github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/image/jpeg/reader.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package jpeg implements a JPEG image decoder and encoder.
     6  //
     7  // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf.
     8  package jpeg
     9  
    10  import (
    11  	"image"
    12  	"image/color"
    13  	"image/internal/imageutil"
    14  	"io"
    15  )
    16  
    17  // TODO(nigeltao): fix up the doc comment style so that sentences start with
    18  // the name of the type or function that they annotate.
    19  
    20  // A FormatError reports that the input is not a valid JPEG.
    21  type FormatError string
    22  
    23  func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) }
    24  
    25  // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature.
    26  type UnsupportedError string
    27  
    28  func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) }
    29  
    30  var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio")
    31  
    32  // Component specification, specified in section B.2.2.
    33  type component struct {
    34  	h  int   // Horizontal sampling factor.
    35  	v  int   // Vertical sampling factor.
    36  	c  uint8 // Component identifier.
    37  	tq uint8 // Quantization table destination selector.
    38  }
    39  
    40  const (
    41  	dcTable = 0
    42  	acTable = 1
    43  	maxTc   = 1
    44  	maxTh   = 3
    45  	maxTq   = 3
    46  
    47  	maxComponents = 4
    48  )
    49  
    50  const (
    51  	sof0Marker = 0xc0 // Start Of Frame (Baseline).
    52  	sof1Marker = 0xc1 // Start Of Frame (Extended Sequential).
    53  	sof2Marker = 0xc2 // Start Of Frame (Progressive).
    54  	dhtMarker  = 0xc4 // Define Huffman Table.
    55  	rst0Marker = 0xd0 // ReSTart (0).
    56  	rst7Marker = 0xd7 // ReSTart (7).
    57  	soiMarker  = 0xd8 // Start Of Image.
    58  	eoiMarker  = 0xd9 // End Of Image.
    59  	sosMarker  = 0xda // Start Of Scan.
    60  	dqtMarker  = 0xdb // Define Quantization Table.
    61  	driMarker  = 0xdd // Define Restart Interval.
    62  	comMarker  = 0xfe // COMment.
    63  	// "APPlication specific" markers aren't part of the JPEG spec per se,
    64  	// but in practice, their use is described at
    65  	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html
    66  	app0Marker  = 0xe0
    67  	app14Marker = 0xee
    68  	app15Marker = 0xef
    69  )
    70  
    71  // See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
    72  const (
    73  	adobeTransformUnknown = 0
    74  	adobeTransformYCbCr   = 1
    75  	adobeTransformYCbCrK  = 2
    76  )
    77  
    78  // unzig maps from the zig-zag ordering to the natural ordering. For example,
    79  // unzig[3] is the column and row of the fourth element in zig-zag order. The
    80  // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2).
    81  var unzig = [blockSize]int{
    82  	0, 1, 8, 16, 9, 2, 3, 10,
    83  	17, 24, 32, 25, 18, 11, 4, 5,
    84  	12, 19, 26, 33, 40, 48, 41, 34,
    85  	27, 20, 13, 6, 7, 14, 21, 28,
    86  	35, 42, 49, 56, 57, 50, 43, 36,
    87  	29, 22, 15, 23, 30, 37, 44, 51,
    88  	58, 59, 52, 45, 38, 31, 39, 46,
    89  	53, 60, 61, 54, 47, 55, 62, 63,
    90  }
    91  
    92  // Deprecated: Reader is deprecated.
    93  type Reader interface {
    94  	io.ByteReader
    95  	io.Reader
    96  }
    97  
    98  // bits holds the unprocessed bits that have been taken from the byte-stream.
    99  // The n least significant bits of a form the unread bits, to be read in MSB to
   100  // LSB order.
   101  type bits struct {
   102  	a uint32 // accumulator.
   103  	m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0.
   104  	n int32  // the number of unread bits in a.
   105  }
   106  
   107  type decoder struct {
   108  	r    io.Reader
   109  	bits bits
   110  	// bytes is a byte buffer, similar to a bufio.Reader, except that it
   111  	// has to be able to unread more than 1 byte, due to byte stuffing.
   112  	// Byte stuffing is specified in section F.1.2.3.
   113  	bytes struct {
   114  		// buf[i:j] are the buffered bytes read from the underlying
   115  		// io.Reader that haven't yet been passed further on.
   116  		buf  [4096]byte
   117  		i, j int
   118  		// nUnreadable is the number of bytes to back up i after
   119  		// overshooting. It can be 0, 1 or 2.
   120  		nUnreadable int
   121  	}
   122  	width, height int
   123  
   124  	img1        *image.Gray
   125  	img3        *image.YCbCr
   126  	blackPix    []byte
   127  	blackStride int
   128  
   129  	ri                  int // Restart Interval.
   130  	nComp               int
   131  	progressive         bool
   132  	jfif                bool
   133  	adobeTransformValid bool
   134  	adobeTransform      uint8
   135  	eobRun              uint16 // End-of-Band run, specified in section G.1.2.2.
   136  
   137  	comp       [maxComponents]component
   138  	progCoeffs [maxComponents][]block // Saved state between progressive-mode scans.
   139  	huff       [maxTc + 1][maxTh + 1]huffman
   140  	quant      [maxTq + 1]block // Quantization tables, in zig-zag order.
   141  	tmp        [2 * blockSize]byte
   142  }
   143  
   144  // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It
   145  // should only be called when there are no unread bytes in d.bytes.
   146  func (d *decoder) fill() error {
   147  	if d.bytes.i != d.bytes.j {
   148  		panic("jpeg: fill called when unread bytes exist")
   149  	}
   150  	// Move the last 2 bytes to the start of the buffer, in case we need
   151  	// to call unreadByteStuffedByte.
   152  	if d.bytes.j > 2 {
   153  		d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2]
   154  		d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1]
   155  		d.bytes.i, d.bytes.j = 2, 2
   156  	}
   157  	// Fill in the rest of the buffer.
   158  	n, err := d.r.Read(d.bytes.buf[d.bytes.j:])
   159  	d.bytes.j += n
   160  	if n > 0 {
   161  		err = nil
   162  	}
   163  	return err
   164  }
   165  
   166  // unreadByteStuffedByte undoes the most recent readByteStuffedByte call,
   167  // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table
   168  // requires at least 8 bits for look-up, which means that Huffman decoding can
   169  // sometimes overshoot and read one or two too many bytes. Two-byte overshoot
   170  // can happen when expecting to read a 0xff 0x00 byte-stuffed byte.
   171  func (d *decoder) unreadByteStuffedByte() {
   172  	d.bytes.i -= d.bytes.nUnreadable
   173  	d.bytes.nUnreadable = 0
   174  	if d.bits.n >= 8 {
   175  		d.bits.a >>= 8
   176  		d.bits.n -= 8
   177  		d.bits.m >>= 8
   178  	}
   179  }
   180  
   181  // readByte returns the next byte, whether buffered or not buffered. It does
   182  // not care about byte stuffing.
   183  func (d *decoder) readByte() (x byte, err error) {
   184  	for d.bytes.i == d.bytes.j {
   185  		if err = d.fill(); err != nil {
   186  			return 0, err
   187  		}
   188  	}
   189  	x = d.bytes.buf[d.bytes.i]
   190  	d.bytes.i++
   191  	d.bytes.nUnreadable = 0
   192  	return x, nil
   193  }
   194  
   195  // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a
   196  // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00.
   197  var errMissingFF00 = FormatError("missing 0xff00 sequence")
   198  
   199  // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data.
   200  func (d *decoder) readByteStuffedByte() (x byte, err error) {
   201  	// Take the fast path if d.bytes.buf contains at least two bytes.
   202  	if d.bytes.i+2 <= d.bytes.j {
   203  		x = d.bytes.buf[d.bytes.i]
   204  		d.bytes.i++
   205  		d.bytes.nUnreadable = 1
   206  		if x != 0xff {
   207  			return x, err
   208  		}
   209  		if d.bytes.buf[d.bytes.i] != 0x00 {
   210  			return 0, errMissingFF00
   211  		}
   212  		d.bytes.i++
   213  		d.bytes.nUnreadable = 2
   214  		return 0xff, nil
   215  	}
   216  
   217  	d.bytes.nUnreadable = 0
   218  
   219  	x, err = d.readByte()
   220  	if err != nil {
   221  		return 0, err
   222  	}
   223  	d.bytes.nUnreadable = 1
   224  	if x != 0xff {
   225  		return x, nil
   226  	}
   227  
   228  	x, err = d.readByte()
   229  	if err != nil {
   230  		return 0, err
   231  	}
   232  	d.bytes.nUnreadable = 2
   233  	if x != 0x00 {
   234  		return 0, errMissingFF00
   235  	}
   236  	return 0xff, nil
   237  }
   238  
   239  // readFull reads exactly len(p) bytes into p. It does not care about byte
   240  // stuffing.
   241  func (d *decoder) readFull(p []byte) error {
   242  	// Unread the overshot bytes, if any.
   243  	if d.bytes.nUnreadable != 0 {
   244  		if d.bits.n >= 8 {
   245  			d.unreadByteStuffedByte()
   246  		}
   247  		d.bytes.nUnreadable = 0
   248  	}
   249  
   250  	for {
   251  		n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j])
   252  		p = p[n:]
   253  		d.bytes.i += n
   254  		if len(p) == 0 {
   255  			break
   256  		}
   257  		if err := d.fill(); err != nil {
   258  			if err == io.EOF {
   259  				err = io.ErrUnexpectedEOF
   260  			}
   261  			return err
   262  		}
   263  	}
   264  	return nil
   265  }
   266  
   267  // ignore ignores the next n bytes.
   268  func (d *decoder) ignore(n int) error {
   269  	// Unread the overshot bytes, if any.
   270  	if d.bytes.nUnreadable != 0 {
   271  		if d.bits.n >= 8 {
   272  			d.unreadByteStuffedByte()
   273  		}
   274  		d.bytes.nUnreadable = 0
   275  	}
   276  
   277  	for {
   278  		m := d.bytes.j - d.bytes.i
   279  		if m > n {
   280  			m = n
   281  		}
   282  		d.bytes.i += m
   283  		n -= m
   284  		if n == 0 {
   285  			break
   286  		}
   287  		if err := d.fill(); err != nil {
   288  			if err == io.EOF {
   289  				err = io.ErrUnexpectedEOF
   290  			}
   291  			return err
   292  		}
   293  	}
   294  	return nil
   295  }
   296  
   297  // Specified in section B.2.2.
   298  func (d *decoder) processSOF(n int) error {
   299  	if d.nComp != 0 {
   300  		return FormatError("multiple SOF markers")
   301  	}
   302  	switch n {
   303  	case 6 + 3*1: // Grayscale image.
   304  		d.nComp = 1
   305  	case 6 + 3*3: // YCbCr or RGB image.
   306  		d.nComp = 3
   307  	case 6 + 3*4: // YCbCrK or CMYK image.
   308  		d.nComp = 4
   309  	default:
   310  		return UnsupportedError("number of components")
   311  	}
   312  	if err := d.readFull(d.tmp[:n]); err != nil {
   313  		return err
   314  	}
   315  	// We only support 8-bit precision.
   316  	if d.tmp[0] != 8 {
   317  		return UnsupportedError("precision")
   318  	}
   319  	d.height = int(d.tmp[1])<<8 + int(d.tmp[2])
   320  	d.width = int(d.tmp[3])<<8 + int(d.tmp[4])
   321  	if int(d.tmp[5]) != d.nComp {
   322  		return FormatError("SOF has wrong length")
   323  	}
   324  
   325  	for i := 0; i < d.nComp; i++ {
   326  		d.comp[i].c = d.tmp[6+3*i]
   327  		// Section B.2.2 states that "the value of C_i shall be different from
   328  		// the values of C_1 through C_(i-1)".
   329  		for j := 0; j < i; j++ {
   330  			if d.comp[i].c == d.comp[j].c {
   331  				return FormatError("repeated component identifier")
   332  			}
   333  		}
   334  
   335  		d.comp[i].tq = d.tmp[8+3*i]
   336  		if d.comp[i].tq > maxTq {
   337  			return FormatError("bad Tq value")
   338  		}
   339  
   340  		hv := d.tmp[7+3*i]
   341  		h, v := int(hv>>4), int(hv&0x0f)
   342  		if h < 1 || 4 < h || v < 1 || 4 < v {
   343  			return FormatError("luma/chroma subsampling ratio")
   344  		}
   345  		if h == 3 || v == 3 {
   346  			return errUnsupportedSubsamplingRatio
   347  		}
   348  		switch d.nComp {
   349  		case 1:
   350  			// If a JPEG image has only one component, section A.2 says "this data
   351  			// is non-interleaved by definition" and section A.2.2 says "[in this
   352  			// case...] the order of data units within a scan shall be left-to-right
   353  			// and top-to-bottom... regardless of the values of H_1 and V_1". Section
   354  			// 4.8.2 also says "[for non-interleaved data], the MCU is defined to be
   355  			// one data unit". Similarly, section A.1.1 explains that it is the ratio
   356  			// of H_i to max_j(H_j) that matters, and similarly for V. For grayscale
   357  			// images, H_1 is the maximum H_j for all components j, so that ratio is
   358  			// always 1. The component's (h, v) is effectively always (1, 1): even if
   359  			// the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8
   360  			// MCUs, not two 16x8 MCUs.
   361  			h, v = 1, 1
   362  
   363  		case 3:
   364  			// For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0,
   365  			// 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the
   366  			// (h, v) values for the Y component are either (1, 1), (1, 2),
   367  			// (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values
   368  			// must be a multiple of the Cb and Cr component's values. We also
   369  			// assume that the two chroma components have the same subsampling
   370  			// ratio.
   371  			switch i {
   372  			case 0: // Y.
   373  				// We have already verified, above, that h and v are both
   374  				// either 1, 2 or 4, so invalid (h, v) combinations are those
   375  				// with v == 4.
   376  				if v == 4 {
   377  					return errUnsupportedSubsamplingRatio
   378  				}
   379  			case 1: // Cb.
   380  				if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 {
   381  					return errUnsupportedSubsamplingRatio
   382  				}
   383  			case 2: // Cr.
   384  				if d.comp[1].h != h || d.comp[1].v != v {
   385  					return errUnsupportedSubsamplingRatio
   386  				}
   387  			}
   388  
   389  		case 4:
   390  			// For 4-component images (either CMYK or YCbCrK), we only support two
   391  			// hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22].
   392  			// Theoretically, 4-component JPEG images could mix and match hv values
   393  			// but in practice, those two combinations are the only ones in use,
   394  			// and it simplifies the applyBlack code below if we can assume that:
   395  			//	- for CMYK, the C and K channels have full samples, and if the M
   396  			//	  and Y channels subsample, they subsample both horizontally and
   397  			//	  vertically.
   398  			//	- for YCbCrK, the Y and K channels have full samples.
   399  			switch i {
   400  			case 0:
   401  				if hv != 0x11 && hv != 0x22 {
   402  					return errUnsupportedSubsamplingRatio
   403  				}
   404  			case 1, 2:
   405  				if hv != 0x11 {
   406  					return errUnsupportedSubsamplingRatio
   407  				}
   408  			case 3:
   409  				if d.comp[0].h != h || d.comp[0].v != v {
   410  					return errUnsupportedSubsamplingRatio
   411  				}
   412  			}
   413  		}
   414  
   415  		d.comp[i].h = h
   416  		d.comp[i].v = v
   417  	}
   418  	return nil
   419  }
   420  
   421  // Specified in section B.2.4.1.
   422  func (d *decoder) processDQT(n int) error {
   423  loop:
   424  	for n > 0 {
   425  		n--
   426  		x, err := d.readByte()
   427  		if err != nil {
   428  			return err
   429  		}
   430  		tq := x & 0x0f
   431  		if tq > maxTq {
   432  			return FormatError("bad Tq value")
   433  		}
   434  		switch x >> 4 {
   435  		default:
   436  			return FormatError("bad Pq value")
   437  		case 0:
   438  			if n < blockSize {
   439  				break loop
   440  			}
   441  			n -= blockSize
   442  			if err := d.readFull(d.tmp[:blockSize]); err != nil {
   443  				return err
   444  			}
   445  			for i := range d.quant[tq] {
   446  				d.quant[tq][i] = int32(d.tmp[i])
   447  			}
   448  		case 1:
   449  			if n < 2*blockSize {
   450  				break loop
   451  			}
   452  			n -= 2 * blockSize
   453  			if err := d.readFull(d.tmp[:2*blockSize]); err != nil {
   454  				return err
   455  			}
   456  			for i := range d.quant[tq] {
   457  				d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1])
   458  			}
   459  		}
   460  	}
   461  	if n != 0 {
   462  		return FormatError("DQT has wrong length")
   463  	}
   464  	return nil
   465  }
   466  
   467  // Specified in section B.2.4.4.
   468  func (d *decoder) processDRI(n int) error {
   469  	if n != 2 {
   470  		return FormatError("DRI has wrong length")
   471  	}
   472  	if err := d.readFull(d.tmp[:2]); err != nil {
   473  		return err
   474  	}
   475  	d.ri = int(d.tmp[0])<<8 + int(d.tmp[1])
   476  	return nil
   477  }
   478  
   479  func (d *decoder) processApp0Marker(n int) error {
   480  	if n < 5 {
   481  		return d.ignore(n)
   482  	}
   483  	if err := d.readFull(d.tmp[:5]); err != nil {
   484  		return err
   485  	}
   486  	n -= 5
   487  
   488  	d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00'
   489  
   490  	if n > 0 {
   491  		return d.ignore(n)
   492  	}
   493  	return nil
   494  }
   495  
   496  func (d *decoder) processApp14Marker(n int) error {
   497  	if n < 12 {
   498  		return d.ignore(n)
   499  	}
   500  	if err := d.readFull(d.tmp[:12]); err != nil {
   501  		return err
   502  	}
   503  	n -= 12
   504  
   505  	if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' {
   506  		d.adobeTransformValid = true
   507  		d.adobeTransform = d.tmp[11]
   508  	}
   509  
   510  	if n > 0 {
   511  		return d.ignore(n)
   512  	}
   513  	return nil
   514  }
   515  
   516  // decode reads a JPEG image from r and returns it as an image.Image.
   517  func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) {
   518  	d.r = r
   519  
   520  	// Check for the Start Of Image marker.
   521  	if err := d.readFull(d.tmp[:2]); err != nil {
   522  		return nil, err
   523  	}
   524  	if d.tmp[0] != 0xff || d.tmp[1] != soiMarker {
   525  		return nil, FormatError("missing SOI marker")
   526  	}
   527  
   528  	// Process the remaining segments until the End Of Image marker.
   529  	for {
   530  		err := d.readFull(d.tmp[:2])
   531  		if err != nil {
   532  			return nil, err
   533  		}
   534  		for d.tmp[0] != 0xff {
   535  			// Strictly speaking, this is a format error. However, libjpeg is
   536  			// liberal in what it accepts. As of version 9, next_marker in
   537  			// jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and
   538  			// continues to decode the stream. Even before next_marker sees
   539  			// extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many
   540  			// bytes as it can, possibly past the end of a scan's data. It
   541  			// effectively puts back any markers that it overscanned (e.g. an
   542  			// "\xff\xd9" EOI marker), but it does not put back non-marker data,
   543  			// and thus it can silently ignore a small number of extraneous
   544  			// non-marker bytes before next_marker has a chance to see them (and
   545  			// print a warning).
   546  			//
   547  			// We are therefore also liberal in what we accept. Extraneous data
   548  			// is silently ignored.
   549  			//
   550  			// This is similar to, but not exactly the same as, the restart
   551  			// mechanism within a scan (the RST[0-7] markers).
   552  			//
   553  			// Note that extraneous 0xff bytes in e.g. SOS data are escaped as
   554  			// "\xff\x00", and so are detected a little further down below.
   555  			d.tmp[0] = d.tmp[1]
   556  			d.tmp[1], err = d.readByte()
   557  			if err != nil {
   558  				return nil, err
   559  			}
   560  		}
   561  		marker := d.tmp[1]
   562  		if marker == 0 {
   563  			// Treat "\xff\x00" as extraneous data.
   564  			continue
   565  		}
   566  		for marker == 0xff {
   567  			// Section B.1.1.2 says, "Any marker may optionally be preceded by any
   568  			// number of fill bytes, which are bytes assigned code X'FF'".
   569  			marker, err = d.readByte()
   570  			if err != nil {
   571  				return nil, err
   572  			}
   573  		}
   574  		if marker == eoiMarker { // End Of Image.
   575  			break
   576  		}
   577  		if rst0Marker <= marker && marker <= rst7Marker {
   578  			// Figures B.2 and B.16 of the specification suggest that restart markers should
   579  			// only occur between Entropy Coded Segments and not after the final ECS.
   580  			// However, some encoders may generate incorrect JPEGs with a final restart
   581  			// marker. That restart marker will be seen here instead of inside the processSOS
   582  			// method, and is ignored as a harmless error. Restart markers have no extra data,
   583  			// so we check for this before we read the 16-bit length of the segment.
   584  			continue
   585  		}
   586  
   587  		// Read the 16-bit length of the segment. The value includes the 2 bytes for the
   588  		// length itself, so we subtract 2 to get the number of remaining bytes.
   589  		if err = d.readFull(d.tmp[:2]); err != nil {
   590  			return nil, err
   591  		}
   592  		n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2
   593  		if n < 0 {
   594  			return nil, FormatError("short segment length")
   595  		}
   596  
   597  		switch marker {
   598  		case sof0Marker, sof1Marker, sof2Marker:
   599  			d.progressive = marker == sof2Marker
   600  			err = d.processSOF(n)
   601  			if configOnly && d.jfif {
   602  				return nil, err
   603  			}
   604  		case dhtMarker:
   605  			if configOnly {
   606  				err = d.ignore(n)
   607  			} else {
   608  				err = d.processDHT(n)
   609  			}
   610  		case dqtMarker:
   611  			if configOnly {
   612  				err = d.ignore(n)
   613  			} else {
   614  				err = d.processDQT(n)
   615  			}
   616  		case sosMarker:
   617  			if configOnly {
   618  				return nil, nil
   619  			}
   620  			err = d.processSOS(n)
   621  		case driMarker:
   622  			if configOnly {
   623  				err = d.ignore(n)
   624  			} else {
   625  				err = d.processDRI(n)
   626  			}
   627  		case app0Marker:
   628  			err = d.processApp0Marker(n)
   629  		case app14Marker:
   630  			err = d.processApp14Marker(n)
   631  		default:
   632  			if app0Marker <= marker && marker <= app15Marker || marker == comMarker {
   633  				err = d.ignore(n)
   634  			} else if marker < 0xc0 { // See Table B.1 "Marker code assignments".
   635  				err = FormatError("unknown marker")
   636  			} else {
   637  				err = UnsupportedError("unknown marker")
   638  			}
   639  		}
   640  		if err != nil {
   641  			return nil, err
   642  		}
   643  	}
   644  
   645  	if d.progressive {
   646  		if err := d.reconstructProgressiveImage(); err != nil {
   647  			return nil, err
   648  		}
   649  	}
   650  	if d.img1 != nil {
   651  		return d.img1, nil
   652  	}
   653  	if d.img3 != nil {
   654  		if d.blackPix != nil {
   655  			return d.applyBlack()
   656  		} else if d.isRGB() {
   657  			return d.convertToRGB()
   658  		}
   659  		return d.img3, nil
   660  	}
   661  	return nil, FormatError("missing SOS marker")
   662  }
   663  
   664  // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula
   665  // used depends on whether the JPEG image is stored as CMYK or YCbCrK,
   666  // indicated by the APP14 (Adobe) metadata.
   667  //
   668  // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full
   669  // ink, so we apply "v = 255 - v" at various points. Note that a double
   670  // inversion is a no-op, so inversions might be implicit in the code below.
   671  func (d *decoder) applyBlack() (image.Image, error) {
   672  	if !d.adobeTransformValid {
   673  		return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata")
   674  	}
   675  
   676  	// If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB
   677  	// or CMYK)" as per
   678  	// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
   679  	// we assume that it is YCbCrK. This matches libjpeg's jdapimin.c.
   680  	if d.adobeTransform != adobeTransformUnknown {
   681  		// Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get
   682  		// CMY, and patch in the original K. The RGB to CMY inversion cancels
   683  		// out the 'Adobe inversion' described in the applyBlack doc comment
   684  		// above, so in practice, only the fourth channel (black) is inverted.
   685  		bounds := d.img3.Bounds()
   686  		img := image.NewRGBA(bounds)
   687  		imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min)
   688  		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
   689  			for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
   690  				img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)]
   691  			}
   692  		}
   693  		return &image.CMYK{
   694  			Pix:    img.Pix,
   695  			Stride: img.Stride,
   696  			Rect:   img.Rect,
   697  		}, nil
   698  	}
   699  
   700  	// The first three channels (cyan, magenta, yellow) of the CMYK
   701  	// were decoded into d.img3, but each channel was decoded into a separate
   702  	// []byte slice, and some channels may be subsampled. We interleave the
   703  	// separate channels into an image.CMYK's single []byte slice containing 4
   704  	// contiguous bytes per pixel.
   705  	bounds := d.img3.Bounds()
   706  	img := image.NewCMYK(bounds)
   707  
   708  	translations := [4]struct {
   709  		src    []byte
   710  		stride int
   711  	}{
   712  		{d.img3.Y, d.img3.YStride},
   713  		{d.img3.Cb, d.img3.CStride},
   714  		{d.img3.Cr, d.img3.CStride},
   715  		{d.blackPix, d.blackStride},
   716  	}
   717  	for t, translation := range translations {
   718  		subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v
   719  		for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 {
   720  			sy := y - bounds.Min.Y
   721  			if subsample {
   722  				sy /= 2
   723  			}
   724  			for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 {
   725  				sx := x - bounds.Min.X
   726  				if subsample {
   727  					sx /= 2
   728  				}
   729  				img.Pix[i] = 255 - translation.src[sy*translation.stride+sx]
   730  			}
   731  		}
   732  	}
   733  	return img, nil
   734  }
   735  
   736  func (d *decoder) isRGB() bool {
   737  	if d.jfif {
   738  		return false
   739  	}
   740  	if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown {
   741  		// http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe
   742  		// says that 0 means Unknown (and in practice RGB) and 1 means YCbCr.
   743  		return true
   744  	}
   745  	return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B'
   746  }
   747  
   748  func (d *decoder) convertToRGB() (image.Image, error) {
   749  	cScale := d.comp[0].h / d.comp[1].h
   750  	bounds := d.img3.Bounds()
   751  	img := image.NewRGBA(bounds)
   752  	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
   753  		po := img.PixOffset(bounds.Min.X, y)
   754  		yo := d.img3.YOffset(bounds.Min.X, y)
   755  		co := d.img3.COffset(bounds.Min.X, y)
   756  		for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ {
   757  			img.Pix[po+4*i+0] = d.img3.Y[yo+i]
   758  			img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale]
   759  			img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale]
   760  			img.Pix[po+4*i+3] = 255
   761  		}
   762  	}
   763  	return img, nil
   764  }
   765  
   766  // Decode reads a JPEG image from r and returns it as an image.Image.
   767  func Decode(r io.Reader) (image.Image, error) {
   768  	var d decoder
   769  	return d.decode(r, false)
   770  }
   771  
   772  // DecodeConfig returns the color model and dimensions of a JPEG image without
   773  // decoding the entire image.
   774  func DecodeConfig(r io.Reader) (image.Config, error) {
   775  	var d decoder
   776  	if _, err := d.decode(r, true); err != nil {
   777  		return image.Config{}, err
   778  	}
   779  	switch d.nComp {
   780  	case 1:
   781  		return image.Config{
   782  			ColorModel: color.GrayModel,
   783  			Width:      d.width,
   784  			Height:     d.height,
   785  		}, nil
   786  	case 3:
   787  		cm := color.YCbCrModel
   788  		if d.isRGB() {
   789  			cm = color.RGBAModel
   790  		}
   791  		return image.Config{
   792  			ColorModel: cm,
   793  			Width:      d.width,
   794  			Height:     d.height,
   795  		}, nil
   796  	case 4:
   797  		return image.Config{
   798  			ColorModel: color.CMYKModel,
   799  			Width:      d.width,
   800  			Height:     d.height,
   801  		}, nil
   802  	}
   803  	return image.Config{}, FormatError("missing SOF marker")
   804  }
   805  
   806  func init() {
   807  	image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig)
   808  }