github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/image/jpeg/scan.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package jpeg 6 7 import ( 8 "image" 9 ) 10 11 // makeImg allocates and initializes the destination image. 12 func (d *decoder) makeImg(mxx, myy int) { 13 if d.nComp == 1 { 14 m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) 15 d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) 16 return 17 } 18 19 h0 := d.comp[0].h 20 v0 := d.comp[0].v 21 hRatio := h0 / d.comp[1].h 22 vRatio := v0 / d.comp[1].v 23 var subsampleRatio image.YCbCrSubsampleRatio 24 switch hRatio<<4 | vRatio { 25 case 0x11: 26 subsampleRatio = image.YCbCrSubsampleRatio444 27 case 0x12: 28 subsampleRatio = image.YCbCrSubsampleRatio440 29 case 0x21: 30 subsampleRatio = image.YCbCrSubsampleRatio422 31 case 0x22: 32 subsampleRatio = image.YCbCrSubsampleRatio420 33 case 0x41: 34 subsampleRatio = image.YCbCrSubsampleRatio411 35 case 0x42: 36 subsampleRatio = image.YCbCrSubsampleRatio410 37 default: 38 panic("unreachable") 39 } 40 m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) 41 d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) 42 43 if d.nComp == 4 { 44 h3, v3 := d.comp[3].h, d.comp[3].v 45 d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy) 46 d.blackStride = 8 * h3 * mxx 47 } 48 } 49 50 // Specified in section B.2.3. 51 func (d *decoder) processSOS(n int) error { 52 if d.nComp == 0 { 53 return FormatError("missing SOF marker") 54 } 55 if n < 6 || 4+2*d.nComp < n || n%2 != 0 { 56 return FormatError("SOS has wrong length") 57 } 58 if err := d.readFull(d.tmp[:n]); err != nil { 59 return err 60 } 61 nComp := int(d.tmp[0]) 62 if n != 4+2*nComp { 63 return FormatError("SOS length inconsistent with number of components") 64 } 65 var scan [maxComponents]struct { 66 compIndex uint8 67 td uint8 // DC table selector. 68 ta uint8 // AC table selector. 69 } 70 totalHV := 0 71 for i := 0; i < nComp; i++ { 72 cs := d.tmp[1+2*i] // Component selector. 73 compIndex := -1 74 for j, comp := range d.comp[:d.nComp] { 75 if cs == comp.c { 76 compIndex = j 77 } 78 } 79 if compIndex < 0 { 80 return FormatError("unknown component selector") 81 } 82 scan[i].compIndex = uint8(compIndex) 83 // Section B.2.3 states that "the value of Cs_j shall be different from 84 // the values of Cs_1 through Cs_(j-1)". Since we have previously 85 // verified that a frame's component identifiers (C_i values in section 86 // B.2.2) are unique, it suffices to check that the implicit indexes 87 // into d.comp are unique. 88 for j := 0; j < i; j++ { 89 if scan[i].compIndex == scan[j].compIndex { 90 return FormatError("repeated component selector") 91 } 92 } 93 totalHV += d.comp[compIndex].h * d.comp[compIndex].v 94 95 scan[i].td = d.tmp[2+2*i] >> 4 96 if scan[i].td > maxTh { 97 return FormatError("bad Td value") 98 } 99 scan[i].ta = d.tmp[2+2*i] & 0x0f 100 if scan[i].ta > maxTh { 101 return FormatError("bad Ta value") 102 } 103 } 104 // Section B.2.3 states that if there is more than one component then the 105 // total H*V values in a scan must be <= 10. 106 if d.nComp > 1 && totalHV > 10 { 107 return FormatError("total sampling factors too large") 108 } 109 110 // zigStart and zigEnd are the spectral selection bounds. 111 // ah and al are the successive approximation high and low values. 112 // The spec calls these values Ss, Se, Ah and Al. 113 // 114 // For progressive JPEGs, these are the two more-or-less independent 115 // aspects of progression. Spectral selection progression is when not 116 // all of a block's 64 DCT coefficients are transmitted in one pass. 117 // For example, three passes could transmit coefficient 0 (the DC 118 // component), coefficients 1-5, and coefficients 6-63, in zig-zag 119 // order. Successive approximation is when not all of the bits of a 120 // band of coefficients are transmitted in one pass. For example, 121 // three passes could transmit the 6 most significant bits, followed 122 // by the second-least significant bit, followed by the least 123 // significant bit. 124 // 125 // For baseline JPEGs, these parameters are hard-coded to 0/63/0/0. 126 zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0) 127 if d.progressive { 128 zigStart = int32(d.tmp[1+2*nComp]) 129 zigEnd = int32(d.tmp[2+2*nComp]) 130 ah = uint32(d.tmp[3+2*nComp] >> 4) 131 al = uint32(d.tmp[3+2*nComp] & 0x0f) 132 if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd { 133 return FormatError("bad spectral selection bounds") 134 } 135 if zigStart != 0 && nComp != 1 { 136 return FormatError("progressive AC coefficients for more than one component") 137 } 138 if ah != 0 && ah != al+1 { 139 return FormatError("bad successive approximation values") 140 } 141 } 142 143 // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. 144 h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. 145 mxx := (d.width + 8*h0 - 1) / (8 * h0) 146 myy := (d.height + 8*v0 - 1) / (8 * v0) 147 if d.img1 == nil && d.img3 == nil { 148 d.makeImg(mxx, myy) 149 } 150 if d.progressive { 151 for i := 0; i < nComp; i++ { 152 compIndex := scan[i].compIndex 153 if d.progCoeffs[compIndex] == nil { 154 d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v) 155 } 156 } 157 } 158 159 d.bits = bits{} 160 mcu, expectedRST := 0, uint8(rst0Marker) 161 var ( 162 // b is the decoded coefficients, in natural (not zig-zag) order. 163 b block 164 dc [maxComponents]int32 165 // bx and by are the location of the current block, in units of 8x8 166 // blocks: the third block in the first row has (bx, by) = (2, 0). 167 bx, by int 168 blockCount int 169 ) 170 for my := 0; my < myy; my++ { 171 for mx := 0; mx < mxx; mx++ { 172 for i := 0; i < nComp; i++ { 173 compIndex := scan[i].compIndex 174 hi := d.comp[compIndex].h 175 vi := d.comp[compIndex].v 176 for j := 0; j < hi*vi; j++ { 177 // The blocks are traversed one MCU at a time. For 4:2:0 chroma 178 // subsampling, there are four Y 8x8 blocks in every 16x16 MCU. 179 // 180 // For a baseline 32x16 pixel image, the Y blocks visiting order is: 181 // 0 1 4 5 182 // 2 3 6 7 183 // 184 // For progressive images, the interleaved scans (those with nComp > 1) 185 // are traversed as above, but non-interleaved scans are traversed left 186 // to right, top to bottom: 187 // 0 1 2 3 188 // 4 5 6 7 189 // Only DC scans (zigStart == 0) can be interleaved. AC scans must have 190 // only one component. 191 // 192 // To further complicate matters, for non-interleaved scans, there is no 193 // data for any blocks that are inside the image at the MCU level but 194 // outside the image at the pixel level. For example, a 24x16 pixel 4:2:0 195 // progressive image consists of two 16x16 MCUs. The interleaved scans 196 // will process 8 Y blocks: 197 // 0 1 4 5 198 // 2 3 6 7 199 // The non-interleaved scans will process only 6 Y blocks: 200 // 0 1 2 201 // 3 4 5 202 if nComp != 1 { 203 bx = hi*mx + j%hi 204 by = vi*my + j/hi 205 } else { 206 q := mxx * hi 207 bx = blockCount % q 208 by = blockCount / q 209 blockCount++ 210 if bx*8 >= d.width || by*8 >= d.height { 211 continue 212 } 213 } 214 215 // Load the previous partially decoded coefficients, if applicable. 216 if d.progressive { 217 b = d.progCoeffs[compIndex][by*mxx*hi+bx] 218 } else { 219 b = block{} 220 } 221 222 if ah != 0 { 223 if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil { 224 return err 225 } 226 } else { 227 zig := zigStart 228 if zig == 0 { 229 zig++ 230 // Decode the DC coefficient, as specified in section F.2.2.1. 231 value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) 232 if err != nil { 233 return err 234 } 235 if value > 16 { 236 return UnsupportedError("excessive DC component") 237 } 238 dcDelta, err := d.receiveExtend(value) 239 if err != nil { 240 return err 241 } 242 dc[compIndex] += dcDelta 243 b[0] = dc[compIndex] << al 244 } 245 246 if zig <= zigEnd && d.eobRun > 0 { 247 d.eobRun-- 248 } else { 249 // Decode the AC coefficients, as specified in section F.2.2.2. 250 huff := &d.huff[acTable][scan[i].ta] 251 for ; zig <= zigEnd; zig++ { 252 value, err := d.decodeHuffman(huff) 253 if err != nil { 254 return err 255 } 256 val0 := value >> 4 257 val1 := value & 0x0f 258 if val1 != 0 { 259 zig += int32(val0) 260 if zig > zigEnd { 261 break 262 } 263 ac, err := d.receiveExtend(val1) 264 if err != nil { 265 return err 266 } 267 b[unzig[zig]] = ac << al 268 } else { 269 if val0 != 0x0f { 270 d.eobRun = uint16(1 << val0) 271 if val0 != 0 { 272 bits, err := d.decodeBits(int32(val0)) 273 if err != nil { 274 return err 275 } 276 d.eobRun |= uint16(bits) 277 } 278 d.eobRun-- 279 break 280 } 281 zig += 0x0f 282 } 283 } 284 } 285 } 286 287 if d.progressive { 288 // Save the coefficients. 289 d.progCoeffs[compIndex][by*mxx*hi+bx] = b 290 // At this point, we could call reconstructBlock to dequantize and perform the 291 // inverse DCT, to save early stages of a progressive image to the *image.YCbCr 292 // buffers (the whole point of progressive encoding), but in Go, the jpeg.Decode 293 // function does not return until the entire image is decoded, so we "continue" 294 // here to avoid wasted computation. Instead, reconstructBlock is called on each 295 // accumulated block by the reconstructProgressiveImage method after all of the 296 // SOS markers are processed. 297 continue 298 } 299 if err := d.reconstructBlock(&b, bx, by, int(compIndex)); err != nil { 300 return err 301 } 302 } // for j 303 } // for i 304 mcu++ 305 if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { 306 // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, 307 // but this one assumes well-formed input, and hence the restart marker follows immediately. 308 if err := d.readFull(d.tmp[:2]); err != nil { 309 return err 310 } 311 if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { 312 return FormatError("bad RST marker") 313 } 314 expectedRST++ 315 if expectedRST == rst7Marker+1 { 316 expectedRST = rst0Marker 317 } 318 // Reset the Huffman decoder. 319 d.bits = bits{} 320 // Reset the DC components, as per section F.2.1.3.1. 321 dc = [maxComponents]int32{} 322 // Reset the progressive decoder state, as per section G.1.2.2. 323 d.eobRun = 0 324 } 325 } // for mx 326 } // for my 327 328 return nil 329 } 330 331 // refine decodes a successive approximation refinement block, as specified in 332 // section G.1.2. 333 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error { 334 // Refining a DC component is trivial. 335 if zigStart == 0 { 336 if zigEnd != 0 { 337 panic("unreachable") 338 } 339 bit, err := d.decodeBit() 340 if err != nil { 341 return err 342 } 343 if bit { 344 b[0] |= delta 345 } 346 return nil 347 } 348 349 // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3. 350 zig := zigStart 351 if d.eobRun == 0 { 352 loop: 353 for ; zig <= zigEnd; zig++ { 354 z := int32(0) 355 value, err := d.decodeHuffman(h) 356 if err != nil { 357 return err 358 } 359 val0 := value >> 4 360 val1 := value & 0x0f 361 362 switch val1 { 363 case 0: 364 if val0 != 0x0f { 365 d.eobRun = uint16(1 << val0) 366 if val0 != 0 { 367 bits, err := d.decodeBits(int32(val0)) 368 if err != nil { 369 return err 370 } 371 d.eobRun |= uint16(bits) 372 } 373 break loop 374 } 375 case 1: 376 z = delta 377 bit, err := d.decodeBit() 378 if err != nil { 379 return err 380 } 381 if !bit { 382 z = -z 383 } 384 default: 385 return FormatError("unexpected Huffman code") 386 } 387 388 zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta) 389 if err != nil { 390 return err 391 } 392 if zig > zigEnd { 393 return FormatError("too many coefficients") 394 } 395 if z != 0 { 396 b[unzig[zig]] = z 397 } 398 } 399 } 400 if d.eobRun > 0 { 401 d.eobRun-- 402 if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil { 403 return err 404 } 405 } 406 return nil 407 } 408 409 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0, 410 // the first nz zero entries are skipped over. 411 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) { 412 for ; zig <= zigEnd; zig++ { 413 u := unzig[zig] 414 if b[u] == 0 { 415 if nz == 0 { 416 break 417 } 418 nz-- 419 continue 420 } 421 bit, err := d.decodeBit() 422 if err != nil { 423 return 0, err 424 } 425 if !bit { 426 continue 427 } 428 if b[u] >= 0 { 429 b[u] += delta 430 } else { 431 b[u] -= delta 432 } 433 } 434 return zig, nil 435 } 436 437 func (d *decoder) reconstructProgressiveImage() error { 438 // The h0, mxx, by and bx variables have the same meaning as in the 439 // processSOS method. 440 h0 := d.comp[0].h 441 mxx := (d.width + 8*h0 - 1) / (8 * h0) 442 for i := 0; i < d.nComp; i++ { 443 if d.progCoeffs[i] == nil { 444 continue 445 } 446 v := 8 * d.comp[0].v / d.comp[i].v 447 h := 8 * d.comp[0].h / d.comp[i].h 448 stride := mxx * d.comp[i].h 449 for by := 0; by*v < d.height; by++ { 450 for bx := 0; bx*h < d.width; bx++ { 451 if err := d.reconstructBlock(&d.progCoeffs[i][by*stride+bx], bx, by, i); err != nil { 452 return err 453 } 454 } 455 } 456 } 457 return nil 458 } 459 460 // reconstructBlock dequantizes, performs the inverse DCT and stores the block 461 // to the image. 462 func (d *decoder) reconstructBlock(b *block, bx, by, compIndex int) error { 463 qt := &d.quant[d.comp[compIndex].tq] 464 for zig := 0; zig < blockSize; zig++ { 465 b[unzig[zig]] *= qt[zig] 466 } 467 idct(b) 468 dst, stride := []byte(nil), 0 469 if d.nComp == 1 { 470 dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride 471 } else { 472 switch compIndex { 473 case 0: 474 dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride 475 case 1: 476 dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride 477 case 2: 478 dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride 479 case 3: 480 dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride 481 default: 482 return UnsupportedError("too many components") 483 } 484 } 485 // Level shift by +128, clip to [0, 255], and write to dst. 486 for y := 0; y < 8; y++ { 487 y8 := y * 8 488 yStride := y * stride 489 for x := 0; x < 8; x++ { 490 c := b[y8+x] 491 if c < -128 { 492 c = 0 493 } else if c > 127 { 494 c = 255 495 } else { 496 c += 128 497 } 498 dst[yStride+x] = uint8(c) 499 } 500 } 501 return nil 502 }