github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/runtime/os_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"runtime/internal/sys"
     9  	"unsafe"
    10  )
    11  
    12  type mOS struct{}
    13  
    14  //go:noescape
    15  func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32
    16  
    17  // Linux futex.
    18  //
    19  //	futexsleep(uint32 *addr, uint32 val)
    20  //	futexwakeup(uint32 *addr)
    21  //
    22  // Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
    23  // Futexwakeup wakes up threads sleeping on addr.
    24  // Futexsleep is allowed to wake up spuriously.
    25  
    26  const (
    27  	_FUTEX_WAIT = 0
    28  	_FUTEX_WAKE = 1
    29  )
    30  
    31  // Atomically,
    32  //	if(*addr == val) sleep
    33  // Might be woken up spuriously; that's allowed.
    34  // Don't sleep longer than ns; ns < 0 means forever.
    35  //go:nosplit
    36  func futexsleep(addr *uint32, val uint32, ns int64) {
    37  	var ts timespec
    38  
    39  	// Some Linux kernels have a bug where futex of
    40  	// FUTEX_WAIT returns an internal error code
    41  	// as an errno. Libpthread ignores the return value
    42  	// here, and so can we: as it says a few lines up,
    43  	// spurious wakeups are allowed.
    44  	if ns < 0 {
    45  		futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
    46  		return
    47  	}
    48  
    49  	// It's difficult to live within the no-split stack limits here.
    50  	// On ARM and 386, a 64-bit divide invokes a general software routine
    51  	// that needs more stack than we can afford. So we use timediv instead.
    52  	// But on real 64-bit systems, where words are larger but the stack limit
    53  	// is not, even timediv is too heavy, and we really need to use just an
    54  	// ordinary machine instruction.
    55  	if sys.PtrSize == 8 {
    56  		ts.set_sec(ns / 1000000000)
    57  		ts.set_nsec(int32(ns % 1000000000))
    58  	} else {
    59  		ts.tv_nsec = 0
    60  		ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
    61  	}
    62  	futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
    63  }
    64  
    65  // If any procs are sleeping on addr, wake up at most cnt.
    66  //go:nosplit
    67  func futexwakeup(addr *uint32, cnt uint32) {
    68  	ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
    69  	if ret >= 0 {
    70  		return
    71  	}
    72  
    73  	// I don't know that futex wakeup can return
    74  	// EAGAIN or EINTR, but if it does, it would be
    75  	// safe to loop and call futex again.
    76  	systemstack(func() {
    77  		print("futexwakeup addr=", addr, " returned ", ret, "\n")
    78  	})
    79  
    80  	*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
    81  }
    82  
    83  func getproccount() int32 {
    84  	// This buffer is huge (8 kB) but we are on the system stack
    85  	// and there should be plenty of space (64 kB).
    86  	// Also this is a leaf, so we're not holding up the memory for long.
    87  	// See golang.org/issue/11823.
    88  	// The suggested behavior here is to keep trying with ever-larger
    89  	// buffers, but we don't have a dynamic memory allocator at the
    90  	// moment, so that's a bit tricky and seems like overkill.
    91  	const maxCPUs = 64 * 1024
    92  	var buf [maxCPUs / (sys.PtrSize * 8)]uintptr
    93  	r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0])
    94  	if r < 0 {
    95  		return 1
    96  	}
    97  	n := int32(0)
    98  	for _, v := range buf[:r/sys.PtrSize] {
    99  		for v != 0 {
   100  			n += int32(v & 1)
   101  			v >>= 1
   102  		}
   103  	}
   104  	if n == 0 {
   105  		n = 1
   106  	}
   107  	return n
   108  }
   109  
   110  // Clone, the Linux rfork.
   111  const (
   112  	_CLONE_VM             = 0x100
   113  	_CLONE_FS             = 0x200
   114  	_CLONE_FILES          = 0x400
   115  	_CLONE_SIGHAND        = 0x800
   116  	_CLONE_PTRACE         = 0x2000
   117  	_CLONE_VFORK          = 0x4000
   118  	_CLONE_PARENT         = 0x8000
   119  	_CLONE_THREAD         = 0x10000
   120  	_CLONE_NEWNS          = 0x20000
   121  	_CLONE_SYSVSEM        = 0x40000
   122  	_CLONE_SETTLS         = 0x80000
   123  	_CLONE_PARENT_SETTID  = 0x100000
   124  	_CLONE_CHILD_CLEARTID = 0x200000
   125  	_CLONE_UNTRACED       = 0x800000
   126  	_CLONE_CHILD_SETTID   = 0x1000000
   127  	_CLONE_STOPPED        = 0x2000000
   128  	_CLONE_NEWUTS         = 0x4000000
   129  	_CLONE_NEWIPC         = 0x8000000
   130  
   131  	// As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these
   132  	// flags to be set when creating a thread; attempts to share the other
   133  	// five but leave SYSVSEM unshared will fail with -EINVAL.
   134  	//
   135  	// In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not
   136  	// use System V semaphores.
   137  
   138  	cloneFlags = _CLONE_VM | /* share memory */
   139  		_CLONE_FS | /* share cwd, etc */
   140  		_CLONE_FILES | /* share fd table */
   141  		_CLONE_SIGHAND | /* share sig handler table */
   142  		_CLONE_SYSVSEM | /* share semaphore adjustments */
   143  		_CLONE_THREAD /* revisit - okay for now */
   144  )
   145  
   146  //go:noescape
   147  func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32
   148  
   149  // May run with m.p==nil, so write barriers are not allowed.
   150  //go:nowritebarrier
   151  func newosproc(mp *m, stk unsafe.Pointer) {
   152  	/*
   153  	 * note: strace gets confused if we use CLONE_PTRACE here.
   154  	 */
   155  	if false {
   156  		print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n")
   157  	}
   158  
   159  	// Disable signals during clone, so that the new thread starts
   160  	// with signals disabled. It will enable them in minit.
   161  	var oset sigset
   162  	sigprocmask(_SIG_SETMASK, &sigset_all, &oset)
   163  	ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart)))
   164  	sigprocmask(_SIG_SETMASK, &oset, nil)
   165  
   166  	if ret < 0 {
   167  		print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n")
   168  		if ret == -_EAGAIN {
   169  			println("runtime: may need to increase max user processes (ulimit -u)")
   170  		}
   171  		throw("newosproc")
   172  	}
   173  }
   174  
   175  // Version of newosproc that doesn't require a valid G.
   176  //go:nosplit
   177  func newosproc0(stacksize uintptr, fn unsafe.Pointer) {
   178  	stack := sysAlloc(stacksize, &memstats.stacks_sys)
   179  	if stack == nil {
   180  		write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack)))
   181  		exit(1)
   182  	}
   183  	ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn)
   184  	if ret < 0 {
   185  		write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate)))
   186  		exit(1)
   187  	}
   188  }
   189  
   190  var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n")
   191  var failthreadcreate = []byte("runtime: failed to create new OS thread\n")
   192  
   193  const (
   194  	_AT_NULL   = 0  // End of vector
   195  	_AT_PAGESZ = 6  // System physical page size
   196  	_AT_HWCAP  = 16 // hardware capability bit vector
   197  	_AT_RANDOM = 25 // introduced in 2.6.29
   198  	_AT_HWCAP2 = 26 // hardware capability bit vector 2
   199  )
   200  
   201  var procAuxv = []byte("/proc/self/auxv\x00")
   202  
   203  func sysargs(argc int32, argv **byte) {
   204  	n := argc + 1
   205  
   206  	// skip over argv, envp to get to auxv
   207  	for argv_index(argv, n) != nil {
   208  		n++
   209  	}
   210  
   211  	// skip NULL separator
   212  	n++
   213  
   214  	// now argv+n is auxv
   215  	auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize))
   216  	if sysauxv(auxv[:]) == 0 {
   217  		// In some situations we don't get a loader-provided
   218  		// auxv, such as when loaded as a library on Android.
   219  		// Fall back to /proc/self/auxv.
   220  		fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0)
   221  		if fd < 0 {
   222  			// On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to
   223  			// try using mincore to detect the physical page size.
   224  			// mincore should return EINVAL when address is not a multiple of system page size.
   225  			const size = 256 << 10 // size of memory region to allocate
   226  			p := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
   227  			if uintptr(p) < 4096 {
   228  				return
   229  			}
   230  			var n uintptr
   231  			for n = 4 << 10; n < size; n <<= 1 {
   232  				err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0])
   233  				if err == 0 {
   234  					physPageSize = n
   235  					break
   236  				}
   237  			}
   238  			if physPageSize == 0 {
   239  				physPageSize = size
   240  			}
   241  			munmap(p, size)
   242  			return
   243  		}
   244  		var buf [128]uintptr
   245  		n := read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf)))
   246  		closefd(fd)
   247  		if n < 0 {
   248  			return
   249  		}
   250  		// Make sure buf is terminated, even if we didn't read
   251  		// the whole file.
   252  		buf[len(buf)-2] = _AT_NULL
   253  		sysauxv(buf[:])
   254  	}
   255  }
   256  
   257  func sysauxv(auxv []uintptr) int {
   258  	var i int
   259  	for ; auxv[i] != _AT_NULL; i += 2 {
   260  		tag, val := auxv[i], auxv[i+1]
   261  		switch tag {
   262  		case _AT_RANDOM:
   263  			// The kernel provides a pointer to 16-bytes
   264  			// worth of random data.
   265  			startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
   266  
   267  		case _AT_PAGESZ:
   268  			physPageSize = val
   269  		}
   270  
   271  		archauxv(tag, val)
   272  	}
   273  	return i / 2
   274  }
   275  
   276  func osinit() {
   277  	ncpu = getproccount()
   278  }
   279  
   280  var urandom_dev = []byte("/dev/urandom\x00")
   281  
   282  func getRandomData(r []byte) {
   283  	if startupRandomData != nil {
   284  		n := copy(r, startupRandomData)
   285  		extendRandom(r, n)
   286  		return
   287  	}
   288  	fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0)
   289  	n := read(fd, unsafe.Pointer(&r[0]), int32(len(r)))
   290  	closefd(fd)
   291  	extendRandom(r, int(n))
   292  }
   293  
   294  func goenvs() {
   295  	goenvs_unix()
   296  }
   297  
   298  // Called to do synchronous initialization of Go code built with
   299  // -buildmode=c-archive or -buildmode=c-shared.
   300  // None of the Go runtime is initialized.
   301  //go:nosplit
   302  //go:nowritebarrierrec
   303  func libpreinit() {
   304  	initsig(true)
   305  }
   306  
   307  // Called to initialize a new m (including the bootstrap m).
   308  // Called on the parent thread (main thread in case of bootstrap), can allocate memory.
   309  func mpreinit(mp *m) {
   310  	mp.gsignal = malg(32 * 1024) // Linux wants >= 2K
   311  	mp.gsignal.m = mp
   312  }
   313  
   314  func gettid() uint32
   315  
   316  // Called to initialize a new m (including the bootstrap m).
   317  // Called on the new thread, cannot allocate memory.
   318  func minit() {
   319  	minitSignals()
   320  
   321  	// for debuggers, in case cgo created the thread
   322  	getg().m.procid = uint64(gettid())
   323  }
   324  
   325  // Called from dropm to undo the effect of an minit.
   326  //go:nosplit
   327  func unminit() {
   328  	unminitSignals()
   329  }
   330  
   331  func memlimit() uintptr {
   332  	/*
   333  		TODO: Convert to Go when something actually uses the result.
   334  
   335  		Rlimit rl;
   336  		extern byte runtime·text[], runtime·end[];
   337  		uintptr used;
   338  
   339  		if(runtime·getrlimit(RLIMIT_AS, &rl) != 0)
   340  			return 0;
   341  		if(rl.rlim_cur >= 0x7fffffff)
   342  			return 0;
   343  
   344  		// Estimate our VM footprint excluding the heap.
   345  		// Not an exact science: use size of binary plus
   346  		// some room for thread stacks.
   347  		used = runtime·end - runtime·text + (64<<20);
   348  		if(used >= rl.rlim_cur)
   349  			return 0;
   350  
   351  		// If there's not at least 16 MB left, we're probably
   352  		// not going to be able to do much. Treat as no limit.
   353  		rl.rlim_cur -= used;
   354  		if(rl.rlim_cur < (16<<20))
   355  			return 0;
   356  
   357  		return rl.rlim_cur - used;
   358  	*/
   359  
   360  	return 0
   361  }
   362  
   363  //#ifdef GOARCH_386
   364  //#define sa_handler k_sa_handler
   365  //#endif
   366  
   367  func sigreturn()
   368  func sigtramp(sig uint32, info *siginfo, ctx unsafe.Pointer)
   369  func cgoSigtramp()
   370  
   371  //go:noescape
   372  func sigaltstack(new, old *stackt)
   373  
   374  //go:noescape
   375  func setitimer(mode int32, new, old *itimerval)
   376  
   377  //go:noescape
   378  func rtsigprocmask(how int32, new, old *sigset, size int32)
   379  
   380  //go:nosplit
   381  //go:nowritebarrierrec
   382  func sigprocmask(how int32, new, old *sigset) {
   383  	rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new)))
   384  }
   385  
   386  //go:noescape
   387  func getrlimit(kind int32, limit unsafe.Pointer) int32
   388  func raise(sig uint32)
   389  func raiseproc(sig uint32)
   390  
   391  //go:noescape
   392  func sched_getaffinity(pid, len uintptr, buf *uintptr) int32
   393  func osyield()
   394  
   395  //go:nosplit
   396  //go:nowritebarrierrec
   397  func setsig(i uint32, fn uintptr) {
   398  	var sa sigactiont
   399  	sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART
   400  	sigfillset(&sa.sa_mask)
   401  	// Although Linux manpage says "sa_restorer element is obsolete and
   402  	// should not be used". x86_64 kernel requires it. Only use it on
   403  	// x86.
   404  	if GOARCH == "386" || GOARCH == "amd64" {
   405  		sa.sa_restorer = funcPC(sigreturn)
   406  	}
   407  	if fn == funcPC(sighandler) {
   408  		if iscgo {
   409  			fn = funcPC(cgoSigtramp)
   410  		} else {
   411  			fn = funcPC(sigtramp)
   412  		}
   413  	}
   414  	sa.sa_handler = fn
   415  	rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask))
   416  }
   417  
   418  //go:nosplit
   419  //go:nowritebarrierrec
   420  func setsigstack(i uint32) {
   421  	var sa sigactiont
   422  	rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask))
   423  	if sa.sa_flags&_SA_ONSTACK != 0 {
   424  		return
   425  	}
   426  	sa.sa_flags |= _SA_ONSTACK
   427  	rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask))
   428  }
   429  
   430  //go:nosplit
   431  //go:nowritebarrierrec
   432  func getsig(i uint32) uintptr {
   433  	var sa sigactiont
   434  	if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 {
   435  		throw("rt_sigaction read failure")
   436  	}
   437  	return sa.sa_handler
   438  }
   439  
   440  // setSignaltstackSP sets the ss_sp field of a stackt.
   441  //go:nosplit
   442  func setSignalstackSP(s *stackt, sp uintptr) {
   443  	*(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp
   444  }
   445  
   446  func (c *sigctxt) fixsigcode(sig uint32) {
   447  }