github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // if err := pprof.StartCPUProfile(f); err != nil { 32 // log.Fatal("could not start CPU profile: ", err) 33 // } 34 // defer pprof.StopCPUProfile() 35 // } 36 // ... 37 // if *memprofile != "" { 38 // f, err := os.Create(*memprofile) 39 // if err != nil { 40 // log.Fatal("could not create memory profile: ", err) 41 // } 42 // runtime.GC() // get up-to-date statistics 43 // if err := pprof.WriteHeapProfile(f); err != nil { 44 // log.Fatal("could not write memory profile: ", err) 45 // } 46 // f.Close() 47 // } 48 // } 49 // 50 // There is also a standard HTTP interface to profiling data. Adding 51 // the following line will install handlers under the /debug/pprof/ 52 // URL to download live profiles: 53 // 54 // import _ "net/http/pprof" 55 // 56 // See the net/http/pprof package for more details. 57 // 58 // Profiles can then be visualized with the pprof tool: 59 // 60 // go tool pprof cpu.prof 61 // 62 // There are many commands available from the pprof command line. 63 // Commonly used commands include "top", which prints a summary of the 64 // top program hot-spots, and "web", which opens an interactive graph 65 // of hot-spots and their call graphs. Use "help" for information on 66 // all pprof commands. 67 // 68 // For more information about pprof, see 69 // https://github.com/google/pprof/blob/master/doc/pprof.md. 70 package pprof 71 72 import ( 73 "bufio" 74 "bytes" 75 "fmt" 76 "internal/pprof/profile" 77 "io" 78 "runtime" 79 "runtime/pprof/internal/protopprof" 80 "sort" 81 "strings" 82 "sync" 83 "text/tabwriter" 84 "time" 85 ) 86 87 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 88 // See https://golang.org/issue/13841 for details about known problems. 89 90 // A Profile is a collection of stack traces showing the call sequences 91 // that led to instances of a particular event, such as allocation. 92 // Packages can create and maintain their own profiles; the most common 93 // use is for tracking resources that must be explicitly closed, such as files 94 // or network connections. 95 // 96 // A Profile's methods can be called from multiple goroutines simultaneously. 97 // 98 // Each Profile has a unique name. A few profiles are predefined: 99 // 100 // goroutine - stack traces of all current goroutines 101 // heap - a sampling of all heap allocations 102 // threadcreate - stack traces that led to the creation of new OS threads 103 // block - stack traces that led to blocking on synchronization primitives 104 // mutex - stack traces of holders of contended mutexes 105 // 106 // These predefined profiles maintain themselves and panic on an explicit 107 // Add or Remove method call. 108 // 109 // The heap profile reports statistics as of the most recently completed 110 // garbage collection; it elides more recent allocation to avoid skewing 111 // the profile away from live data and toward garbage. 112 // If there has been no garbage collection at all, the heap profile reports 113 // all known allocations. This exception helps mainly in programs running 114 // without garbage collection enabled, usually for debugging purposes. 115 // 116 // The CPU profile is not available as a Profile. It has a special API, 117 // the StartCPUProfile and StopCPUProfile functions, because it streams 118 // output to a writer during profiling. 119 // 120 type Profile struct { 121 name string 122 mu sync.Mutex 123 m map[interface{}][]uintptr 124 count func() int 125 write func(io.Writer, int) error 126 } 127 128 // profiles records all registered profiles. 129 var profiles struct { 130 mu sync.Mutex 131 m map[string]*Profile 132 } 133 134 var goroutineProfile = &Profile{ 135 name: "goroutine", 136 count: countGoroutine, 137 write: writeGoroutine, 138 } 139 140 var threadcreateProfile = &Profile{ 141 name: "threadcreate", 142 count: countThreadCreate, 143 write: writeThreadCreate, 144 } 145 146 var heapProfile = &Profile{ 147 name: "heap", 148 count: countHeap, 149 write: writeHeap, 150 } 151 152 var blockProfile = &Profile{ 153 name: "block", 154 count: countBlock, 155 write: writeBlock, 156 } 157 158 var mutexProfile = &Profile{ 159 name: "mutex", 160 count: countMutex, 161 write: writeMutex, 162 } 163 164 func lockProfiles() { 165 profiles.mu.Lock() 166 if profiles.m == nil { 167 // Initial built-in profiles. 168 profiles.m = map[string]*Profile{ 169 "goroutine": goroutineProfile, 170 "threadcreate": threadcreateProfile, 171 "heap": heapProfile, 172 "block": blockProfile, 173 "mutex": mutexProfile, 174 } 175 } 176 } 177 178 func unlockProfiles() { 179 profiles.mu.Unlock() 180 } 181 182 // NewProfile creates a new profile with the given name. 183 // If a profile with that name already exists, NewProfile panics. 184 // The convention is to use a 'import/path.' prefix to create 185 // separate name spaces for each package. 186 func NewProfile(name string) *Profile { 187 lockProfiles() 188 defer unlockProfiles() 189 if name == "" { 190 panic("pprof: NewProfile with empty name") 191 } 192 if profiles.m[name] != nil { 193 panic("pprof: NewProfile name already in use: " + name) 194 } 195 p := &Profile{ 196 name: name, 197 m: map[interface{}][]uintptr{}, 198 } 199 profiles.m[name] = p 200 return p 201 } 202 203 // Lookup returns the profile with the given name, or nil if no such profile exists. 204 func Lookup(name string) *Profile { 205 lockProfiles() 206 defer unlockProfiles() 207 return profiles.m[name] 208 } 209 210 // Profiles returns a slice of all the known profiles, sorted by name. 211 func Profiles() []*Profile { 212 lockProfiles() 213 defer unlockProfiles() 214 215 all := make([]*Profile, 0, len(profiles.m)) 216 for _, p := range profiles.m { 217 all = append(all, p) 218 } 219 220 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 221 return all 222 } 223 224 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 225 func (p *Profile) Name() string { 226 return p.name 227 } 228 229 // Count returns the number of execution stacks currently in the profile. 230 func (p *Profile) Count() int { 231 p.mu.Lock() 232 defer p.mu.Unlock() 233 if p.count != nil { 234 return p.count() 235 } 236 return len(p.m) 237 } 238 239 // Add adds the current execution stack to the profile, associated with value. 240 // Add stores value in an internal map, so value must be suitable for use as 241 // a map key and will not be garbage collected until the corresponding 242 // call to Remove. Add panics if the profile already contains a stack for value. 243 // 244 // The skip parameter has the same meaning as runtime.Caller's skip 245 // and controls where the stack trace begins. Passing skip=0 begins the 246 // trace in the function calling Add. For example, given this 247 // execution stack: 248 // 249 // Add 250 // called from rpc.NewClient 251 // called from mypkg.Run 252 // called from main.main 253 // 254 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 255 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 256 // 257 func (p *Profile) Add(value interface{}, skip int) { 258 if p.name == "" { 259 panic("pprof: use of uninitialized Profile") 260 } 261 if p.write != nil { 262 panic("pprof: Add called on built-in Profile " + p.name) 263 } 264 265 stk := make([]uintptr, 32) 266 n := runtime.Callers(skip+1, stk[:]) 267 268 p.mu.Lock() 269 defer p.mu.Unlock() 270 if p.m[value] != nil { 271 panic("pprof: Profile.Add of duplicate value") 272 } 273 p.m[value] = stk[:n] 274 } 275 276 // Remove removes the execution stack associated with value from the profile. 277 // It is a no-op if the value is not in the profile. 278 func (p *Profile) Remove(value interface{}) { 279 p.mu.Lock() 280 defer p.mu.Unlock() 281 delete(p.m, value) 282 } 283 284 // WriteTo writes a pprof-formatted snapshot of the profile to w. 285 // If a write to w returns an error, WriteTo returns that error. 286 // Otherwise, WriteTo returns nil. 287 // 288 // The debug parameter enables additional output. 289 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 290 // Passing debug=1 adds comments translating addresses to function names 291 // and line numbers, so that a programmer can read the profile without tools. 292 // 293 // The predefined profiles may assign meaning to other debug values; 294 // for example, when printing the "goroutine" profile, debug=2 means to 295 // print the goroutine stacks in the same form that a Go program uses 296 // when dying due to an unrecovered panic. 297 func (p *Profile) WriteTo(w io.Writer, debug int) error { 298 if p.name == "" { 299 panic("pprof: use of zero Profile") 300 } 301 if p.write != nil { 302 return p.write(w, debug) 303 } 304 305 // Obtain consistent snapshot under lock; then process without lock. 306 all := make([][]uintptr, 0, len(p.m)) 307 p.mu.Lock() 308 for _, stk := range p.m { 309 all = append(all, stk) 310 } 311 p.mu.Unlock() 312 313 // Map order is non-deterministic; make output deterministic. 314 sort.Sort(stackProfile(all)) 315 316 return printCountProfile(w, debug, p.name, stackProfile(all)) 317 } 318 319 type stackProfile [][]uintptr 320 321 func (x stackProfile) Len() int { return len(x) } 322 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 323 func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 324 func (x stackProfile) Less(i, j int) bool { 325 t, u := x[i], x[j] 326 for k := 0; k < len(t) && k < len(u); k++ { 327 if t[k] != u[k] { 328 return t[k] < u[k] 329 } 330 } 331 return len(t) < len(u) 332 } 333 334 // A countProfile is a set of stack traces to be printed as counts 335 // grouped by stack trace. There are multiple implementations: 336 // all that matters is that we can find out how many traces there are 337 // and obtain each trace in turn. 338 type countProfile interface { 339 Len() int 340 Stack(i int) []uintptr 341 } 342 343 // printCountProfile prints a countProfile at the specified debug level. 344 // The profile will be in compressed proto format unless debug is nonzero. 345 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 346 // Build count of each stack. 347 var buf bytes.Buffer 348 key := func(stk []uintptr) string { 349 buf.Reset() 350 fmt.Fprintf(&buf, "@") 351 for _, pc := range stk { 352 fmt.Fprintf(&buf, " %#x", pc) 353 } 354 return buf.String() 355 } 356 count := map[string]int{} 357 index := map[string]int{} 358 var keys []string 359 n := p.Len() 360 for i := 0; i < n; i++ { 361 k := key(p.Stack(i)) 362 if count[k] == 0 { 363 index[k] = i 364 keys = append(keys, k) 365 } 366 count[k]++ 367 } 368 369 sort.Sort(&keysByCount{keys, count}) 370 371 if debug > 0 { 372 // Print debug profile in legacy format 373 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 374 fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) 375 for _, k := range keys { 376 fmt.Fprintf(tw, "%d %s\n", count[k], k) 377 printStackRecord(tw, p.Stack(index[k]), false) 378 } 379 return tw.Flush() 380 } 381 382 // Output profile in protobuf form. 383 prof := &profile.Profile{ 384 PeriodType: &profile.ValueType{Type: name, Unit: "count"}, 385 Period: 1, 386 Sample: make([]*profile.Sample, 0, len(keys)), 387 SampleType: []*profile.ValueType{{Type: name, Unit: "count"}}, 388 } 389 locMap := make(map[uintptr]*profile.Location) 390 for _, k := range keys { 391 stk := p.Stack(index[k]) 392 c := count[k] 393 locs := make([]*profile.Location, len(stk)) 394 for i, addr := range stk { 395 loc := locMap[addr] 396 if loc == nil { 397 loc = &profile.Location{ 398 ID: uint64(len(locMap) + 1), 399 Address: uint64(addr - 1), 400 } 401 prof.Location = append(prof.Location, loc) 402 locMap[addr] = loc 403 } 404 locs[i] = loc 405 } 406 prof.Sample = append(prof.Sample, &profile.Sample{ 407 Location: locs, 408 Value: []int64{int64(c)}, 409 }) 410 } 411 return prof.Write(w) 412 } 413 414 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 415 type keysByCount struct { 416 keys []string 417 count map[string]int 418 } 419 420 func (x *keysByCount) Len() int { return len(x.keys) } 421 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 422 func (x *keysByCount) Less(i, j int) bool { 423 ki, kj := x.keys[i], x.keys[j] 424 ci, cj := x.count[ki], x.count[kj] 425 if ci != cj { 426 return ci > cj 427 } 428 return ki < kj 429 } 430 431 // printStackRecord prints the function + source line information 432 // for a single stack trace. 433 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 434 show := allFrames 435 frames := runtime.CallersFrames(stk) 436 for { 437 frame, more := frames.Next() 438 name := frame.Function 439 if name == "" { 440 show = true 441 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 442 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 443 // Hide runtime.goexit and any runtime functions at the beginning. 444 // This is useful mainly for allocation traces. 445 show = true 446 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 447 } 448 if !more { 449 break 450 } 451 } 452 if !show { 453 // We didn't print anything; do it again, 454 // and this time include runtime functions. 455 printStackRecord(w, stk, true) 456 return 457 } 458 fmt.Fprintf(w, "\n") 459 } 460 461 // Interface to system profiles. 462 463 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 464 // It is preserved for backwards compatibility. 465 func WriteHeapProfile(w io.Writer) error { 466 return writeHeap(w, 0) 467 } 468 469 // countHeap returns the number of records in the heap profile. 470 func countHeap() int { 471 n, _ := runtime.MemProfile(nil, true) 472 return n 473 } 474 475 // writeHeap writes the current runtime heap profile to w. 476 func writeHeap(w io.Writer, debug int) error { 477 // Find out how many records there are (MemProfile(nil, true)), 478 // allocate that many records, and get the data. 479 // There's a race—more records might be added between 480 // the two calls—so allocate a few extra records for safety 481 // and also try again if we're very unlucky. 482 // The loop should only execute one iteration in the common case. 483 var p []runtime.MemProfileRecord 484 n, ok := runtime.MemProfile(nil, true) 485 for { 486 // Allocate room for a slightly bigger profile, 487 // in case a few more entries have been added 488 // since the call to MemProfile. 489 p = make([]runtime.MemProfileRecord, n+50) 490 n, ok = runtime.MemProfile(p, true) 491 if ok { 492 p = p[0:n] 493 break 494 } 495 // Profile grew; try again. 496 } 497 498 if debug == 0 { 499 pp := protopprof.EncodeMemProfile(p, int64(runtime.MemProfileRate), time.Now()) 500 return pp.Write(w) 501 } 502 503 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 504 505 b := bufio.NewWriter(w) 506 tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) 507 w = tw 508 509 var total runtime.MemProfileRecord 510 for i := range p { 511 r := &p[i] 512 total.AllocBytes += r.AllocBytes 513 total.AllocObjects += r.AllocObjects 514 total.FreeBytes += r.FreeBytes 515 total.FreeObjects += r.FreeObjects 516 } 517 518 // Technically the rate is MemProfileRate not 2*MemProfileRate, 519 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 520 // so that's what pprof has come to expect. 521 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 522 total.InUseObjects(), total.InUseBytes(), 523 total.AllocObjects, total.AllocBytes, 524 2*runtime.MemProfileRate) 525 526 for i := range p { 527 r := &p[i] 528 fmt.Fprintf(w, "%d: %d [%d: %d] @", 529 r.InUseObjects(), r.InUseBytes(), 530 r.AllocObjects, r.AllocBytes) 531 for _, pc := range r.Stack() { 532 fmt.Fprintf(w, " %#x", pc) 533 } 534 fmt.Fprintf(w, "\n") 535 printStackRecord(w, r.Stack(), false) 536 } 537 538 // Print memstats information too. 539 // Pprof will ignore, but useful for people 540 s := new(runtime.MemStats) 541 runtime.ReadMemStats(s) 542 fmt.Fprintf(w, "\n# runtime.MemStats\n") 543 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 544 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 545 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 546 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 547 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 548 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 549 550 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 551 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 552 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 553 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 554 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 555 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 556 557 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 558 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 559 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 560 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 561 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 562 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 563 564 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 565 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 566 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 567 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 568 569 tw.Flush() 570 return b.Flush() 571 } 572 573 // countThreadCreate returns the size of the current ThreadCreateProfile. 574 func countThreadCreate() int { 575 n, _ := runtime.ThreadCreateProfile(nil) 576 return n 577 } 578 579 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 580 func writeThreadCreate(w io.Writer, debug int) error { 581 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 582 } 583 584 // countGoroutine returns the number of goroutines. 585 func countGoroutine() int { 586 return runtime.NumGoroutine() 587 } 588 589 // writeGoroutine writes the current runtime GoroutineProfile to w. 590 func writeGoroutine(w io.Writer, debug int) error { 591 if debug >= 2 { 592 return writeGoroutineStacks(w) 593 } 594 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 595 } 596 597 func writeGoroutineStacks(w io.Writer) error { 598 // We don't know how big the buffer needs to be to collect 599 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 600 // Give up and use a truncated trace if 64 MB is not enough. 601 buf := make([]byte, 1<<20) 602 for i := 0; ; i++ { 603 n := runtime.Stack(buf, true) 604 if n < len(buf) { 605 buf = buf[:n] 606 break 607 } 608 if len(buf) >= 64<<20 { 609 // Filled 64 MB - stop there. 610 break 611 } 612 buf = make([]byte, 2*len(buf)) 613 } 614 _, err := w.Write(buf) 615 return err 616 } 617 618 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 619 // Find out how many records there are (fetch(nil)), 620 // allocate that many records, and get the data. 621 // There's a race—more records might be added between 622 // the two calls—so allocate a few extra records for safety 623 // and also try again if we're very unlucky. 624 // The loop should only execute one iteration in the common case. 625 var p []runtime.StackRecord 626 n, ok := fetch(nil) 627 for { 628 // Allocate room for a slightly bigger profile, 629 // in case a few more entries have been added 630 // since the call to ThreadProfile. 631 p = make([]runtime.StackRecord, n+10) 632 n, ok = fetch(p) 633 if ok { 634 p = p[0:n] 635 break 636 } 637 // Profile grew; try again. 638 } 639 640 return printCountProfile(w, debug, name, runtimeProfile(p)) 641 } 642 643 type runtimeProfile []runtime.StackRecord 644 645 func (p runtimeProfile) Len() int { return len(p) } 646 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 647 648 var cpu struct { 649 sync.Mutex 650 profiling bool 651 done chan bool 652 } 653 654 // StartCPUProfile enables CPU profiling for the current process. 655 // While profiling, the profile will be buffered and written to w. 656 // StartCPUProfile returns an error if profiling is already enabled. 657 // 658 // On Unix-like systems, StartCPUProfile does not work by default for 659 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 660 // StartCPUProfile relies on the SIGPROF signal, but that signal will 661 // be delivered to the main program's SIGPROF signal handler (if any) 662 // not to the one used by Go. To make it work, call os/signal.Notify 663 // for syscall.SIGPROF, but note that doing so may break any profiling 664 // being done by the main program. 665 func StartCPUProfile(w io.Writer) error { 666 // The runtime routines allow a variable profiling rate, 667 // but in practice operating systems cannot trigger signals 668 // at more than about 500 Hz, and our processing of the 669 // signal is not cheap (mostly getting the stack trace). 670 // 100 Hz is a reasonable choice: it is frequent enough to 671 // produce useful data, rare enough not to bog down the 672 // system, and a nice round number to make it easy to 673 // convert sample counts to seconds. Instead of requiring 674 // each client to specify the frequency, we hard code it. 675 const hz = 100 676 677 cpu.Lock() 678 defer cpu.Unlock() 679 if cpu.done == nil { 680 cpu.done = make(chan bool) 681 } 682 // Double-check. 683 if cpu.profiling { 684 return fmt.Errorf("cpu profiling already in use") 685 } 686 cpu.profiling = true 687 runtime.SetCPUProfileRate(hz) 688 go profileWriter(w) 689 return nil 690 } 691 692 func profileWriter(w io.Writer) { 693 startTime := time.Now() 694 // This will buffer the entire profile into buf and then 695 // translate it into a profile.Profile structure. This will 696 // create two copies of all the data in the profile in memory. 697 // TODO(matloob): Convert each chunk of the proto output and 698 // stream it out instead of converting the entire profile. 699 var buf bytes.Buffer 700 for { 701 data := runtime.CPUProfile() 702 if data == nil { 703 break 704 } 705 buf.Write(data) 706 } 707 708 profile, err := protopprof.TranslateCPUProfile(buf.Bytes(), startTime) 709 if err != nil { 710 // The runtime should never produce an invalid or truncated profile. 711 // It drops records that can't fit into its log buffers. 712 panic(fmt.Errorf("could not translate binary profile to proto format: %v", err)) 713 } 714 715 profile.Write(w) 716 cpu.done <- true 717 } 718 719 // StopCPUProfile stops the current CPU profile, if any. 720 // StopCPUProfile only returns after all the writes for the 721 // profile have completed. 722 func StopCPUProfile() { 723 cpu.Lock() 724 defer cpu.Unlock() 725 726 if !cpu.profiling { 727 return 728 } 729 cpu.profiling = false 730 runtime.SetCPUProfileRate(0) 731 <-cpu.done 732 } 733 734 // countBlock returns the number of records in the blocking profile. 735 func countBlock() int { 736 n, _ := runtime.BlockProfile(nil) 737 return n 738 } 739 740 // countMutex returns the number of records in the mutex profile. 741 func countMutex() int { 742 n, _ := runtime.MutexProfile(nil) 743 return n 744 } 745 746 // writeBlock writes the current blocking profile to w. 747 func writeBlock(w io.Writer, debug int) error { 748 var p []runtime.BlockProfileRecord 749 n, ok := runtime.BlockProfile(nil) 750 for { 751 p = make([]runtime.BlockProfileRecord, n+50) 752 n, ok = runtime.BlockProfile(p) 753 if ok { 754 p = p[:n] 755 break 756 } 757 } 758 759 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 760 761 b := bufio.NewWriter(w) 762 var tw *tabwriter.Writer 763 w = b 764 if debug > 0 { 765 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 766 w = tw 767 } 768 769 fmt.Fprintf(w, "--- contention:\n") 770 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 771 for i := range p { 772 r := &p[i] 773 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 774 for _, pc := range r.Stack() { 775 fmt.Fprintf(w, " %#x", pc) 776 } 777 fmt.Fprint(w, "\n") 778 if debug > 0 { 779 printStackRecord(w, r.Stack(), true) 780 } 781 } 782 783 if tw != nil { 784 tw.Flush() 785 } 786 return b.Flush() 787 } 788 789 // writeMutex writes the current mutex profile to w. 790 func writeMutex(w io.Writer, debug int) error { 791 // TODO(pjw): too much common code with writeBlock. FIX! 792 var p []runtime.BlockProfileRecord 793 n, ok := runtime.MutexProfile(nil) 794 for { 795 p = make([]runtime.BlockProfileRecord, n+50) 796 n, ok = runtime.MutexProfile(p) 797 if ok { 798 p = p[:n] 799 break 800 } 801 } 802 803 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 804 805 b := bufio.NewWriter(w) 806 var tw *tabwriter.Writer 807 w = b 808 if debug > 0 { 809 tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 810 w = tw 811 } 812 813 fmt.Fprintf(w, "--- mutex:\n") 814 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 815 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 816 for i := range p { 817 r := &p[i] 818 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 819 for _, pc := range r.Stack() { 820 fmt.Fprintf(w, " %#x", pc) 821 } 822 fmt.Fprint(w, "\n") 823 if debug > 0 { 824 printStackRecord(w, r.Stack(), true) 825 } 826 } 827 828 if tw != nil { 829 tw.Flush() 830 } 831 return b.Flush() 832 } 833 834 func runtime_cyclesPerSecond() int64