github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/math/big/ftoa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements Float-to-string conversion functions. 6 // It is closely following the corresponding implementation 7 // in strconv/ftoa.go, but modified and simplified for Float. 8 9 package big 10 11 import ( 12 "bytes" 13 "fmt" 14 "strconv" 15 ) 16 17 // Text converts the floating-point number x to a string according 18 // to the given format and precision prec. The format is one of: 19 // 20 // 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits 21 // 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits 22 // 'f' -ddddd.dddd, no exponent 23 // 'g' like 'e' for large exponents, like 'f' otherwise 24 // 'G' like 'E' for large exponents, like 'f' otherwise 25 // 'b' -ddddddp±dd, binary exponent 26 // 'p' -0x.dddp±dd, binary exponent, hexadecimal mantissa 27 // 28 // For the binary exponent formats, the mantissa is printed in normalized form: 29 // 30 // 'b' decimal integer mantissa using x.Prec() bits, or -0 31 // 'p' hexadecimal fraction with 0.5 <= 0.mantissa < 1.0, or -0 32 // 33 // If format is a different character, Text returns a "%" followed by the 34 // unrecognized format character. 35 // 36 // The precision prec controls the number of digits (excluding the exponent) 37 // printed by the 'e', 'E', 'f', 'g', and 'G' formats. For 'e', 'E', and 'f' 38 // it is the number of digits after the decimal point. For 'g' and 'G' it is 39 // the total number of digits. A negative precision selects the smallest 40 // number of decimal digits necessary to identify the value x uniquely using 41 // x.Prec() mantissa bits. 42 // The prec value is ignored for the 'b' or 'p' format. 43 func (x *Float) Text(format byte, prec int) string { 44 cap := 10 // TODO(gri) determine a good/better value here 45 if prec > 0 { 46 cap += prec 47 } 48 return string(x.Append(make([]byte, 0, cap), format, prec)) 49 } 50 51 // String formats x like x.Text('g', 10). 52 // (String must be called explicitly, Float.Format does not support %s verb.) 53 func (x *Float) String() string { 54 return x.Text('g', 10) 55 } 56 57 // Append appends to buf the string form of the floating-point number x, 58 // as generated by x.Text, and returns the extended buffer. 59 func (x *Float) Append(buf []byte, fmt byte, prec int) []byte { 60 // sign 61 if x.neg { 62 buf = append(buf, '-') 63 } 64 65 // Inf 66 if x.form == inf { 67 if !x.neg { 68 buf = append(buf, '+') 69 } 70 return append(buf, "Inf"...) 71 } 72 73 // pick off easy formats 74 switch fmt { 75 case 'b': 76 return x.fmtB(buf) 77 case 'p': 78 return x.fmtP(buf) 79 } 80 81 // Algorithm: 82 // 1) convert Float to multiprecision decimal 83 // 2) round to desired precision 84 // 3) read digits out and format 85 86 // 1) convert Float to multiprecision decimal 87 var d decimal // == 0.0 88 if x.form == finite { 89 // x != 0 90 d.init(x.mant, int(x.exp)-x.mant.bitLen()) 91 } 92 93 // 2) round to desired precision 94 shortest := false 95 if prec < 0 { 96 shortest = true 97 roundShortest(&d, x) 98 // Precision for shortest representation mode. 99 switch fmt { 100 case 'e', 'E': 101 prec = len(d.mant) - 1 102 case 'f': 103 prec = max(len(d.mant)-d.exp, 0) 104 case 'g', 'G': 105 prec = len(d.mant) 106 } 107 } else { 108 // round appropriately 109 switch fmt { 110 case 'e', 'E': 111 // one digit before and number of digits after decimal point 112 d.round(1 + prec) 113 case 'f': 114 // number of digits before and after decimal point 115 d.round(d.exp + prec) 116 case 'g', 'G': 117 if prec == 0 { 118 prec = 1 119 } 120 d.round(prec) 121 } 122 } 123 124 // 3) read digits out and format 125 switch fmt { 126 case 'e', 'E': 127 return fmtE(buf, fmt, prec, d) 128 case 'f': 129 return fmtF(buf, prec, d) 130 case 'g', 'G': 131 // trim trailing fractional zeros in %e format 132 eprec := prec 133 if eprec > len(d.mant) && len(d.mant) >= d.exp { 134 eprec = len(d.mant) 135 } 136 // %e is used if the exponent from the conversion 137 // is less than -4 or greater than or equal to the precision. 138 // If precision was the shortest possible, use eprec = 6 for 139 // this decision. 140 if shortest { 141 eprec = 6 142 } 143 exp := d.exp - 1 144 if exp < -4 || exp >= eprec { 145 if prec > len(d.mant) { 146 prec = len(d.mant) 147 } 148 return fmtE(buf, fmt+'e'-'g', prec-1, d) 149 } 150 if prec > d.exp { 151 prec = len(d.mant) 152 } 153 return fmtF(buf, max(prec-d.exp, 0), d) 154 } 155 156 // unknown format 157 if x.neg { 158 buf = buf[:len(buf)-1] // sign was added prematurely - remove it again 159 } 160 return append(buf, '%', fmt) 161 } 162 163 func roundShortest(d *decimal, x *Float) { 164 // if the mantissa is zero, the number is zero - stop now 165 if len(d.mant) == 0 { 166 return 167 } 168 169 // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp] 170 // (possibly exclusive) round to x for the given precision of x. 171 // Compute the lower and upper bound in decimal form and find the 172 // shortest decimal number d such that lower <= d <= upper. 173 174 // TODO(gri) strconv/ftoa.do describes a shortcut in some cases. 175 // See if we can use it (in adjusted form) here as well. 176 177 // 1) Compute normalized mantissa mant and exponent exp for x such 178 // that the lsb of mant corresponds to 1/2 ulp for the precision of 179 // x (i.e., for mant we want x.prec + 1 bits). 180 mant := nat(nil).set(x.mant) 181 exp := int(x.exp) - mant.bitLen() 182 s := mant.bitLen() - int(x.prec+1) 183 switch { 184 case s < 0: 185 mant = mant.shl(mant, uint(-s)) 186 case s > 0: 187 mant = mant.shr(mant, uint(+s)) 188 } 189 exp += s 190 // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec 191 192 // 2) Compute lower bound by subtracting 1/2 ulp. 193 var lower decimal 194 var tmp nat 195 lower.init(tmp.sub(mant, natOne), exp) 196 197 // 3) Compute upper bound by adding 1/2 ulp. 198 var upper decimal 199 upper.init(tmp.add(mant, natOne), exp) 200 201 // The upper and lower bounds are possible outputs only if 202 // the original mantissa is even, so that ToNearestEven rounding 203 // would round to the original mantissa and not the neighbors. 204 inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1 205 206 // Now we can figure out the minimum number of digits required. 207 // Walk along until d has distinguished itself from upper and lower. 208 for i, m := range d.mant { 209 l := lower.at(i) 210 u := upper.at(i) 211 212 // Okay to round down (truncate) if lower has a different digit 213 // or if lower is inclusive and is exactly the result of rounding 214 // down (i.e., and we have reached the final digit of lower). 215 okdown := l != m || inclusive && i+1 == len(lower.mant) 216 217 // Okay to round up if upper has a different digit and either upper 218 // is inclusive or upper is bigger than the result of rounding up. 219 okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant)) 220 221 // If it's okay to do either, then round to the nearest one. 222 // If it's okay to do only one, do it. 223 switch { 224 case okdown && okup: 225 d.round(i + 1) 226 return 227 case okdown: 228 d.roundDown(i + 1) 229 return 230 case okup: 231 d.roundUp(i + 1) 232 return 233 } 234 } 235 } 236 237 // %e: d.ddddde±dd 238 func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte { 239 // first digit 240 ch := byte('0') 241 if len(d.mant) > 0 { 242 ch = d.mant[0] 243 } 244 buf = append(buf, ch) 245 246 // .moredigits 247 if prec > 0 { 248 buf = append(buf, '.') 249 i := 1 250 m := min(len(d.mant), prec+1) 251 if i < m { 252 buf = append(buf, d.mant[i:m]...) 253 i = m 254 } 255 for ; i <= prec; i++ { 256 buf = append(buf, '0') 257 } 258 } 259 260 // e± 261 buf = append(buf, fmt) 262 var exp int64 263 if len(d.mant) > 0 { 264 exp = int64(d.exp) - 1 // -1 because first digit was printed before '.' 265 } 266 if exp < 0 { 267 ch = '-' 268 exp = -exp 269 } else { 270 ch = '+' 271 } 272 buf = append(buf, ch) 273 274 // dd...d 275 if exp < 10 { 276 buf = append(buf, '0') // at least 2 exponent digits 277 } 278 return strconv.AppendInt(buf, exp, 10) 279 } 280 281 // %f: ddddddd.ddddd 282 func fmtF(buf []byte, prec int, d decimal) []byte { 283 // integer, padded with zeros as needed 284 if d.exp > 0 { 285 m := min(len(d.mant), d.exp) 286 buf = append(buf, d.mant[:m]...) 287 for ; m < d.exp; m++ { 288 buf = append(buf, '0') 289 } 290 } else { 291 buf = append(buf, '0') 292 } 293 294 // fraction 295 if prec > 0 { 296 buf = append(buf, '.') 297 for i := 0; i < prec; i++ { 298 buf = append(buf, d.at(d.exp+i)) 299 } 300 } 301 302 return buf 303 } 304 305 // fmtB appends the string of x in the format mantissa "p" exponent 306 // with a decimal mantissa and a binary exponent, or 0" if x is zero, 307 // and returns the extended buffer. 308 // The mantissa is normalized such that is uses x.Prec() bits in binary 309 // representation. 310 // The sign of x is ignored, and x must not be an Inf. 311 func (x *Float) fmtB(buf []byte) []byte { 312 if x.form == zero { 313 return append(buf, '0') 314 } 315 316 if debugFloat && x.form != finite { 317 panic("non-finite float") 318 } 319 // x != 0 320 321 // adjust mantissa to use exactly x.prec bits 322 m := x.mant 323 switch w := uint32(len(x.mant)) * _W; { 324 case w < x.prec: 325 m = nat(nil).shl(m, uint(x.prec-w)) 326 case w > x.prec: 327 m = nat(nil).shr(m, uint(w-x.prec)) 328 } 329 330 buf = append(buf, m.utoa(10)...) 331 buf = append(buf, 'p') 332 e := int64(x.exp) - int64(x.prec) 333 if e >= 0 { 334 buf = append(buf, '+') 335 } 336 return strconv.AppendInt(buf, e, 10) 337 } 338 339 // fmtP appends the string of x in the format "0x." mantissa "p" exponent 340 // with a hexadecimal mantissa and a binary exponent, or "0" if x is zero, 341 // and returns the extended buffer. 342 // The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0. 343 // The sign of x is ignored, and x must not be an Inf. 344 func (x *Float) fmtP(buf []byte) []byte { 345 if x.form == zero { 346 return append(buf, '0') 347 } 348 349 if debugFloat && x.form != finite { 350 panic("non-finite float") 351 } 352 // x != 0 353 354 // remove trailing 0 words early 355 // (no need to convert to hex 0's and trim later) 356 m := x.mant 357 i := 0 358 for i < len(m) && m[i] == 0 { 359 i++ 360 } 361 m = m[i:] 362 363 buf = append(buf, "0x."...) 364 buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...) 365 buf = append(buf, 'p') 366 if x.exp >= 0 { 367 buf = append(buf, '+') 368 } 369 return strconv.AppendInt(buf, int64(x.exp), 10) 370 } 371 372 func min(x, y int) int { 373 if x < y { 374 return x 375 } 376 return y 377 } 378 379 var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter 380 381 // Format implements fmt.Formatter. It accepts all the regular 382 // formats for floating-point numbers ('b', 'e', 'E', 'f', 'F', 383 // 'g', 'G') as well as 'p' and 'v'. See (*Float).Text for the 384 // interpretation of 'p'. The 'v' format is handled like 'g'. 385 // Format also supports specification of the minimum precision 386 // in digits, the output field width, as well as the format flags 387 // '+' and ' ' for sign control, '0' for space or zero padding, 388 // and '-' for left or right justification. See the fmt package 389 // for details. 390 func (x *Float) Format(s fmt.State, format rune) { 391 prec, hasPrec := s.Precision() 392 if !hasPrec { 393 prec = 6 // default precision for 'e', 'f' 394 } 395 396 switch format { 397 case 'e', 'E', 'f', 'b', 'p': 398 // nothing to do 399 case 'F': 400 // (*Float).Text doesn't support 'F'; handle like 'f' 401 format = 'f' 402 case 'v': 403 // handle like 'g' 404 format = 'g' 405 fallthrough 406 case 'g', 'G': 407 if !hasPrec { 408 prec = -1 // default precision for 'g', 'G' 409 } 410 default: 411 fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String()) 412 return 413 } 414 var buf []byte 415 buf = x.Append(buf, byte(format), prec) 416 if len(buf) == 0 { 417 buf = []byte("?") // should never happen, but don't crash 418 } 419 // len(buf) > 0 420 421 var sign string 422 switch { 423 case buf[0] == '-': 424 sign = "-" 425 buf = buf[1:] 426 case buf[0] == '+': 427 // +Inf 428 sign = "+" 429 if s.Flag(' ') { 430 sign = " " 431 } 432 buf = buf[1:] 433 case s.Flag('+'): 434 sign = "+" 435 case s.Flag(' '): 436 sign = " " 437 } 438 439 var padding int 440 if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) { 441 padding = width - len(sign) - len(buf) 442 } 443 444 switch { 445 case s.Flag('0') && !x.IsInf(): 446 // 0-padding on left 447 writeMultiple(s, sign, 1) 448 writeMultiple(s, "0", padding) 449 s.Write(buf) 450 case s.Flag('-'): 451 // padding on right 452 writeMultiple(s, sign, 1) 453 s.Write(buf) 454 writeMultiple(s, " ", padding) 455 default: 456 // padding on left 457 writeMultiple(s, " ", padding) 458 writeMultiple(s, sign, 1) 459 s.Write(buf) 460 } 461 }