github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/image/color/ycbcr.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package color
     6  
     7  // RGBToYCbCr converts an RGB triple to a Y'CbCr triple.
     8  func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
     9  	// The JFIF specification says:
    10  	//	Y' =  0.2990*R + 0.5870*G + 0.1140*B
    11  	//	Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
    12  	//	Cr =  0.5000*R - 0.4187*G - 0.0813*B + 128
    13  	// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
    14  
    15  	r1 := int32(r)
    16  	g1 := int32(g)
    17  	b1 := int32(b)
    18  
    19  	// yy is in range [0,0xff].
    20  	//
    21  	// Note that 19595 + 38470 + 7471 equals 65536.
    22  	yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
    23  
    24  	// The bit twiddling below is equivalent to
    25  	//
    26  	// cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
    27  	// if cb < 0 {
    28  	//     cb = 0
    29  	// } else if cb > 0xff {
    30  	//     cb = ^int32(0)
    31  	// }
    32  	//
    33  	// but uses fewer branches and is faster.
    34  	// Note that the uint8 type conversion in the return
    35  	// statement will convert ^int32(0) to 0xff.
    36  	// The code below to compute cr uses a similar pattern.
    37  	//
    38  	// Note that -11056 - 21712 + 32768 equals 0.
    39  	cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15
    40  	if uint32(cb)&0xff000000 == 0 {
    41  		cb >>= 16
    42  	} else {
    43  		cb = ^(cb >> 31)
    44  	}
    45  
    46  	// Note that 32768 - 27440 - 5328 equals 0.
    47  	cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15
    48  	if uint32(cr)&0xff000000 == 0 {
    49  		cr >>= 16
    50  	} else {
    51  		cr = ^(cr >> 31)
    52  	}
    53  
    54  	return uint8(yy), uint8(cb), uint8(cr)
    55  }
    56  
    57  // YCbCrToRGB converts a Y'CbCr triple to an RGB triple.
    58  func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
    59  	// The JFIF specification says:
    60  	//	R = Y' + 1.40200*(Cr-128)
    61  	//	G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
    62  	//	B = Y' + 1.77200*(Cb-128)
    63  	// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
    64  
    65  	yy1 := int32(y) * 0x010100 // Convert 0x12 to 0x121200.
    66  	cb1 := int32(cb) - 128
    67  	cr1 := int32(cr) - 128
    68  
    69  	// The bit twiddling below is equivalent to
    70  	//
    71  	// r := (yy1 + 91881*cr1) >> 16
    72  	// if r < 0 {
    73  	//     r = 0
    74  	// } else if r > 0xff {
    75  	//     r = ^int32(0)
    76  	// }
    77  	//
    78  	// but uses fewer branches and is faster.
    79  	// Note that the uint8 type conversion in the return
    80  	// statement will convert ^int32(0) to 0xff.
    81  	// The code below to compute g and b uses a similar pattern.
    82  	r := yy1 + 91881*cr1
    83  	if uint32(r)&0xff000000 == 0 {
    84  		r >>= 16
    85  	} else {
    86  		r = ^(r >> 31)
    87  	}
    88  
    89  	g := yy1 - 22554*cb1 - 46802*cr1
    90  	if uint32(g)&0xff000000 == 0 {
    91  		g >>= 16
    92  	} else {
    93  		g = ^(g >> 31)
    94  	}
    95  
    96  	b := yy1 + 116130*cb1
    97  	if uint32(b)&0xff000000 == 0 {
    98  		b >>= 16
    99  	} else {
   100  		b = ^(b >> 31)
   101  	}
   102  
   103  	return uint8(r), uint8(g), uint8(b)
   104  }
   105  
   106  // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
   107  // one luma and two chroma components.
   108  //
   109  // JPEG, VP8, the MPEG family and other codecs use this color model. Such
   110  // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
   111  // speaking, the term YUV applies only to analog video signals, and Y' (luma)
   112  // is Y (luminance) after applying gamma correction.
   113  //
   114  // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
   115  // different formulae for converting between the two. This package follows
   116  // the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
   117  type YCbCr struct {
   118  	Y, Cb, Cr uint8
   119  }
   120  
   121  func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
   122  	// This code is a copy of the YCbCrToRGB function above, except that it
   123  	// returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a
   124  	// subtle difference between doing this and having YCbCr satisfy the Color
   125  	// interface by first converting to an RGBA. The latter loses some
   126  	// information by going to and from 8 bits per channel.
   127  	//
   128  	// For example, this code:
   129  	//	const y, cb, cr = 0x7f, 0x7f, 0x7f
   130  	//	r, g, b := color.YCbCrToRGB(y, cb, cr)
   131  	//	r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA()
   132  	//	r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA()
   133  	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0)
   134  	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1)
   135  	// prints:
   136  	//	0x7e18 0x808d 0x7db9
   137  	//	0x7e7e 0x8080 0x7d7d
   138  
   139  	yy1 := int32(c.Y) * 0x10100 // Convert 0x12 to 0x121200.
   140  	cb1 := int32(c.Cb) - 128
   141  	cr1 := int32(c.Cr) - 128
   142  
   143  	// The bit twiddling below is equivalent to
   144  	//
   145  	// r := (yy1 + 91881*cr1) >> 8
   146  	// if r < 0 {
   147  	//     r = 0
   148  	// } else if r > 0xff {
   149  	//     r = 0xffff
   150  	// }
   151  	//
   152  	// but uses fewer branches and is faster.
   153  	// The code below to compute g and b uses a similar pattern.
   154  	r := yy1 + 91881*cr1
   155  	if uint32(r)&0xff000000 == 0 {
   156  		r >>= 8
   157  	} else {
   158  		r = ^(r >> 31) & 0xffff
   159  	}
   160  
   161  	g := yy1 - 22554*cb1 - 46802*cr1
   162  	if uint32(g)&0xff000000 == 0 {
   163  		g >>= 8
   164  	} else {
   165  		g = ^(g >> 31) & 0xffff
   166  	}
   167  
   168  	b := yy1 + 116130*cb1
   169  	if uint32(b)&0xff000000 == 0 {
   170  		b >>= 8
   171  	} else {
   172  		b = ^(b >> 31) & 0xffff
   173  	}
   174  
   175  	return uint32(r), uint32(g), uint32(b), 0xffff
   176  }
   177  
   178  // YCbCrModel is the Model for Y'CbCr colors.
   179  var YCbCrModel Model = ModelFunc(yCbCrModel)
   180  
   181  func yCbCrModel(c Color) Color {
   182  	if _, ok := c.(YCbCr); ok {
   183  		return c
   184  	}
   185  	r, g, b, _ := c.RGBA()
   186  	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   187  	return YCbCr{y, u, v}
   188  }
   189  
   190  // NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having
   191  // 8 bits each for one luma, two chroma and one alpha component.
   192  type NYCbCrA struct {
   193  	YCbCr
   194  	A uint8
   195  }
   196  
   197  func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) {
   198  	// The first part of this method is the same as YCbCr.RGBA.
   199  	yy1 := int32(c.Y) * 0x10100 // Convert 0x12 to 0x121200.
   200  	cb1 := int32(c.Cb) - 128
   201  	cr1 := int32(c.Cr) - 128
   202  
   203  	// The bit twiddling below is equivalent to
   204  	//
   205  	// r := (yy1 + 91881*cr1) >> 8
   206  	// if r < 0 {
   207  	//     r = 0
   208  	// } else if r > 0xff {
   209  	//     r = 0xffff
   210  	// }
   211  	//
   212  	// but uses fewer branches and is faster.
   213  	// The code below to compute g and b uses a similar pattern.
   214  	r := yy1 + 91881*cr1
   215  	if uint32(r)&0xff000000 == 0 {
   216  		r >>= 8
   217  	} else {
   218  		r = ^(r >> 31) & 0xffff
   219  	}
   220  
   221  	g := yy1 - 22554*cb1 - 46802*cr1
   222  	if uint32(g)&0xff000000 == 0 {
   223  		g >>= 8
   224  	} else {
   225  		g = ^(g >> 31) & 0xffff
   226  	}
   227  
   228  	b := yy1 + 116130*cb1
   229  	if uint32(b)&0xff000000 == 0 {
   230  		b >>= 8
   231  	} else {
   232  		b = ^(b >> 31) & 0xffff
   233  	}
   234  
   235  	// The second part of this method applies the alpha.
   236  	a := uint32(c.A) * 0x101
   237  	return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a
   238  }
   239  
   240  // NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha
   241  // colors.
   242  var NYCbCrAModel Model = ModelFunc(nYCbCrAModel)
   243  
   244  func nYCbCrAModel(c Color) Color {
   245  	switch c := c.(type) {
   246  	case NYCbCrA:
   247  		return c
   248  	case YCbCr:
   249  		return NYCbCrA{c, 0xff}
   250  	}
   251  	r, g, b, a := c.RGBA()
   252  
   253  	// Convert from alpha-premultiplied to non-alpha-premultiplied.
   254  	if a != 0 {
   255  		r = (r * 0xffff) / a
   256  		g = (g * 0xffff) / a
   257  		b = (b * 0xffff) / a
   258  	}
   259  
   260  	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   261  	return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)}
   262  }
   263  
   264  // RGBToCMYK converts an RGB triple to a CMYK quadruple.
   265  func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) {
   266  	rr := uint32(r)
   267  	gg := uint32(g)
   268  	bb := uint32(b)
   269  	w := rr
   270  	if w < gg {
   271  		w = gg
   272  	}
   273  	if w < bb {
   274  		w = bb
   275  	}
   276  	if w == 0 {
   277  		return 0, 0, 0, 0xff
   278  	}
   279  	c := (w - rr) * 0xff / w
   280  	m := (w - gg) * 0xff / w
   281  	y := (w - bb) * 0xff / w
   282  	return uint8(c), uint8(m), uint8(y), uint8(0xff - w)
   283  }
   284  
   285  // CMYKToRGB converts a CMYK quadruple to an RGB triple.
   286  func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) {
   287  	w := 0xffff - uint32(k)*0x101
   288  	r := (0xffff - uint32(c)*0x101) * w / 0xffff
   289  	g := (0xffff - uint32(m)*0x101) * w / 0xffff
   290  	b := (0xffff - uint32(y)*0x101) * w / 0xffff
   291  	return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)
   292  }
   293  
   294  // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan,
   295  // magenta, yellow and black.
   296  //
   297  // It is not associated with any particular color profile.
   298  type CMYK struct {
   299  	C, M, Y, K uint8
   300  }
   301  
   302  func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) {
   303  	// This code is a copy of the CMYKToRGB function above, except that it
   304  	// returns values in the range [0, 0xffff] instead of [0, 0xff].
   305  
   306  	w := 0xffff - uint32(c.K)*0x101
   307  	r := (0xffff - uint32(c.C)*0x101) * w / 0xffff
   308  	g := (0xffff - uint32(c.M)*0x101) * w / 0xffff
   309  	b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff
   310  	return r, g, b, 0xffff
   311  }
   312  
   313  // CMYKModel is the Model for CMYK colors.
   314  var CMYKModel Model = ModelFunc(cmykModel)
   315  
   316  func cmykModel(c Color) Color {
   317  	if _, ok := c.(CMYK); ok {
   318  		return c
   319  	}
   320  	r, g, b, _ := c.RGBA()
   321  	cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   322  	return CMYK{cc, mm, yy, kk}
   323  }