github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/image/color/ycbcr.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package color 6 7 // RGBToYCbCr converts an RGB triple to a Y'CbCr triple. 8 func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { 9 // The JFIF specification says: 10 // Y' = 0.2990*R + 0.5870*G + 0.1140*B 11 // Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 12 // Cr = 0.5000*R - 0.4187*G - 0.0813*B + 128 13 // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. 14 15 r1 := int32(r) 16 g1 := int32(g) 17 b1 := int32(b) 18 19 // yy is in range [0,0xff]. 20 // 21 // Note that 19595 + 38470 + 7471 equals 65536. 22 yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 23 24 // The bit twiddling below is equivalent to 25 // 26 // cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 27 // if cb < 0 { 28 // cb = 0 29 // } else if cb > 0xff { 30 // cb = ^int32(0) 31 // } 32 // 33 // but uses fewer branches and is faster. 34 // Note that the uint8 type conversion in the return 35 // statement will convert ^int32(0) to 0xff. 36 // The code below to compute cr uses a similar pattern. 37 // 38 // Note that -11056 - 21712 + 32768 equals 0. 39 cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15 40 if uint32(cb)&0xff000000 == 0 { 41 cb >>= 16 42 } else { 43 cb = ^(cb >> 31) 44 } 45 46 // Note that 32768 - 27440 - 5328 equals 0. 47 cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15 48 if uint32(cr)&0xff000000 == 0 { 49 cr >>= 16 50 } else { 51 cr = ^(cr >> 31) 52 } 53 54 return uint8(yy), uint8(cb), uint8(cr) 55 } 56 57 // YCbCrToRGB converts a Y'CbCr triple to an RGB triple. 58 func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { 59 // The JFIF specification says: 60 // R = Y' + 1.40200*(Cr-128) 61 // G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) 62 // B = Y' + 1.77200*(Cb-128) 63 // http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. 64 65 yy1 := int32(y) * 0x010100 // Convert 0x12 to 0x121200. 66 cb1 := int32(cb) - 128 67 cr1 := int32(cr) - 128 68 69 // The bit twiddling below is equivalent to 70 // 71 // r := (yy1 + 91881*cr1) >> 16 72 // if r < 0 { 73 // r = 0 74 // } else if r > 0xff { 75 // r = ^int32(0) 76 // } 77 // 78 // but uses fewer branches and is faster. 79 // Note that the uint8 type conversion in the return 80 // statement will convert ^int32(0) to 0xff. 81 // The code below to compute g and b uses a similar pattern. 82 r := yy1 + 91881*cr1 83 if uint32(r)&0xff000000 == 0 { 84 r >>= 16 85 } else { 86 r = ^(r >> 31) 87 } 88 89 g := yy1 - 22554*cb1 - 46802*cr1 90 if uint32(g)&0xff000000 == 0 { 91 g >>= 16 92 } else { 93 g = ^(g >> 31) 94 } 95 96 b := yy1 + 116130*cb1 97 if uint32(b)&0xff000000 == 0 { 98 b >>= 16 99 } else { 100 b = ^(b >> 31) 101 } 102 103 return uint8(r), uint8(g), uint8(b) 104 } 105 106 // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for 107 // one luma and two chroma components. 108 // 109 // JPEG, VP8, the MPEG family and other codecs use this color model. Such 110 // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly 111 // speaking, the term YUV applies only to analog video signals, and Y' (luma) 112 // is Y (luminance) after applying gamma correction. 113 // 114 // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly 115 // different formulae for converting between the two. This package follows 116 // the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf. 117 type YCbCr struct { 118 Y, Cb, Cr uint8 119 } 120 121 func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) { 122 // This code is a copy of the YCbCrToRGB function above, except that it 123 // returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a 124 // subtle difference between doing this and having YCbCr satisfy the Color 125 // interface by first converting to an RGBA. The latter loses some 126 // information by going to and from 8 bits per channel. 127 // 128 // For example, this code: 129 // const y, cb, cr = 0x7f, 0x7f, 0x7f 130 // r, g, b := color.YCbCrToRGB(y, cb, cr) 131 // r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA() 132 // r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA() 133 // fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0) 134 // fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1) 135 // prints: 136 // 0x7e18 0x808d 0x7db9 137 // 0x7e7e 0x8080 0x7d7d 138 139 yy1 := int32(c.Y) * 0x10100 // Convert 0x12 to 0x121200. 140 cb1 := int32(c.Cb) - 128 141 cr1 := int32(c.Cr) - 128 142 143 // The bit twiddling below is equivalent to 144 // 145 // r := (yy1 + 91881*cr1) >> 8 146 // if r < 0 { 147 // r = 0 148 // } else if r > 0xff { 149 // r = 0xffff 150 // } 151 // 152 // but uses fewer branches and is faster. 153 // The code below to compute g and b uses a similar pattern. 154 r := yy1 + 91881*cr1 155 if uint32(r)&0xff000000 == 0 { 156 r >>= 8 157 } else { 158 r = ^(r >> 31) & 0xffff 159 } 160 161 g := yy1 - 22554*cb1 - 46802*cr1 162 if uint32(g)&0xff000000 == 0 { 163 g >>= 8 164 } else { 165 g = ^(g >> 31) & 0xffff 166 } 167 168 b := yy1 + 116130*cb1 169 if uint32(b)&0xff000000 == 0 { 170 b >>= 8 171 } else { 172 b = ^(b >> 31) & 0xffff 173 } 174 175 return uint32(r), uint32(g), uint32(b), 0xffff 176 } 177 178 // YCbCrModel is the Model for Y'CbCr colors. 179 var YCbCrModel Model = ModelFunc(yCbCrModel) 180 181 func yCbCrModel(c Color) Color { 182 if _, ok := c.(YCbCr); ok { 183 return c 184 } 185 r, g, b, _ := c.RGBA() 186 y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) 187 return YCbCr{y, u, v} 188 } 189 190 // NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having 191 // 8 bits each for one luma, two chroma and one alpha component. 192 type NYCbCrA struct { 193 YCbCr 194 A uint8 195 } 196 197 func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) { 198 // The first part of this method is the same as YCbCr.RGBA. 199 yy1 := int32(c.Y) * 0x10100 // Convert 0x12 to 0x121200. 200 cb1 := int32(c.Cb) - 128 201 cr1 := int32(c.Cr) - 128 202 203 // The bit twiddling below is equivalent to 204 // 205 // r := (yy1 + 91881*cr1) >> 8 206 // if r < 0 { 207 // r = 0 208 // } else if r > 0xff { 209 // r = 0xffff 210 // } 211 // 212 // but uses fewer branches and is faster. 213 // The code below to compute g and b uses a similar pattern. 214 r := yy1 + 91881*cr1 215 if uint32(r)&0xff000000 == 0 { 216 r >>= 8 217 } else { 218 r = ^(r >> 31) & 0xffff 219 } 220 221 g := yy1 - 22554*cb1 - 46802*cr1 222 if uint32(g)&0xff000000 == 0 { 223 g >>= 8 224 } else { 225 g = ^(g >> 31) & 0xffff 226 } 227 228 b := yy1 + 116130*cb1 229 if uint32(b)&0xff000000 == 0 { 230 b >>= 8 231 } else { 232 b = ^(b >> 31) & 0xffff 233 } 234 235 // The second part of this method applies the alpha. 236 a := uint32(c.A) * 0x101 237 return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a 238 } 239 240 // NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha 241 // colors. 242 var NYCbCrAModel Model = ModelFunc(nYCbCrAModel) 243 244 func nYCbCrAModel(c Color) Color { 245 switch c := c.(type) { 246 case NYCbCrA: 247 return c 248 case YCbCr: 249 return NYCbCrA{c, 0xff} 250 } 251 r, g, b, a := c.RGBA() 252 253 // Convert from alpha-premultiplied to non-alpha-premultiplied. 254 if a != 0 { 255 r = (r * 0xffff) / a 256 g = (g * 0xffff) / a 257 b = (b * 0xffff) / a 258 } 259 260 y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) 261 return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)} 262 } 263 264 // RGBToCMYK converts an RGB triple to a CMYK quadruple. 265 func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) { 266 rr := uint32(r) 267 gg := uint32(g) 268 bb := uint32(b) 269 w := rr 270 if w < gg { 271 w = gg 272 } 273 if w < bb { 274 w = bb 275 } 276 if w == 0 { 277 return 0, 0, 0, 0xff 278 } 279 c := (w - rr) * 0xff / w 280 m := (w - gg) * 0xff / w 281 y := (w - bb) * 0xff / w 282 return uint8(c), uint8(m), uint8(y), uint8(0xff - w) 283 } 284 285 // CMYKToRGB converts a CMYK quadruple to an RGB triple. 286 func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) { 287 w := 0xffff - uint32(k)*0x101 288 r := (0xffff - uint32(c)*0x101) * w / 0xffff 289 g := (0xffff - uint32(m)*0x101) * w / 0xffff 290 b := (0xffff - uint32(y)*0x101) * w / 0xffff 291 return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8) 292 } 293 294 // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan, 295 // magenta, yellow and black. 296 // 297 // It is not associated with any particular color profile. 298 type CMYK struct { 299 C, M, Y, K uint8 300 } 301 302 func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) { 303 // This code is a copy of the CMYKToRGB function above, except that it 304 // returns values in the range [0, 0xffff] instead of [0, 0xff]. 305 306 w := 0xffff - uint32(c.K)*0x101 307 r := (0xffff - uint32(c.C)*0x101) * w / 0xffff 308 g := (0xffff - uint32(c.M)*0x101) * w / 0xffff 309 b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff 310 return r, g, b, 0xffff 311 } 312 313 // CMYKModel is the Model for CMYK colors. 314 var CMYKModel Model = ModelFunc(cmykModel) 315 316 func cmykModel(c Color) Color { 317 if _, ok := c.(CMYK); ok { 318 return c 319 } 320 r, g, b, _ := c.RGBA() 321 cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8)) 322 return CMYK{cc, mm, yy, kk} 323 }