github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/runtime/pprof/pprof.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package pprof writes runtime profiling data in the format expected
     6  // by the pprof visualization tool.
     7  //
     8  // Profiling a Go program
     9  //
    10  // The first step to profiling a Go program is to enable profiling.
    11  // Support for profiling benchmarks built with the standard testing
    12  // package is built into go test. For example, the following command
    13  // runs benchmarks in the current directory and writes the CPU and
    14  // memory profiles to cpu.prof and mem.prof:
    15  //
    16  //     go test -cpuprofile cpu.prof -memprofile mem.prof -bench .
    17  //
    18  // To add equivalent profiling support to a standalone program, add
    19  // code like the following to your main function:
    20  //
    21  //    var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
    22  //    var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
    23  //
    24  //    func main() {
    25  //        flag.Parse()
    26  //        if *cpuprofile != "" {
    27  //            f, err := os.Create(*cpuprofile)
    28  //            if err != nil {
    29  //                log.Fatal("could not create CPU profile: ", err)
    30  //            }
    31  //            if err := pprof.StartCPUProfile(f); err != nil {
    32  //                log.Fatal("could not start CPU profile: ", err)
    33  //            }
    34  //            defer pprof.StopCPUProfile()
    35  //        }
    36  //        ...
    37  //        if *memprofile != "" {
    38  //            f, err := os.Create(*memprofile)
    39  //            if err != nil {
    40  //                log.Fatal("could not create memory profile: ", err)
    41  //            }
    42  //            runtime.GC() // get up-to-date statistics
    43  //            if err := pprof.WriteHeapProfile(f); err != nil {
    44  //                log.Fatal("could not write memory profile: ", err)
    45  //            }
    46  //            f.Close()
    47  //        }
    48  //    }
    49  //
    50  // There is also a standard HTTP interface to profiling data. Adding
    51  // the following line will install handlers under the /debug/pprof/
    52  // URL to download live profiles:
    53  //
    54  //    import _ "net/http/pprof"
    55  //
    56  // See the net/http/pprof package for more details.
    57  //
    58  // Profiles can then be visualized with the pprof tool:
    59  //
    60  //    go tool pprof cpu.prof
    61  //
    62  // There are many commands available from the pprof command line.
    63  // Commonly used commands include "top", which prints a summary of the
    64  // top program hot-spots, and "web", which opens an interactive graph
    65  // of hot-spots and their call graphs. Use "help" for information on
    66  // all pprof commands.
    67  //
    68  // For more information about pprof, see
    69  // https://github.com/google/pprof/blob/master/doc/pprof.md.
    70  package pprof
    71  
    72  import (
    73  	"bufio"
    74  	"bytes"
    75  	"fmt"
    76  	"internal/pprof/profile"
    77  	"io"
    78  	"runtime"
    79  	"runtime/pprof/internal/protopprof"
    80  	"sort"
    81  	"strings"
    82  	"sync"
    83  	"text/tabwriter"
    84  	"time"
    85  )
    86  
    87  // BUG(rsc): Profiles are only as good as the kernel support used to generate them.
    88  // See https://golang.org/issue/13841 for details about known problems.
    89  
    90  // A Profile is a collection of stack traces showing the call sequences
    91  // that led to instances of a particular event, such as allocation.
    92  // Packages can create and maintain their own profiles; the most common
    93  // use is for tracking resources that must be explicitly closed, such as files
    94  // or network connections.
    95  //
    96  // A Profile's methods can be called from multiple goroutines simultaneously.
    97  //
    98  // Each Profile has a unique name. A few profiles are predefined:
    99  //
   100  //	goroutine    - stack traces of all current goroutines
   101  //	heap         - a sampling of all heap allocations
   102  //	threadcreate - stack traces that led to the creation of new OS threads
   103  //	block        - stack traces that led to blocking on synchronization primitives
   104  //	mutex        - stack traces of holders of contended mutexes
   105  //
   106  // These predefined profiles maintain themselves and panic on an explicit
   107  // Add or Remove method call.
   108  //
   109  // The heap profile reports statistics as of the most recently completed
   110  // garbage collection; it elides more recent allocation to avoid skewing
   111  // the profile away from live data and toward garbage.
   112  // If there has been no garbage collection at all, the heap profile reports
   113  // all known allocations. This exception helps mainly in programs running
   114  // without garbage collection enabled, usually for debugging purposes.
   115  //
   116  // The CPU profile is not available as a Profile. It has a special API,
   117  // the StartCPUProfile and StopCPUProfile functions, because it streams
   118  // output to a writer during profiling.
   119  //
   120  type Profile struct {
   121  	name  string
   122  	mu    sync.Mutex
   123  	m     map[interface{}][]uintptr
   124  	count func() int
   125  	write func(io.Writer, int) error
   126  }
   127  
   128  // profiles records all registered profiles.
   129  var profiles struct {
   130  	mu sync.Mutex
   131  	m  map[string]*Profile
   132  }
   133  
   134  var goroutineProfile = &Profile{
   135  	name:  "goroutine",
   136  	count: countGoroutine,
   137  	write: writeGoroutine,
   138  }
   139  
   140  var threadcreateProfile = &Profile{
   141  	name:  "threadcreate",
   142  	count: countThreadCreate,
   143  	write: writeThreadCreate,
   144  }
   145  
   146  var heapProfile = &Profile{
   147  	name:  "heap",
   148  	count: countHeap,
   149  	write: writeHeap,
   150  }
   151  
   152  var blockProfile = &Profile{
   153  	name:  "block",
   154  	count: countBlock,
   155  	write: writeBlock,
   156  }
   157  
   158  var mutexProfile = &Profile{
   159  	name:  "mutex",
   160  	count: countMutex,
   161  	write: writeMutex,
   162  }
   163  
   164  func lockProfiles() {
   165  	profiles.mu.Lock()
   166  	if profiles.m == nil {
   167  		// Initial built-in profiles.
   168  		profiles.m = map[string]*Profile{
   169  			"goroutine":    goroutineProfile,
   170  			"threadcreate": threadcreateProfile,
   171  			"heap":         heapProfile,
   172  			"block":        blockProfile,
   173  			"mutex":        mutexProfile,
   174  		}
   175  	}
   176  }
   177  
   178  func unlockProfiles() {
   179  	profiles.mu.Unlock()
   180  }
   181  
   182  // NewProfile creates a new profile with the given name.
   183  // If a profile with that name already exists, NewProfile panics.
   184  // The convention is to use a 'import/path.' prefix to create
   185  // separate name spaces for each package.
   186  func NewProfile(name string) *Profile {
   187  	lockProfiles()
   188  	defer unlockProfiles()
   189  	if name == "" {
   190  		panic("pprof: NewProfile with empty name")
   191  	}
   192  	if profiles.m[name] != nil {
   193  		panic("pprof: NewProfile name already in use: " + name)
   194  	}
   195  	p := &Profile{
   196  		name: name,
   197  		m:    map[interface{}][]uintptr{},
   198  	}
   199  	profiles.m[name] = p
   200  	return p
   201  }
   202  
   203  // Lookup returns the profile with the given name, or nil if no such profile exists.
   204  func Lookup(name string) *Profile {
   205  	lockProfiles()
   206  	defer unlockProfiles()
   207  	return profiles.m[name]
   208  }
   209  
   210  // Profiles returns a slice of all the known profiles, sorted by name.
   211  func Profiles() []*Profile {
   212  	lockProfiles()
   213  	defer unlockProfiles()
   214  
   215  	all := make([]*Profile, 0, len(profiles.m))
   216  	for _, p := range profiles.m {
   217  		all = append(all, p)
   218  	}
   219  
   220  	sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name })
   221  	return all
   222  }
   223  
   224  // Name returns this profile's name, which can be passed to Lookup to reobtain the profile.
   225  func (p *Profile) Name() string {
   226  	return p.name
   227  }
   228  
   229  // Count returns the number of execution stacks currently in the profile.
   230  func (p *Profile) Count() int {
   231  	p.mu.Lock()
   232  	defer p.mu.Unlock()
   233  	if p.count != nil {
   234  		return p.count()
   235  	}
   236  	return len(p.m)
   237  }
   238  
   239  // Add adds the current execution stack to the profile, associated with value.
   240  // Add stores value in an internal map, so value must be suitable for use as
   241  // a map key and will not be garbage collected until the corresponding
   242  // call to Remove. Add panics if the profile already contains a stack for value.
   243  //
   244  // The skip parameter has the same meaning as runtime.Caller's skip
   245  // and controls where the stack trace begins. Passing skip=0 begins the
   246  // trace in the function calling Add. For example, given this
   247  // execution stack:
   248  //
   249  //	Add
   250  //	called from rpc.NewClient
   251  //	called from mypkg.Run
   252  //	called from main.main
   253  //
   254  // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
   255  // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
   256  //
   257  func (p *Profile) Add(value interface{}, skip int) {
   258  	if p.name == "" {
   259  		panic("pprof: use of uninitialized Profile")
   260  	}
   261  	if p.write != nil {
   262  		panic("pprof: Add called on built-in Profile " + p.name)
   263  	}
   264  
   265  	stk := make([]uintptr, 32)
   266  	n := runtime.Callers(skip+1, stk[:])
   267  
   268  	p.mu.Lock()
   269  	defer p.mu.Unlock()
   270  	if p.m[value] != nil {
   271  		panic("pprof: Profile.Add of duplicate value")
   272  	}
   273  	p.m[value] = stk[:n]
   274  }
   275  
   276  // Remove removes the execution stack associated with value from the profile.
   277  // It is a no-op if the value is not in the profile.
   278  func (p *Profile) Remove(value interface{}) {
   279  	p.mu.Lock()
   280  	defer p.mu.Unlock()
   281  	delete(p.m, value)
   282  }
   283  
   284  // WriteTo writes a pprof-formatted snapshot of the profile to w.
   285  // If a write to w returns an error, WriteTo returns that error.
   286  // Otherwise, WriteTo returns nil.
   287  //
   288  // The debug parameter enables additional output.
   289  // Passing debug=0 prints only the hexadecimal addresses that pprof needs.
   290  // Passing debug=1 adds comments translating addresses to function names
   291  // and line numbers, so that a programmer can read the profile without tools.
   292  //
   293  // The predefined profiles may assign meaning to other debug values;
   294  // for example, when printing the "goroutine" profile, debug=2 means to
   295  // print the goroutine stacks in the same form that a Go program uses
   296  // when dying due to an unrecovered panic.
   297  func (p *Profile) WriteTo(w io.Writer, debug int) error {
   298  	if p.name == "" {
   299  		panic("pprof: use of zero Profile")
   300  	}
   301  	if p.write != nil {
   302  		return p.write(w, debug)
   303  	}
   304  
   305  	// Obtain consistent snapshot under lock; then process without lock.
   306  	all := make([][]uintptr, 0, len(p.m))
   307  	p.mu.Lock()
   308  	for _, stk := range p.m {
   309  		all = append(all, stk)
   310  	}
   311  	p.mu.Unlock()
   312  
   313  	// Map order is non-deterministic; make output deterministic.
   314  	sort.Sort(stackProfile(all))
   315  
   316  	return printCountProfile(w, debug, p.name, stackProfile(all))
   317  }
   318  
   319  type stackProfile [][]uintptr
   320  
   321  func (x stackProfile) Len() int              { return len(x) }
   322  func (x stackProfile) Stack(i int) []uintptr { return x[i] }
   323  func (x stackProfile) Swap(i, j int)         { x[i], x[j] = x[j], x[i] }
   324  func (x stackProfile) Less(i, j int) bool {
   325  	t, u := x[i], x[j]
   326  	for k := 0; k < len(t) && k < len(u); k++ {
   327  		if t[k] != u[k] {
   328  			return t[k] < u[k]
   329  		}
   330  	}
   331  	return len(t) < len(u)
   332  }
   333  
   334  // A countProfile is a set of stack traces to be printed as counts
   335  // grouped by stack trace. There are multiple implementations:
   336  // all that matters is that we can find out how many traces there are
   337  // and obtain each trace in turn.
   338  type countProfile interface {
   339  	Len() int
   340  	Stack(i int) []uintptr
   341  }
   342  
   343  // printCountProfile prints a countProfile at the specified debug level.
   344  // The profile will be in compressed proto format unless debug is nonzero.
   345  func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
   346  	// Build count of each stack.
   347  	var buf bytes.Buffer
   348  	key := func(stk []uintptr) string {
   349  		buf.Reset()
   350  		fmt.Fprintf(&buf, "@")
   351  		for _, pc := range stk {
   352  			fmt.Fprintf(&buf, " %#x", pc)
   353  		}
   354  		return buf.String()
   355  	}
   356  	count := map[string]int{}
   357  	index := map[string]int{}
   358  	var keys []string
   359  	n := p.Len()
   360  	for i := 0; i < n; i++ {
   361  		k := key(p.Stack(i))
   362  		if count[k] == 0 {
   363  			index[k] = i
   364  			keys = append(keys, k)
   365  		}
   366  		count[k]++
   367  	}
   368  
   369  	sort.Sort(&keysByCount{keys, count})
   370  
   371  	if debug > 0 {
   372  		// Print debug profile in legacy format
   373  		tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
   374  		fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len())
   375  		for _, k := range keys {
   376  			fmt.Fprintf(tw, "%d %s\n", count[k], k)
   377  			printStackRecord(tw, p.Stack(index[k]), false)
   378  		}
   379  		return tw.Flush()
   380  	}
   381  
   382  	// Output profile in protobuf form.
   383  	prof := &profile.Profile{
   384  		PeriodType: &profile.ValueType{Type: name, Unit: "count"},
   385  		Period:     1,
   386  		Sample:     make([]*profile.Sample, 0, len(keys)),
   387  		SampleType: []*profile.ValueType{{Type: name, Unit: "count"}},
   388  	}
   389  	locMap := make(map[uintptr]*profile.Location)
   390  	for _, k := range keys {
   391  		stk := p.Stack(index[k])
   392  		c := count[k]
   393  		locs := make([]*profile.Location, len(stk))
   394  		for i, addr := range stk {
   395  			loc := locMap[addr]
   396  			if loc == nil {
   397  				loc = &profile.Location{
   398  					ID:      uint64(len(locMap) + 1),
   399  					Address: uint64(addr - 1),
   400  				}
   401  				prof.Location = append(prof.Location, loc)
   402  				locMap[addr] = loc
   403  			}
   404  			locs[i] = loc
   405  		}
   406  		prof.Sample = append(prof.Sample, &profile.Sample{
   407  			Location: locs,
   408  			Value:    []int64{int64(c)},
   409  		})
   410  	}
   411  	return prof.Write(w)
   412  }
   413  
   414  // keysByCount sorts keys with higher counts first, breaking ties by key string order.
   415  type keysByCount struct {
   416  	keys  []string
   417  	count map[string]int
   418  }
   419  
   420  func (x *keysByCount) Len() int      { return len(x.keys) }
   421  func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] }
   422  func (x *keysByCount) Less(i, j int) bool {
   423  	ki, kj := x.keys[i], x.keys[j]
   424  	ci, cj := x.count[ki], x.count[kj]
   425  	if ci != cj {
   426  		return ci > cj
   427  	}
   428  	return ki < kj
   429  }
   430  
   431  // printStackRecord prints the function + source line information
   432  // for a single stack trace.
   433  func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
   434  	show := allFrames
   435  	frames := runtime.CallersFrames(stk)
   436  	for {
   437  		frame, more := frames.Next()
   438  		name := frame.Function
   439  		if name == "" {
   440  			show = true
   441  			fmt.Fprintf(w, "#\t%#x\n", frame.PC)
   442  		} else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) {
   443  			// Hide runtime.goexit and any runtime functions at the beginning.
   444  			// This is useful mainly for allocation traces.
   445  			show = true
   446  			fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line)
   447  		}
   448  		if !more {
   449  			break
   450  		}
   451  	}
   452  	if !show {
   453  		// We didn't print anything; do it again,
   454  		// and this time include runtime functions.
   455  		printStackRecord(w, stk, true)
   456  		return
   457  	}
   458  	fmt.Fprintf(w, "\n")
   459  }
   460  
   461  // Interface to system profiles.
   462  
   463  // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0).
   464  // It is preserved for backwards compatibility.
   465  func WriteHeapProfile(w io.Writer) error {
   466  	return writeHeap(w, 0)
   467  }
   468  
   469  // countHeap returns the number of records in the heap profile.
   470  func countHeap() int {
   471  	n, _ := runtime.MemProfile(nil, true)
   472  	return n
   473  }
   474  
   475  // writeHeap writes the current runtime heap profile to w.
   476  func writeHeap(w io.Writer, debug int) error {
   477  	// Find out how many records there are (MemProfile(nil, true)),
   478  	// allocate that many records, and get the data.
   479  	// There's a race—more records might be added between
   480  	// the two calls—so allocate a few extra records for safety
   481  	// and also try again if we're very unlucky.
   482  	// The loop should only execute one iteration in the common case.
   483  	var p []runtime.MemProfileRecord
   484  	n, ok := runtime.MemProfile(nil, true)
   485  	for {
   486  		// Allocate room for a slightly bigger profile,
   487  		// in case a few more entries have been added
   488  		// since the call to MemProfile.
   489  		p = make([]runtime.MemProfileRecord, n+50)
   490  		n, ok = runtime.MemProfile(p, true)
   491  		if ok {
   492  			p = p[0:n]
   493  			break
   494  		}
   495  		// Profile grew; try again.
   496  	}
   497  
   498  	if debug == 0 {
   499  		pp := protopprof.EncodeMemProfile(p, int64(runtime.MemProfileRate), time.Now())
   500  		return pp.Write(w)
   501  	}
   502  
   503  	sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() })
   504  
   505  	b := bufio.NewWriter(w)
   506  	tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0)
   507  	w = tw
   508  
   509  	var total runtime.MemProfileRecord
   510  	for i := range p {
   511  		r := &p[i]
   512  		total.AllocBytes += r.AllocBytes
   513  		total.AllocObjects += r.AllocObjects
   514  		total.FreeBytes += r.FreeBytes
   515  		total.FreeObjects += r.FreeObjects
   516  	}
   517  
   518  	// Technically the rate is MemProfileRate not 2*MemProfileRate,
   519  	// but early versions of the C++ heap profiler reported 2*MemProfileRate,
   520  	// so that's what pprof has come to expect.
   521  	fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
   522  		total.InUseObjects(), total.InUseBytes(),
   523  		total.AllocObjects, total.AllocBytes,
   524  		2*runtime.MemProfileRate)
   525  
   526  	for i := range p {
   527  		r := &p[i]
   528  		fmt.Fprintf(w, "%d: %d [%d: %d] @",
   529  			r.InUseObjects(), r.InUseBytes(),
   530  			r.AllocObjects, r.AllocBytes)
   531  		for _, pc := range r.Stack() {
   532  			fmt.Fprintf(w, " %#x", pc)
   533  		}
   534  		fmt.Fprintf(w, "\n")
   535  		printStackRecord(w, r.Stack(), false)
   536  	}
   537  
   538  	// Print memstats information too.
   539  	// Pprof will ignore, but useful for people
   540  	s := new(runtime.MemStats)
   541  	runtime.ReadMemStats(s)
   542  	fmt.Fprintf(w, "\n# runtime.MemStats\n")
   543  	fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
   544  	fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
   545  	fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
   546  	fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
   547  	fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
   548  	fmt.Fprintf(w, "# Frees = %d\n", s.Frees)
   549  
   550  	fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
   551  	fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
   552  	fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
   553  	fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
   554  	fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased)
   555  	fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects)
   556  
   557  	fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
   558  	fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
   559  	fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
   560  	fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
   561  	fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys)
   562  	fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys)
   563  
   564  	fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
   565  	fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
   566  	fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
   567  	fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
   568  
   569  	tw.Flush()
   570  	return b.Flush()
   571  }
   572  
   573  // countThreadCreate returns the size of the current ThreadCreateProfile.
   574  func countThreadCreate() int {
   575  	n, _ := runtime.ThreadCreateProfile(nil)
   576  	return n
   577  }
   578  
   579  // writeThreadCreate writes the current runtime ThreadCreateProfile to w.
   580  func writeThreadCreate(w io.Writer, debug int) error {
   581  	return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile)
   582  }
   583  
   584  // countGoroutine returns the number of goroutines.
   585  func countGoroutine() int {
   586  	return runtime.NumGoroutine()
   587  }
   588  
   589  // writeGoroutine writes the current runtime GoroutineProfile to w.
   590  func writeGoroutine(w io.Writer, debug int) error {
   591  	if debug >= 2 {
   592  		return writeGoroutineStacks(w)
   593  	}
   594  	return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile)
   595  }
   596  
   597  func writeGoroutineStacks(w io.Writer) error {
   598  	// We don't know how big the buffer needs to be to collect
   599  	// all the goroutines. Start with 1 MB and try a few times, doubling each time.
   600  	// Give up and use a truncated trace if 64 MB is not enough.
   601  	buf := make([]byte, 1<<20)
   602  	for i := 0; ; i++ {
   603  		n := runtime.Stack(buf, true)
   604  		if n < len(buf) {
   605  			buf = buf[:n]
   606  			break
   607  		}
   608  		if len(buf) >= 64<<20 {
   609  			// Filled 64 MB - stop there.
   610  			break
   611  		}
   612  		buf = make([]byte, 2*len(buf))
   613  	}
   614  	_, err := w.Write(buf)
   615  	return err
   616  }
   617  
   618  func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error {
   619  	// Find out how many records there are (fetch(nil)),
   620  	// allocate that many records, and get the data.
   621  	// There's a race—more records might be added between
   622  	// the two calls—so allocate a few extra records for safety
   623  	// and also try again if we're very unlucky.
   624  	// The loop should only execute one iteration in the common case.
   625  	var p []runtime.StackRecord
   626  	n, ok := fetch(nil)
   627  	for {
   628  		// Allocate room for a slightly bigger profile,
   629  		// in case a few more entries have been added
   630  		// since the call to ThreadProfile.
   631  		p = make([]runtime.StackRecord, n+10)
   632  		n, ok = fetch(p)
   633  		if ok {
   634  			p = p[0:n]
   635  			break
   636  		}
   637  		// Profile grew; try again.
   638  	}
   639  
   640  	return printCountProfile(w, debug, name, runtimeProfile(p))
   641  }
   642  
   643  type runtimeProfile []runtime.StackRecord
   644  
   645  func (p runtimeProfile) Len() int              { return len(p) }
   646  func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() }
   647  
   648  var cpu struct {
   649  	sync.Mutex
   650  	profiling bool
   651  	done      chan bool
   652  }
   653  
   654  // StartCPUProfile enables CPU profiling for the current process.
   655  // While profiling, the profile will be buffered and written to w.
   656  // StartCPUProfile returns an error if profiling is already enabled.
   657  //
   658  // On Unix-like systems, StartCPUProfile does not work by default for
   659  // Go code built with -buildmode=c-archive or -buildmode=c-shared.
   660  // StartCPUProfile relies on the SIGPROF signal, but that signal will
   661  // be delivered to the main program's SIGPROF signal handler (if any)
   662  // not to the one used by Go. To make it work, call os/signal.Notify
   663  // for syscall.SIGPROF, but note that doing so may break any profiling
   664  // being done by the main program.
   665  func StartCPUProfile(w io.Writer) error {
   666  	// The runtime routines allow a variable profiling rate,
   667  	// but in practice operating systems cannot trigger signals
   668  	// at more than about 500 Hz, and our processing of the
   669  	// signal is not cheap (mostly getting the stack trace).
   670  	// 100 Hz is a reasonable choice: it is frequent enough to
   671  	// produce useful data, rare enough not to bog down the
   672  	// system, and a nice round number to make it easy to
   673  	// convert sample counts to seconds. Instead of requiring
   674  	// each client to specify the frequency, we hard code it.
   675  	const hz = 100
   676  
   677  	cpu.Lock()
   678  	defer cpu.Unlock()
   679  	if cpu.done == nil {
   680  		cpu.done = make(chan bool)
   681  	}
   682  	// Double-check.
   683  	if cpu.profiling {
   684  		return fmt.Errorf("cpu profiling already in use")
   685  	}
   686  	cpu.profiling = true
   687  	runtime.SetCPUProfileRate(hz)
   688  	go profileWriter(w)
   689  	return nil
   690  }
   691  
   692  func profileWriter(w io.Writer) {
   693  	startTime := time.Now()
   694  	// This will buffer the entire profile into buf and then
   695  	// translate it into a profile.Profile structure. This will
   696  	// create two copies of all the data in the profile in memory.
   697  	// TODO(matloob): Convert each chunk of the proto output and
   698  	// stream it out instead of converting the entire profile.
   699  	var buf bytes.Buffer
   700  	for {
   701  		data := runtime.CPUProfile()
   702  		if data == nil {
   703  			break
   704  		}
   705  		buf.Write(data)
   706  	}
   707  
   708  	profile, err := protopprof.TranslateCPUProfile(buf.Bytes(), startTime)
   709  	if err != nil {
   710  		// The runtime should never produce an invalid or truncated profile.
   711  		// It drops records that can't fit into its log buffers.
   712  		panic(fmt.Errorf("could not translate binary profile to proto format: %v", err))
   713  	}
   714  
   715  	profile.Write(w)
   716  	cpu.done <- true
   717  }
   718  
   719  // StopCPUProfile stops the current CPU profile, if any.
   720  // StopCPUProfile only returns after all the writes for the
   721  // profile have completed.
   722  func StopCPUProfile() {
   723  	cpu.Lock()
   724  	defer cpu.Unlock()
   725  
   726  	if !cpu.profiling {
   727  		return
   728  	}
   729  	cpu.profiling = false
   730  	runtime.SetCPUProfileRate(0)
   731  	<-cpu.done
   732  }
   733  
   734  // countBlock returns the number of records in the blocking profile.
   735  func countBlock() int {
   736  	n, _ := runtime.BlockProfile(nil)
   737  	return n
   738  }
   739  
   740  // countMutex returns the number of records in the mutex profile.
   741  func countMutex() int {
   742  	n, _ := runtime.MutexProfile(nil)
   743  	return n
   744  }
   745  
   746  // writeBlock writes the current blocking profile to w.
   747  func writeBlock(w io.Writer, debug int) error {
   748  	var p []runtime.BlockProfileRecord
   749  	n, ok := runtime.BlockProfile(nil)
   750  	for {
   751  		p = make([]runtime.BlockProfileRecord, n+50)
   752  		n, ok = runtime.BlockProfile(p)
   753  		if ok {
   754  			p = p[:n]
   755  			break
   756  		}
   757  	}
   758  
   759  	sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles })
   760  
   761  	b := bufio.NewWriter(w)
   762  	var tw *tabwriter.Writer
   763  	w = b
   764  	if debug > 0 {
   765  		tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
   766  		w = tw
   767  	}
   768  
   769  	fmt.Fprintf(w, "--- contention:\n")
   770  	fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
   771  	for i := range p {
   772  		r := &p[i]
   773  		fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
   774  		for _, pc := range r.Stack() {
   775  			fmt.Fprintf(w, " %#x", pc)
   776  		}
   777  		fmt.Fprint(w, "\n")
   778  		if debug > 0 {
   779  			printStackRecord(w, r.Stack(), true)
   780  		}
   781  	}
   782  
   783  	if tw != nil {
   784  		tw.Flush()
   785  	}
   786  	return b.Flush()
   787  }
   788  
   789  // writeMutex writes the current mutex profile to w.
   790  func writeMutex(w io.Writer, debug int) error {
   791  	// TODO(pjw): too much common code with writeBlock. FIX!
   792  	var p []runtime.BlockProfileRecord
   793  	n, ok := runtime.MutexProfile(nil)
   794  	for {
   795  		p = make([]runtime.BlockProfileRecord, n+50)
   796  		n, ok = runtime.MutexProfile(p)
   797  		if ok {
   798  			p = p[:n]
   799  			break
   800  		}
   801  	}
   802  
   803  	sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles })
   804  
   805  	b := bufio.NewWriter(w)
   806  	var tw *tabwriter.Writer
   807  	w = b
   808  	if debug > 0 {
   809  		tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
   810  		w = tw
   811  	}
   812  
   813  	fmt.Fprintf(w, "--- mutex:\n")
   814  	fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
   815  	fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))
   816  	for i := range p {
   817  		r := &p[i]
   818  		fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
   819  		for _, pc := range r.Stack() {
   820  			fmt.Fprintf(w, " %#x", pc)
   821  		}
   822  		fmt.Fprint(w, "\n")
   823  		if debug > 0 {
   824  			printStackRecord(w, r.Stack(), true)
   825  		}
   826  	}
   827  
   828  	if tw != nil {
   829  		tw.Flush()
   830  	}
   831  	return b.Flush()
   832  }
   833  
   834  func runtime_cyclesPerSecond() int64