedLen(len(src)))
   138  	enc.Encode(buf, src)
   139  	return string(buf)
   140  }
   141  
   142  type encoder struct {
   143  	err  error
   144  	enc  *Encoding
   145  	w    io.Writer
   146  	buf  [5]byte    // buffered data waiting to be encoded
   147  	nbuf int        // number of bytes in buf
   148  	out  [1024]byte // output buffer
   149  }
   150  
   151  func (e *encoder) Write(p []byte) (n int, err error) {
   152  	if e.err != nil {
   153  		return 0, e.err
   154  	}
   155  
   156  	// Leading fringe.
   157  	if e.nbuf > 0 {
   158  		var i int
   159  		for i = 0; i < len(p) && e.nbuf < 5; i++ {
   160  			e.buf[e.nbuf] = p[i]
   161  			e.nbuf++
   162  		}
   163  		n += i
   164  		p = p[i:]
   165  		if e.nbuf < 5 {
   166  			return
   167  		}
   168  		e.enc.Encode(e.out[0:], e.buf[0:])
   169  		if _, e.err = e.w.Write(e.out[0:8]); e.err != nil {
   170  			return n, e.err
   171  		}
   172  		e.nbuf = 0
   173  	}
   174  
   175  	// Large interior chunks.
   176  	for len(p) >= 5 {
   177  		nn := len(e.out) / 8 * 5
   178  		if nn > len(p) {
   179  			nn = len(p)
   180  			nn -= nn % 5
   181  		}
   182  		e.enc.Encode(e.out[0:], p[0:nn])
   183  		if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil {
   184  			return n, e.err
   185  		}
   186  		n += nn
   187  		p = p[nn:]
   188  	}
   189  
   190  	// Trailing fringe.
   191  	for i := 0; i < len(p); i++ {
   192  		e.buf[i] = p[i]
   193  	}
   194  	e.nbuf = len(p)
   195  	n += len(p)
   196  	return
   197  }
   198  
   199  // Close flushes any pending output from the encoder.
   200  // It is an error to call Write after calling Close.
   201  func (e *encoder) Close() error {
   202  	// If there's anything left in the buffer, flush it out
   203  	if e.err == nil && e.nbuf > 0 {
   204  		e.enc.Encode(e.out[0:], e.buf[0:e.nbuf])
   205  		e.nbuf = 0
   206  		_, e.err = e.w.Write(e.out[0:8])
   207  	}
   208  	return e.err
   209  }
   210  
   211  // NewEncoder returns a new base32 stream encoder. Data written to
   212  // the returned writer will be encoded using enc and then written to w.
   213  // Base32 encodings operate in 5-byte blocks; when finished
   214  // writing, the caller must Close the returned encoder to flush any
   215  // partially written blocks.
   216  func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser {
   217  	return &encoder{enc: enc, w: w}
   218  }
   219  
   220  // EncodedLen returns the length in bytes of the base32 encoding
   221  // of an input buffer of length n.
   222  func (enc *Encoding) EncodedLen(n int) int { return (n + 4) / 5 * 8 }
   223  
   224  /*
   225   * Decoder
   226   */
   227  
   228  type CorruptInputError int64
   229  
   230  func (e CorruptInputError) Error() string {
   231  	return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10)
   232  }
   233  
   234  // decode is like Decode but returns an additional 'end' value, which
   235  // indicates if end-of-message padding was encountered and thus any
   236  // additional data is an error. This method assumes that src has been
   237  // stripped of all supported whitespace ('\r' and '\n').
   238  func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) {
   239  	olen := len(src)
   240  	for len(src) > 0 && !end {
   241  		// Decode quantum using the base32 alphabet
   242  		var dbuf [8]byte
   243  		dlen := 8
   244  
   245  		for j := 0; j < 8; {
   246  			if len(src) == 0 {
   247  				return n, false, CorruptInputError(olen - len(src) - j)
   248  			}
   249  			in := src[0]
   250  			src = src[1:]
   251  			if in == '=' && j >= 2 && len(src) < 8 {
   252  				// We've reached the end and there's padding
   253  				if len(src)+j < 8-1 {
   254  					// not enough padding
   255  					return n, false, CorruptInputError(olen)
   256  				}
   257  				for k := 0; k < 8-1-j; k++ {
   258  					if len(src) > k && src[k] != '=' {
   259  						// incorrect padding
   260  						return n, false, CorruptInputError(olen - len(src) + k - 1)
   261  					}
   262  				}
   263  				dlen, end = j, true
   264  				// 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not
   265  				// valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing
   266  				// the five valid padding lengths, and Section 9 "Illustrations and
   267  				// Examples" for an illustration for how the 1st, 3rd and 6th base32
   268  				// src bytes do not yield enough information to decode a dst byte.
   269  				if dlen == 1 || dlen == 3 || dlen == 6 {
   270  					return n, false, CorruptInputError(olen - len(src) - 1)
   271  				}
   272  				break
   273  			}
   274  			dbuf[j] = enc.decodeMap[in]
   275  			if dbuf[j] == 0xFF {
   276  				return n, false, CorruptInputError(olen - len(src) - 1)
   277  			}
   278  			j++
   279  		}
   280  
   281  		// Pack 8x 5-bit source blocks into 5 byte destination
   282  		// quantum
   283  		switch dlen {
   284  		case 8:
   285  			dst[4] = dbuf[6]<<5 | dbuf[7]
   286  			fallthrough
   287  		case 7:
   288  			dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3
   289  			fallthrough
   290  		case 5:
   291  			dst[2] = dbuf[3]<<4 | dbuf[4]>>1
   292  			fallthrough
   293  		case 4:
   294  			dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4
   295  			fallthrough
   296  		case 2:
   297  			dst[0] = dbuf[0]<<3 | dbuf[1]>>2
   298  		}
   299  		dst = dst[5:]
   300  		switch dlen {
   301  		case 2:
   302  			n += 1
   303  		case 4:
   304  			n += 2
   305  		case 5:
   306  			n += 3
   307  		case 7:
   308  			n += 4
   309  		case 8:
   310  			n += 5
   311  		}
   312  	}
   313  	return n, end, nil
   314  }
   315  
   316  // Decode decodes src using the encoding enc. It writes at most
   317  // DecodedLen(len(src)) bytes to dst and returns the number of bytes
   318  // written. If src contains invalid base32 data, it will return the
   319  // number of bytes successfully written and CorruptInputError.
   320  // New line characters (\r and \n) are ignored.
   321  func (enc *Encoding) Decode(dst, src []byte) (n int, err error) {
   322  	src = bytes.Map(removeNewlinesMapper, src)
   323  	n, _, err = enc.decode(dst, src)
   324  	return
   325  }
   326  
   327  // DecodeString returns the bytes represented by the base32 string s.
   328  func (enc *Encoding) DecodeString(s string) ([]byte, error) {
   329  	s = strings.Map(removeNewlinesMapper, s)
   330  	dbuf := make([]byte, enc.DecodedLen(len(s)))
   331  	n, _, err := enc.decode(dbuf, []byte(s))
   332  	return dbuf[:n], err
   333  }
   334  
   335  type decoder struct {
   336  	err    error
   337  	enc    *Encoding
   338  	r      io.Reader
   339  	end    bool       // saw end of message
   340  	buf    [1024]byte // leftover input
   341  	nbuf   int
   342  	out    []byte // leftover decoded output
   343  	outbuf [1024 / 8 * 5]byte
   344  }
   345  
   346  func (d *decoder) Read(p []byte) (n int, err error) {
   347  	if d.err != nil {
   348  		return 0, d.err
   349  	}
   350  
   351  	// Use leftover decoded output from last read.
   352  	if len(d.out) > 0 {
   353  		n = copy(p, d.out)
   354  		d.out = d.out[n:]
   355  		return n, nil
   356  	}
   357  
   358  	// Read a chunk.
   359  	nn := len(p) / 5 * 8
   360  	if nn < 8 {
   361  		nn = 8
   362  	}
   363  	if nn > len(d.buf) {
   364  		nn = len(d.buf)
   365  	}
   366  	nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf)
   367  	d.nbuf += nn
   368  	if d.nbuf < 8 {
   369  		return 0, d.err
   370  	}
   371  
   372  	// Decode chunk into p, or d.out and then p if p is too small.
   373  	nr := d.nbuf / 8 * 8
   374  	nw := d.nbuf / 8 * 5
   375  	if nw > len(p) {
   376  		nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr])
   377  		d.out = d.outbuf[0:nw]
   378  		n = copy(p, d.out)
   379  		d.out = d.out[n:]
   380  	} else {
   381  		n, d.end, d.err = d.enc.decode(p, d.buf[0:nr])
   382  	}
   383  	d.nbuf -= nr
   384  	for i := 0; i < d.nbuf; i++ {
   385  		d.buf[i] = d.buf[i+nr]
   386  	}
   387  
   388  	if d.err == nil {
   389  		d.err = err
   390  	}
   391  	return n, d.err
   392  }
   393  
   394  type newlineFilteringReader struct {
   395  	wrapped io.Reader
   396  }
   397  
   398  func (r *newlineFilteringReader) Read(p []byte) (int, error) {
   399  	n, err := r.wrapped.Read(p)
   400  	for n > 0 {
   401  		offset := 0
   402  		for i, b := range p[0:n] {
   403  			if b != '\r' && b != '\n' {
   404  				if i != offset {
   405  					p[offset] = b
   406  				}
   407  				offset++
   408  			}
   409  		}
   410  		if offset > 0 {
   411  			return offset, err
   412  		}
   413  		// Previous buffer entirely whitespace, read again
   414  		n, err = r.wrapped.Read(p)
   415  	}
   416  	return n, err
   417  }
   418  
   419  // NewDecoder constructs a new base32 stream decoder.
   420  func NewDecoder(enc *Encoding, r io.Reader) io.Reader {
   421  	return &decoder{enc: enc, r: &newlineFilteringReader{r}}
   422  }
   423  
   424  // DecodedLen returns the maximum length in bytes of the decoded data
   425  // corresponding to n bytes of base32-encoded data.
   426  func (enc *Encoding) DecodedLen(n int) int { return n / 8 * 5 }