github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) locks g to m, calls entersyscall
    12  // so as not to block other goroutines or the garbage collector,
    13  // and then calls runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go. If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF calls crosscall2(_cgoexp_GoF, frame, framesize).  Crosscall2
    39  // (in cgo/gcc_$GOARCH.S, a gcc-compiled assembly file) is a two-argument
    40  // adapter from the gcc function call ABI to the 6c function call ABI.
    41  // It is called from gcc to call 6c functions. In this case it calls
    42  // _cgoexp_GoF(frame, framesize), still running on m->g0's stack
    43  // and outside the $GOMAXPROCS limit. Thus, this code cannot yet
    44  // call arbitrary Go code directly and must be careful not to allocate
    45  // memory or use up m->g0's stack.
    46  //
    47  // _cgoexp_GoF calls runtime.cgocallback(p.GoF, frame, framesize, ctxt).
    48  // (The reason for having _cgoexp_GoF instead of writing a crosscall3
    49  // to make this call directly is that _cgoexp_GoF, because it is compiled
    50  // with 6c instead of gcc, can refer to dotted names like
    51  // runtime.cgocallback and p.GoF.)
    52  //
    53  // runtime.cgocallback (in asm_$GOARCH.s) switches from m->g0's
    54  // stack to the original g (m->curg)'s stack, on which it calls
    55  // runtime.cgocallbackg(p.GoF, frame, framesize).
    56  // As part of the stack switch, runtime.cgocallback saves the current
    57  // SP as m->g0->sched.sp, so that any use of m->g0's stack during the
    58  // execution of the callback will be done below the existing stack frames.
    59  // Before overwriting m->g0->sched.sp, it pushes the old value on the
    60  // m->g0 stack, so that it can be restored later.
    61  //
    62  // runtime.cgocallbackg (below) is now running on a real goroutine
    63  // stack (not an m->g0 stack).  First it calls runtime.exitsyscall, which will
    64  // block until the $GOMAXPROCS limit allows running this goroutine.
    65  // Once exitsyscall has returned, it is safe to do things like call the memory
    66  // allocator or invoke the Go callback function p.GoF.  runtime.cgocallbackg
    67  // first defers a function to unwind m->g0.sched.sp, so that if p.GoF
    68  // panics, m->g0.sched.sp will be restored to its old value: the m->g0 stack
    69  // and the m->curg stack will be unwound in lock step.
    70  // Then it calls p.GoF.  Finally it pops but does not execute the deferred
    71  // function, calls runtime.entersyscall, and returns to runtime.cgocallback.
    72  //
    73  // After it regains control, runtime.cgocallback switches back to
    74  // m->g0's stack (the pointer is still in m->g0.sched.sp), restores the old
    75  // m->g0.sched.sp value from the stack, and returns to _cgoexp_GoF.
    76  //
    77  // _cgoexp_GoF immediately returns to crosscall2, which restores the
    78  // callee-save registers for gcc and returns to GoF, which returns to f.
    79  
    80  package runtime
    81  
    82  import (
    83  	"runtime/internal/atomic"
    84  	"runtime/internal/sys"
    85  	"unsafe"
    86  )
    87  
    88  // Addresses collected in a cgo backtrace when crashing.
    89  // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
    90  type cgoCallers [32]uintptr
    91  
    92  // Call from Go to C.
    93  //go:nosplit
    94  func cgocall(fn, arg unsafe.Pointer) int32 {
    95  	if !iscgo && GOOS != "solaris" && GOOS != "windows" {
    96  		throw("cgocall unavailable")
    97  	}
    98  
    99  	if fn == nil {
   100  		throw("cgocall nil")
   101  	}
   102  
   103  	if raceenabled {
   104  		racereleasemerge(unsafe.Pointer(&racecgosync))
   105  	}
   106  
   107  	// Lock g to m to ensure we stay on the same stack if we do a
   108  	// cgo callback. In case of panic, unwindm calls endcgo.
   109  	lockOSThread()
   110  	mp := getg().m
   111  	mp.ncgocall++
   112  	mp.ncgo++
   113  	mp.incgo = true
   114  
   115  	// Reset traceback.
   116  	mp.cgoCallers[0] = 0
   117  
   118  	// Announce we are entering a system call
   119  	// so that the scheduler knows to create another
   120  	// M to run goroutines while we are in the
   121  	// foreign code.
   122  	//
   123  	// The call to asmcgocall is guaranteed not to
   124  	// grow the stack and does not allocate memory,
   125  	// so it is safe to call while "in a system call", outside
   126  	// the $GOMAXPROCS accounting.
   127  	//
   128  	// fn may call back into Go code, in which case we'll exit the
   129  	// "system call", run the Go code (which may grow the stack),
   130  	// and then re-enter the "system call" reusing the PC and SP
   131  	// saved by entersyscall here.
   132  	entersyscall(0)
   133  	errno := asmcgocall(fn, arg)
   134  	exitsyscall(0)
   135  
   136  	// From the garbage collector's perspective, time can move
   137  	// backwards in the sequence above. If there's a callback into
   138  	// Go code, GC will see this function at the call to
   139  	// asmcgocall. When the Go call later returns to C, the
   140  	// syscall PC/SP is rolled back and the GC sees this function
   141  	// back at the call to entersyscall. Normally, fn and arg
   142  	// would be live at entersyscall and dead at asmcgocall, so if
   143  	// time moved backwards, GC would see these arguments as dead
   144  	// and then live. Prevent these undead arguments from crashing
   145  	// GC by forcing them to stay live across this time warp.
   146  	KeepAlive(fn)
   147  	KeepAlive(arg)
   148  
   149  	endcgo(mp)
   150  	return errno
   151  }
   152  
   153  //go:nosplit
   154  func endcgo(mp *m) {
   155  	mp.incgo = false
   156  	mp.ncgo--
   157  
   158  	if raceenabled {
   159  		raceacquire(unsafe.Pointer(&racecgosync))
   160  	}
   161  
   162  	unlockOSThread() // invalidates mp
   163  }
   164  
   165  // Call from C back to Go.
   166  //go:nosplit
   167  func cgocallbackg(ctxt uintptr) {
   168  	gp := getg()
   169  	if gp != gp.m.curg {
   170  		println("runtime: bad g in cgocallback")
   171  		exit(2)
   172  	}
   173  
   174  	// Save current syscall parameters, so m.syscall can be
   175  	// used again if callback decide to make syscall.
   176  	syscall := gp.m.syscall
   177  
   178  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   179  	// stack. However, since we're returning to an earlier stack frame and
   180  	// need to pair with the entersyscall() call made by cgocall, we must
   181  	// save syscall* and let reentersyscall restore them.
   182  	savedsp := unsafe.Pointer(gp.syscallsp)
   183  	savedpc := gp.syscallpc
   184  	exitsyscall(0) // coming out of cgo call
   185  	gp.m.incgo = false
   186  
   187  	cgocallbackg1(ctxt)
   188  
   189  	gp.m.incgo = true
   190  	// going back to cgo call
   191  	reentersyscall(savedpc, uintptr(savedsp))
   192  
   193  	gp.m.syscall = syscall
   194  }
   195  
   196  func cgocallbackg1(ctxt uintptr) {
   197  	gp := getg()
   198  	if gp.m.needextram || atomic.Load(&extraMWaiters) > 0 {
   199  		gp.m.needextram = false
   200  		systemstack(newextram)
   201  	}
   202  
   203  	if ctxt != 0 {
   204  		s := append(gp.cgoCtxt, ctxt)
   205  
   206  		// Now we need to set gp.cgoCtxt = s, but we could get
   207  		// a SIGPROF signal while manipulating the slice, and
   208  		// the SIGPROF handler could pick up gp.cgoCtxt while
   209  		// tracing up the stack.  We need to ensure that the
   210  		// handler always sees a valid slice, so set the
   211  		// values in an order such that it always does.
   212  		p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   213  		atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0]))
   214  		p.cap = cap(s)
   215  		p.len = len(s)
   216  
   217  		defer func(gp *g) {
   218  			// Decrease the length of the slice by one, safely.
   219  			p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   220  			p.len--
   221  		}(gp)
   222  	}
   223  
   224  	if gp.m.ncgo == 0 {
   225  		// The C call to Go came from a thread not currently running
   226  		// any Go. In the case of -buildmode=c-archive or c-shared,
   227  		// this call may be coming in before package initialization
   228  		// is complete. Wait until it is.
   229  		<-main_init_done
   230  	}
   231  
   232  	// Add entry to defer stack in case of panic.
   233  	restore := true
   234  	defer unwindm(&restore)
   235  
   236  	if raceenabled {
   237  		raceacquire(unsafe.Pointer(&racecgosync))
   238  	}
   239  
   240  	type args struct {
   241  		fn      *funcval
   242  		arg     unsafe.Pointer
   243  		argsize uintptr
   244  	}
   245  	var cb *args
   246  
   247  	// Location of callback arguments depends on stack frame layout
   248  	// and size of stack frame of cgocallback_gofunc.
   249  	sp := gp.m.g0.sched.sp
   250  	switch GOARCH {
   251  	default:
   252  		throw("cgocallbackg is unimplemented on arch")
   253  	case "arm":
   254  		// On arm, stack frame is two words and there's a saved LR between
   255  		// SP and the stack frame and between the stack frame and the arguments.
   256  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   257  	case "arm64":
   258  		// On arm64, stack frame is four words and there's a saved LR between
   259  		// SP and the stack frame and between the stack frame and the arguments.
   260  		cb = (*args)(unsafe.Pointer(sp + 5*sys.PtrSize))
   261  	case "amd64":
   262  		// On amd64, stack frame is two words, plus caller PC.
   263  		if framepointer_enabled {
   264  			// In this case, there's also saved BP.
   265  			cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   266  			break
   267  		}
   268  		cb = (*args)(unsafe.Pointer(sp + 3*sys.PtrSize))
   269  	case "386":
   270  		// On 386, stack frame is three words, plus caller PC.
   271  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   272  	case "ppc64", "ppc64le", "s390x":
   273  		// On ppc64 and s390x, the callback arguments are in the arguments area of
   274  		// cgocallback's stack frame. The stack looks like this:
   275  		// +--------------------+------------------------------+
   276  		// |                    | ...                          |
   277  		// | cgoexp_$fn         +------------------------------+
   278  		// |                    | fixed frame area             |
   279  		// +--------------------+------------------------------+
   280  		// |                    | arguments area               |
   281  		// | cgocallback        +------------------------------+ <- sp + 2*minFrameSize + 2*ptrSize
   282  		// |                    | fixed frame area             |
   283  		// +--------------------+------------------------------+ <- sp + minFrameSize + 2*ptrSize
   284  		// |                    | local variables (2 pointers) |
   285  		// | cgocallback_gofunc +------------------------------+ <- sp + minFrameSize
   286  		// |                    | fixed frame area             |
   287  		// +--------------------+------------------------------+ <- sp
   288  		cb = (*args)(unsafe.Pointer(sp + 2*sys.MinFrameSize + 2*sys.PtrSize))
   289  	case "mips64", "mips64le":
   290  		// On mips64x, stack frame is two words and there's a saved LR between
   291  		// SP and the stack frame and between the stack frame and the arguments.
   292  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   293  	case "mips", "mipsle":
   294  		// On mipsx, stack frame is two words and there's a saved LR between
   295  		// SP and the stack frame and between the stack frame and the arguments.
   296  		cb = (*args)(unsafe.Pointer(sp + 4*sys.PtrSize))
   297  	}
   298  
   299  	// Invoke callback.
   300  	// NOTE(rsc): passing nil for argtype means that the copying of the
   301  	// results back into cb.arg happens without any corresponding write barriers.
   302  	// For cgo, cb.arg points into a C stack frame and therefore doesn't
   303  	// hold any pointers that the GC can find anyway - the write barrier
   304  	// would be a no-op.
   305  	reflectcall(nil, unsafe.Pointer(cb.fn), cb.arg, uint32(cb.argsize), 0)
   306  
   307  	if raceenabled {
   308  		racereleasemerge(unsafe.Pointer(&racecgosync))
   309  	}
   310  	if msanenabled {
   311  		// Tell msan that we wrote to the entire argument block.
   312  		// This tells msan that we set the results.
   313  		// Since we have already called the function it doesn't
   314  		// matter that we are writing to the non-result parameters.
   315  		msanwrite(cb.arg, cb.argsize)
   316  	}
   317  
   318  	// Do not unwind m->g0->sched.sp.
   319  	// Our caller, cgocallback, will do that.
   320  	restore = false
   321  }
   322  
   323  func unwindm(restore *bool) {
   324  	if !*restore {
   325  		return
   326  	}
   327  	// Restore sp saved by cgocallback during
   328  	// unwind of g's stack (see comment at top of file).
   329  	mp := acquirem()
   330  	sched := &mp.g0.sched
   331  	switch GOARCH {
   332  	default:
   333  		throw("unwindm not implemented")
   334  	case "386", "amd64", "arm", "ppc64", "ppc64le", "mips64", "mips64le", "s390x", "mips", "mipsle":
   335  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + sys.MinFrameSize))
   336  	case "arm64":
   337  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + 16))
   338  	}
   339  
   340  	// Call endcgo to do the accounting that cgocall will not have a
   341  	// chance to do during an unwind.
   342  	//
   343  	// In the case where a a Go call originates from C, ncgo is 0
   344  	// and there is no matching cgocall to end.
   345  	if mp.ncgo > 0 {
   346  		endcgo(mp)
   347  	}
   348  
   349  	releasem(mp)
   350  }
   351  
   352  // called from assembly
   353  func badcgocallback() {
   354  	throw("misaligned stack in cgocallback")
   355  }
   356  
   357  // called from (incomplete) assembly
   358  func cgounimpl() {
   359  	throw("cgo not implemented")
   360  }
   361  
   362  var racecgosync uint64 // represents possible synchronization in C code
   363  
   364  // Pointer checking for cgo code.
   365  
   366  // We want to detect all cases where a program that does not use
   367  // unsafe makes a cgo call passing a Go pointer to memory that
   368  // contains a Go pointer. Here a Go pointer is defined as a pointer
   369  // to memory allocated by the Go runtime. Programs that use unsafe
   370  // can evade this restriction easily, so we don't try to catch them.
   371  // The cgo program will rewrite all possibly bad pointer arguments to
   372  // call cgoCheckPointer, where we can catch cases of a Go pointer
   373  // pointing to a Go pointer.
   374  
   375  // Complicating matters, taking the address of a slice or array
   376  // element permits the C program to access all elements of the slice
   377  // or array. In that case we will see a pointer to a single element,
   378  // but we need to check the entire data structure.
   379  
   380  // The cgoCheckPointer call takes additional arguments indicating that
   381  // it was called on an address expression. An additional argument of
   382  // true means that it only needs to check a single element. An
   383  // additional argument of a slice or array means that it needs to
   384  // check the entire slice/array, but nothing else. Otherwise, the
   385  // pointer could be anything, and we check the entire heap object,
   386  // which is conservative but safe.
   387  
   388  // When and if we implement a moving garbage collector,
   389  // cgoCheckPointer will pin the pointer for the duration of the cgo
   390  // call.  (This is necessary but not sufficient; the cgo program will
   391  // also have to change to pin Go pointers that cannot point to Go
   392  // pointers.)
   393  
   394  // cgoCheckPointer checks if the argument contains a Go pointer that
   395  // points to a Go pointer, and panics if it does.
   396  func cgoCheckPointer(ptr interface{}, args ...interface{}) {
   397  	if debug.cgocheck == 0 {
   398  		return
   399  	}
   400  
   401  	ep := (*eface)(unsafe.Pointer(&ptr))
   402  	t := ep._type
   403  
   404  	top := true
   405  	if len(args) > 0 && (t.kind&kindMask == kindPtr || t.kind&kindMask == kindUnsafePointer) {
   406  		p := ep.data
   407  		if t.kind&kindDirectIface == 0 {
   408  			p = *(*unsafe.Pointer)(p)
   409  		}
   410  		if !cgoIsGoPointer(p) {
   411  			return
   412  		}
   413  		aep := (*eface)(unsafe.Pointer(&args[0]))
   414  		switch aep._type.kind & kindMask {
   415  		case kindBool:
   416  			if t.kind&kindMask == kindUnsafePointer {
   417  				// We don't know the type of the element.
   418  				break
   419  			}
   420  			pt := (*ptrtype)(unsafe.Pointer(t))
   421  			cgoCheckArg(pt.elem, p, true, false, cgoCheckPointerFail)
   422  			return
   423  		case kindSlice:
   424  			// Check the slice rather than the pointer.
   425  			ep = aep
   426  			t = ep._type
   427  		case kindArray:
   428  			// Check the array rather than the pointer.
   429  			// Pass top as false since we have a pointer
   430  			// to the array.
   431  			ep = aep
   432  			t = ep._type
   433  			top = false
   434  		default:
   435  			throw("can't happen")
   436  		}
   437  	}
   438  
   439  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, top, cgoCheckPointerFail)
   440  }
   441  
   442  const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
   443  const cgoResultFail = "cgo result has Go pointer"
   444  
   445  // cgoCheckArg is the real work of cgoCheckPointer. The argument p
   446  // is either a pointer to the value (of type t), or the value itself,
   447  // depending on indir. The top parameter is whether we are at the top
   448  // level, where Go pointers are allowed.
   449  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   450  	if t.kind&kindNoPointers != 0 {
   451  		// If the type has no pointers there is nothing to do.
   452  		return
   453  	}
   454  
   455  	switch t.kind & kindMask {
   456  	default:
   457  		throw("can't happen")
   458  	case kindArray:
   459  		at := (*arraytype)(unsafe.Pointer(t))
   460  		if !indir {
   461  			if at.len != 1 {
   462  				throw("can't happen")
   463  			}
   464  			cgoCheckArg(at.elem, p, at.elem.kind&kindDirectIface == 0, top, msg)
   465  			return
   466  		}
   467  		for i := uintptr(0); i < at.len; i++ {
   468  			cgoCheckArg(at.elem, p, true, top, msg)
   469  			p = add(p, at.elem.size)
   470  		}
   471  	case kindChan, kindMap:
   472  		// These types contain internal pointers that will
   473  		// always be allocated in the Go heap. It's never OK
   474  		// to pass them to C.
   475  		panic(errorString(msg))
   476  	case kindFunc:
   477  		if indir {
   478  			p = *(*unsafe.Pointer)(p)
   479  		}
   480  		if !cgoIsGoPointer(p) {
   481  			return
   482  		}
   483  		panic(errorString(msg))
   484  	case kindInterface:
   485  		it := *(**_type)(p)
   486  		if it == nil {
   487  			return
   488  		}
   489  		// A type known at compile time is OK since it's
   490  		// constant. A type not known at compile time will be
   491  		// in the heap and will not be OK.
   492  		if inheap(uintptr(unsafe.Pointer(it))) {
   493  			panic(errorString(msg))
   494  		}
   495  		p = *(*unsafe.Pointer)(add(p, sys.PtrSize))
   496  		if !cgoIsGoPointer(p) {
   497  			return
   498  		}
   499  		if !top {
   500  			panic(errorString(msg))
   501  		}
   502  		cgoCheckArg(it, p, it.kind&kindDirectIface == 0, false, msg)
   503  	case kindSlice:
   504  		st := (*slicetype)(unsafe.Pointer(t))
   505  		s := (*slice)(p)
   506  		p = s.array
   507  		if !cgoIsGoPointer(p) {
   508  			return
   509  		}
   510  		if !top {
   511  			panic(errorString(msg))
   512  		}
   513  		if st.elem.kind&kindNoPointers != 0 {
   514  			return
   515  		}
   516  		for i := 0; i < s.cap; i++ {
   517  			cgoCheckArg(st.elem, p, true, false, msg)
   518  			p = add(p, st.elem.size)
   519  		}
   520  	case kindString:
   521  		ss := (*stringStruct)(p)
   522  		if !cgoIsGoPointer(ss.str) {
   523  			return
   524  		}
   525  		if !top {
   526  			panic(errorString(msg))
   527  		}
   528  	case kindStruct:
   529  		st := (*structtype)(unsafe.Pointer(t))
   530  		if !indir {
   531  			if len(st.fields) != 1 {
   532  				throw("can't happen")
   533  			}
   534  			cgoCheckArg(st.fields[0].typ, p, st.fields[0].typ.kind&kindDirectIface == 0, top, msg)
   535  			return
   536  		}
   537  		for _, f := range st.fields {
   538  			cgoCheckArg(f.typ, add(p, f.offset()), true, top, msg)
   539  		}
   540  	case kindPtr, kindUnsafePointer:
   541  		if indir {
   542  			p = *(*unsafe.Pointer)(p)
   543  		}
   544  
   545  		if !cgoIsGoPointer(p) {
   546  			return
   547  		}
   548  		if !top {
   549  			panic(errorString(msg))
   550  		}
   551  
   552  		cgoCheckUnknownPointer(p, msg)
   553  	}
   554  }
   555  
   556  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   557  // memory. It checks whether that Go memory contains any other
   558  // pointer into Go memory. If it does, we panic.
   559  // The return values are unused but useful to see in panic tracebacks.
   560  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   561  	if cgoInRange(p, mheap_.arena_start, mheap_.arena_used) {
   562  		if !inheap(uintptr(p)) {
   563  			// On 32-bit systems it is possible for C's allocated memory
   564  			// to have addresses between arena_start and arena_used.
   565  			// Either this pointer is a stack or an unused span or it's
   566  			// a C allocation. Escape analysis should prevent the first,
   567  			// garbage collection should prevent the second,
   568  			// and the third is completely OK.
   569  			return
   570  		}
   571  
   572  		b, hbits, span, _ := heapBitsForObject(uintptr(p), 0, 0)
   573  		base = b
   574  		if base == 0 {
   575  			return
   576  		}
   577  		n := span.elemsize
   578  		for i = uintptr(0); i < n; i += sys.PtrSize {
   579  			if i != 1*sys.PtrSize && !hbits.morePointers() {
   580  				// No more possible pointers.
   581  				break
   582  			}
   583  			if hbits.isPointer() {
   584  				if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(base + i))) {
   585  					panic(errorString(msg))
   586  				}
   587  			}
   588  			hbits = hbits.next()
   589  		}
   590  
   591  		return
   592  	}
   593  
   594  	for _, datap := range activeModules() {
   595  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   596  			// We have no way to know the size of the object.
   597  			// We have to assume that it might contain a pointer.
   598  			panic(errorString(msg))
   599  		}
   600  		// In the text or noptr sections, we know that the
   601  		// pointer does not point to a Go pointer.
   602  	}
   603  
   604  	return
   605  }
   606  
   607  // cgoIsGoPointer returns whether the pointer is a Go pointer--a
   608  // pointer to Go memory. We only care about Go memory that might
   609  // contain pointers.
   610  //go:nosplit
   611  //go:nowritebarrierrec
   612  func cgoIsGoPointer(p unsafe.Pointer) bool {
   613  	if p == nil {
   614  		return false
   615  	}
   616  
   617  	if inHeapOrStack(uintptr(p)) {
   618  		return true
   619  	}
   620  
   621  	for _, datap := range activeModules() {
   622  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   623  			return true
   624  		}
   625  	}
   626  
   627  	return false
   628  }
   629  
   630  // cgoInRange returns whether p is between start and end.
   631  //go:nosplit
   632  //go:nowritebarrierrec
   633  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   634  	return start <= uintptr(p) && uintptr(p) < end
   635  }
   636  
   637  // cgoCheckResult is called to check the result parameter of an
   638  // exported Go function. It panics if the result is or contains a Go
   639  // pointer.
   640  func cgoCheckResult(val interface{}) {
   641  	if debug.cgocheck == 0 {
   642  		return
   643  	}
   644  
   645  	ep := (*eface)(unsafe.Pointer(&val))
   646  	t := ep._type
   647  	cgoCheckArg(t, ep.data, t.kind&kindDirectIface == 0, false, cgoResultFail)
   648  }