github.com/riscv/riscv-go@v0.0.0-20200123204226-124ebd6fcc8e/src/strconv/extfloat.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package strconv 6 7 // An extFloat represents an extended floating-point number, with more 8 // precision than a float64. It does not try to save bits: the 9 // number represented by the structure is mant*(2^exp), with a negative 10 // sign if neg is true. 11 type extFloat struct { 12 mant uint64 13 exp int 14 neg bool 15 } 16 17 // Powers of ten taken from double-conversion library. 18 // http://code.google.com/p/double-conversion/ 19 const ( 20 firstPowerOfTen = -348 21 stepPowerOfTen = 8 22 ) 23 24 var smallPowersOfTen = [...]extFloat{ 25 {1 << 63, -63, false}, // 1 26 {0xa << 60, -60, false}, // 1e1 27 {0x64 << 57, -57, false}, // 1e2 28 {0x3e8 << 54, -54, false}, // 1e3 29 {0x2710 << 50, -50, false}, // 1e4 30 {0x186a0 << 47, -47, false}, // 1e5 31 {0xf4240 << 44, -44, false}, // 1e6 32 {0x989680 << 40, -40, false}, // 1e7 33 } 34 35 var powersOfTen = [...]extFloat{ 36 {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 37 {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 38 {0x8b16fb203055ac76, -1166, false}, // 10^-332 39 {0xcf42894a5dce35ea, -1140, false}, // 10^-324 40 {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 41 {0xe61acf033d1a45df, -1087, false}, // 10^-308 42 {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 43 {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 44 {0xbe5691ef416bd60c, -1007, false}, // 10^-284 45 {0x8dd01fad907ffc3c, -980, false}, // 10^-276 46 {0xd3515c2831559a83, -954, false}, // 10^-268 47 {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 48 {0xea9c227723ee8bcb, -901, false}, // 10^-252 49 {0xaecc49914078536d, -874, false}, // 10^-244 50 {0x823c12795db6ce57, -847, false}, // 10^-236 51 {0xc21094364dfb5637, -821, false}, // 10^-228 52 {0x9096ea6f3848984f, -794, false}, // 10^-220 53 {0xd77485cb25823ac7, -768, false}, // 10^-212 54 {0xa086cfcd97bf97f4, -741, false}, // 10^-204 55 {0xef340a98172aace5, -715, false}, // 10^-196 56 {0xb23867fb2a35b28e, -688, false}, // 10^-188 57 {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 58 {0xc5dd44271ad3cdba, -635, false}, // 10^-172 59 {0x936b9fcebb25c996, -608, false}, // 10^-164 60 {0xdbac6c247d62a584, -582, false}, // 10^-156 61 {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 62 {0xf3e2f893dec3f126, -529, false}, // 10^-140 63 {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 64 {0x87625f056c7c4a8b, -475, false}, // 10^-124 65 {0xc9bcff6034c13053, -449, false}, // 10^-116 66 {0x964e858c91ba2655, -422, false}, // 10^-108 67 {0xdff9772470297ebd, -396, false}, // 10^-100 68 {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 69 {0xf8a95fcf88747d94, -343, false}, // 10^-84 70 {0xb94470938fa89bcf, -316, false}, // 10^-76 71 {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 72 {0xcdb02555653131b6, -263, false}, // 10^-60 73 {0x993fe2c6d07b7fac, -236, false}, // 10^-52 74 {0xe45c10c42a2b3b06, -210, false}, // 10^-44 75 {0xaa242499697392d3, -183, false}, // 10^-36 76 {0xfd87b5f28300ca0e, -157, false}, // 10^-28 77 {0xbce5086492111aeb, -130, false}, // 10^-20 78 {0x8cbccc096f5088cc, -103, false}, // 10^-12 79 {0xd1b71758e219652c, -77, false}, // 10^-4 80 {0x9c40000000000000, -50, false}, // 10^4 81 {0xe8d4a51000000000, -24, false}, // 10^12 82 {0xad78ebc5ac620000, 3, false}, // 10^20 83 {0x813f3978f8940984, 30, false}, // 10^28 84 {0xc097ce7bc90715b3, 56, false}, // 10^36 85 {0x8f7e32ce7bea5c70, 83, false}, // 10^44 86 {0xd5d238a4abe98068, 109, false}, // 10^52 87 {0x9f4f2726179a2245, 136, false}, // 10^60 88 {0xed63a231d4c4fb27, 162, false}, // 10^68 89 {0xb0de65388cc8ada8, 189, false}, // 10^76 90 {0x83c7088e1aab65db, 216, false}, // 10^84 91 {0xc45d1df942711d9a, 242, false}, // 10^92 92 {0x924d692ca61be758, 269, false}, // 10^100 93 {0xda01ee641a708dea, 295, false}, // 10^108 94 {0xa26da3999aef774a, 322, false}, // 10^116 95 {0xf209787bb47d6b85, 348, false}, // 10^124 96 {0xb454e4a179dd1877, 375, false}, // 10^132 97 {0x865b86925b9bc5c2, 402, false}, // 10^140 98 {0xc83553c5c8965d3d, 428, false}, // 10^148 99 {0x952ab45cfa97a0b3, 455, false}, // 10^156 100 {0xde469fbd99a05fe3, 481, false}, // 10^164 101 {0xa59bc234db398c25, 508, false}, // 10^172 102 {0xf6c69a72a3989f5c, 534, false}, // 10^180 103 {0xb7dcbf5354e9bece, 561, false}, // 10^188 104 {0x88fcf317f22241e2, 588, false}, // 10^196 105 {0xcc20ce9bd35c78a5, 614, false}, // 10^204 106 {0x98165af37b2153df, 641, false}, // 10^212 107 {0xe2a0b5dc971f303a, 667, false}, // 10^220 108 {0xa8d9d1535ce3b396, 694, false}, // 10^228 109 {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 110 {0xbb764c4ca7a44410, 747, false}, // 10^244 111 {0x8bab8eefb6409c1a, 774, false}, // 10^252 112 {0xd01fef10a657842c, 800, false}, // 10^260 113 {0x9b10a4e5e9913129, 827, false}, // 10^268 114 {0xe7109bfba19c0c9d, 853, false}, // 10^276 115 {0xac2820d9623bf429, 880, false}, // 10^284 116 {0x80444b5e7aa7cf85, 907, false}, // 10^292 117 {0xbf21e44003acdd2d, 933, false}, // 10^300 118 {0x8e679c2f5e44ff8f, 960, false}, // 10^308 119 {0xd433179d9c8cb841, 986, false}, // 10^316 120 {0x9e19db92b4e31ba9, 1013, false}, // 10^324 121 {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 122 {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 123 } 124 125 // floatBits returns the bits of the float64 that best approximates 126 // the extFloat passed as receiver. Overflow is set to true if 127 // the resulting float64 is ±Inf. 128 func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) { 129 f.Normalize() 130 131 exp := f.exp + 63 132 133 // Exponent too small. 134 if exp < flt.bias+1 { 135 n := flt.bias + 1 - exp 136 f.mant >>= uint(n) 137 exp += n 138 } 139 140 // Extract 1+flt.mantbits bits from the 64-bit mantissa. 141 mant := f.mant >> (63 - flt.mantbits) 142 if f.mant&(1<<(62-flt.mantbits)) != 0 { 143 // Round up. 144 mant += 1 145 } 146 147 // Rounding might have added a bit; shift down. 148 if mant == 2<<flt.mantbits { 149 mant >>= 1 150 exp++ 151 } 152 153 // Infinities. 154 if exp-flt.bias >= 1<<flt.expbits-1 { 155 // ±Inf 156 mant = 0 157 exp = 1<<flt.expbits - 1 + flt.bias 158 overflow = true 159 } else if mant&(1<<flt.mantbits) == 0 { 160 // Denormalized? 161 exp = flt.bias 162 } 163 // Assemble bits. 164 bits = mant & (uint64(1)<<flt.mantbits - 1) 165 bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits 166 if f.neg { 167 bits |= 1 << (flt.mantbits + flt.expbits) 168 } 169 return 170 } 171 172 // AssignComputeBounds sets f to the floating point value 173 // defined by mant, exp and precision given by flt. It returns 174 // lower, upper such that any number in the closed interval 175 // [lower, upper] is converted back to the same floating point number. 176 func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) { 177 f.mant = mant 178 f.exp = exp - int(flt.mantbits) 179 f.neg = neg 180 if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) { 181 // An exact integer 182 f.mant >>= uint(-f.exp) 183 f.exp = 0 184 return *f, *f 185 } 186 expBiased := exp - flt.bias 187 188 upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} 189 if mant != 1<<flt.mantbits || expBiased == 1 { 190 lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg} 191 } else { 192 lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg} 193 } 194 return 195 } 196 197 // Normalize normalizes f so that the highest bit of the mantissa is 198 // set, and returns the number by which the mantissa was left-shifted. 199 func (f *extFloat) Normalize() (shift uint) { 200 mant, exp := f.mant, f.exp 201 if mant == 0 { 202 return 0 203 } 204 if mant>>(64-32) == 0 { 205 mant <<= 32 206 exp -= 32 207 } 208 if mant>>(64-16) == 0 { 209 mant <<= 16 210 exp -= 16 211 } 212 if mant>>(64-8) == 0 { 213 mant <<= 8 214 exp -= 8 215 } 216 if mant>>(64-4) == 0 { 217 mant <<= 4 218 exp -= 4 219 } 220 if mant>>(64-2) == 0 { 221 mant <<= 2 222 exp -= 2 223 } 224 if mant>>(64-1) == 0 { 225 mant <<= 1 226 exp -= 1 227 } 228 shift = uint(f.exp - exp) 229 f.mant, f.exp = mant, exp 230 return 231 } 232 233 // Multiply sets f to the product f*g: the result is correctly rounded, 234 // but not normalized. 235 func (f *extFloat) Multiply(g extFloat) { 236 fhi, flo := f.mant>>32, uint64(uint32(f.mant)) 237 ghi, glo := g.mant>>32, uint64(uint32(g.mant)) 238 239 // Cross products. 240 cross1 := fhi * glo 241 cross2 := flo * ghi 242 243 // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo 244 f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) 245 rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) 246 // Round up. 247 rem += (1 << 31) 248 249 f.mant += (rem >> 32) 250 f.exp = f.exp + g.exp + 64 251 } 252 253 var uint64pow10 = [...]uint64{ 254 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 255 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 256 } 257 258 // AssignDecimal sets f to an approximate value mantissa*10^exp. It 259 // reports whether the value represented by f is guaranteed to be the 260 // best approximation of d after being rounded to a float64 or 261 // float32 depending on flt. 262 func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) { 263 const uint64digits = 19 264 const errorscale = 8 265 errors := 0 // An upper bound for error, computed in errorscale*ulp. 266 if trunc { 267 // the decimal number was truncated. 268 errors += errorscale / 2 269 } 270 271 f.mant = mantissa 272 f.exp = 0 273 f.neg = neg 274 275 // Multiply by powers of ten. 276 i := (exp10 - firstPowerOfTen) / stepPowerOfTen 277 if exp10 < firstPowerOfTen || i >= len(powersOfTen) { 278 return false 279 } 280 adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen 281 282 // We multiply by exp%step 283 if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] { 284 // We can multiply the mantissa exactly. 285 f.mant *= uint64pow10[adjExp] 286 f.Normalize() 287 } else { 288 f.Normalize() 289 f.Multiply(smallPowersOfTen[adjExp]) 290 errors += errorscale / 2 291 } 292 293 // We multiply by 10 to the exp - exp%step. 294 f.Multiply(powersOfTen[i]) 295 if errors > 0 { 296 errors += 1 297 } 298 errors += errorscale / 2 299 300 // Normalize 301 shift := f.Normalize() 302 errors <<= shift 303 304 // Now f is a good approximation of the decimal. 305 // Check whether the error is too large: that is, if the mantissa 306 // is perturbated by the error, the resulting float64 will change. 307 // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. 308 // 309 // In many cases the approximation will be good enough. 310 denormalExp := flt.bias - 63 311 var extrabits uint 312 if f.exp <= denormalExp { 313 // f.mant * 2^f.exp is smaller than 2^(flt.bias+1). 314 extrabits = 63 - flt.mantbits + 1 + uint(denormalExp-f.exp) 315 } else { 316 extrabits = 63 - flt.mantbits 317 } 318 319 halfway := uint64(1) << (extrabits - 1) 320 mant_extra := f.mant & (1<<extrabits - 1) 321 322 // Do a signed comparison here! If the error estimate could make 323 // the mantissa round differently for the conversion to double, 324 // then we can't give a definite answer. 325 if int64(halfway)-int64(errors) < int64(mant_extra) && 326 int64(mant_extra) < int64(halfway)+int64(errors) { 327 return false 328 } 329 return true 330 } 331 332 // Frexp10 is an analogue of math.Frexp for decimal powers. It scales 333 // f by an approximate power of ten 10^-exp, and returns exp10, so 334 // that f*10^exp10 has the same value as the old f, up to an ulp, 335 // as well as the index of 10^-exp in the powersOfTen table. 336 func (f *extFloat) frexp10() (exp10, index int) { 337 // The constants expMin and expMax constrain the final value of the 338 // binary exponent of f. We want a small integral part in the result 339 // because finding digits of an integer requires divisions, whereas 340 // digits of the fractional part can be found by repeatedly multiplying 341 // by 10. 342 const expMin = -60 343 const expMax = -32 344 // Find power of ten such that x * 10^n has a binary exponent 345 // between expMin and expMax. 346 approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28. 347 i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen 348 Loop: 349 for { 350 exp := f.exp + powersOfTen[i].exp + 64 351 switch { 352 case exp < expMin: 353 i++ 354 case exp > expMax: 355 i-- 356 default: 357 break Loop 358 } 359 } 360 // Apply the desired decimal shift on f. It will have exponent 361 // in the desired range. This is multiplication by 10^-exp10. 362 f.Multiply(powersOfTen[i]) 363 364 return -(firstPowerOfTen + i*stepPowerOfTen), i 365 } 366 367 // frexp10Many applies a common shift by a power of ten to a, b, c. 368 func frexp10Many(a, b, c *extFloat) (exp10 int) { 369 exp10, i := c.frexp10() 370 a.Multiply(powersOfTen[i]) 371 b.Multiply(powersOfTen[i]) 372 return 373 } 374 375 // FixedDecimal stores in d the first n significant digits 376 // of the decimal representation of f. It returns false 377 // if it cannot be sure of the answer. 378 func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { 379 if f.mant == 0 { 380 d.nd = 0 381 d.dp = 0 382 d.neg = f.neg 383 return true 384 } 385 if n == 0 { 386 panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") 387 } 388 // Multiply by an appropriate power of ten to have a reasonable 389 // number to process. 390 f.Normalize() 391 exp10, _ := f.frexp10() 392 393 shift := uint(-f.exp) 394 integer := uint32(f.mant >> shift) 395 fraction := f.mant - (uint64(integer) << shift) 396 ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. 397 398 // Write exactly n digits to d. 399 needed := n // how many digits are left to write. 400 integerDigits := 0 // the number of decimal digits of integer. 401 pow10 := uint64(1) // the power of ten by which f was scaled. 402 for i, pow := 0, uint64(1); i < 20; i++ { 403 if pow > uint64(integer) { 404 integerDigits = i 405 break 406 } 407 pow *= 10 408 } 409 rest := integer 410 if integerDigits > needed { 411 // the integral part is already large, trim the last digits. 412 pow10 = uint64pow10[integerDigits-needed] 413 integer /= uint32(pow10) 414 rest -= integer * uint32(pow10) 415 } else { 416 rest = 0 417 } 418 419 // Write the digits of integer: the digits of rest are omitted. 420 var buf [32]byte 421 pos := len(buf) 422 for v := integer; v > 0; { 423 v1 := v / 10 424 v -= 10 * v1 425 pos-- 426 buf[pos] = byte(v + '0') 427 v = v1 428 } 429 for i := pos; i < len(buf); i++ { 430 d.d[i-pos] = buf[i] 431 } 432 nd := len(buf) - pos 433 d.nd = nd 434 d.dp = integerDigits + exp10 435 needed -= nd 436 437 if needed > 0 { 438 if rest != 0 || pow10 != 1 { 439 panic("strconv: internal error, rest != 0 but needed > 0") 440 } 441 // Emit digits for the fractional part. Each time, 10*fraction 442 // fits in a uint64 without overflow. 443 for needed > 0 { 444 fraction *= 10 445 ε *= 10 // the uncertainty scales as we multiply by ten. 446 if 2*ε > 1<<shift { 447 // the error is so large it could modify which digit to write, abort. 448 return false 449 } 450 digit := fraction >> shift 451 d.d[nd] = byte(digit + '0') 452 fraction -= digit << shift 453 nd++ 454 needed-- 455 } 456 d.nd = nd 457 } 458 459 // We have written a truncation of f (a numerator / 10^d.dp). The remaining part 460 // can be interpreted as a small number (< 1) to be added to the last digit of the 461 // numerator. 462 // 463 // If rest > 0, the amount is: 464 // (rest<<shift | fraction) / (pow10 << shift) 465 // fraction being known with a ±ε uncertainty. 466 // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. 467 // 468 // If rest = 0, pow10 == 1 and the amount is 469 // fraction / (1 << shift) 470 // fraction being known with a ±ε uncertainty. 471 // 472 // We pass this information to the rounding routine for adjustment. 473 474 ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε) 475 if !ok { 476 return false 477 } 478 // Trim trailing zeros. 479 for i := d.nd - 1; i >= 0; i-- { 480 if d.d[i] != '0' { 481 d.nd = i + 1 482 break 483 } 484 } 485 return true 486 } 487 488 // adjustLastDigitFixed assumes d contains the representation of the integral part 489 // of some number, whose fractional part is num / (den << shift). The numerator 490 // num is only known up to an uncertainty of size ε, assumed to be less than 491 // (den << shift)/2. 492 // 493 // It will increase the last digit by one to account for correct rounding, typically 494 // when the fractional part is greater than 1/2, and will return false if ε is such 495 // that no correct answer can be given. 496 func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { 497 if num > den<<shift { 498 panic("strconv: num > den<<shift in adjustLastDigitFixed") 499 } 500 if 2*ε > den<<shift { 501 panic("strconv: ε > (den<<shift)/2") 502 } 503 if 2*(num+ε) < den<<shift { 504 return true 505 } 506 if 2*(num-ε) > den<<shift { 507 // increment d by 1. 508 i := d.nd - 1 509 for ; i >= 0; i-- { 510 if d.d[i] == '9' { 511 d.nd-- 512 } else { 513 break 514 } 515 } 516 if i < 0 { 517 d.d[0] = '1' 518 d.nd = 1 519 d.dp++ 520 } else { 521 d.d[i]++ 522 } 523 return true 524 } 525 return false 526 } 527 528 // ShortestDecimal stores in d the shortest decimal representation of f 529 // which belongs to the open interval (lower, upper), where f is supposed 530 // to lie. It returns false whenever the result is unsure. The implementation 531 // uses the Grisu3 algorithm. 532 func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { 533 if f.mant == 0 { 534 d.nd = 0 535 d.dp = 0 536 d.neg = f.neg 537 return true 538 } 539 if f.exp == 0 && *lower == *f && *lower == *upper { 540 // an exact integer. 541 var buf [24]byte 542 n := len(buf) - 1 543 for v := f.mant; v > 0; { 544 v1 := v / 10 545 v -= 10 * v1 546 buf[n] = byte(v + '0') 547 n-- 548 v = v1 549 } 550 nd := len(buf) - n - 1 551 for i := 0; i < nd; i++ { 552 d.d[i] = buf[n+1+i] 553 } 554 d.nd, d.dp = nd, nd 555 for d.nd > 0 && d.d[d.nd-1] == '0' { 556 d.nd-- 557 } 558 if d.nd == 0 { 559 d.dp = 0 560 } 561 d.neg = f.neg 562 return true 563 } 564 upper.Normalize() 565 // Uniformize exponents. 566 if f.exp > upper.exp { 567 f.mant <<= uint(f.exp - upper.exp) 568 f.exp = upper.exp 569 } 570 if lower.exp > upper.exp { 571 lower.mant <<= uint(lower.exp - upper.exp) 572 lower.exp = upper.exp 573 } 574 575 exp10 := frexp10Many(lower, f, upper) 576 // Take a safety margin due to rounding in frexp10Many, but we lose precision. 577 upper.mant++ 578 lower.mant-- 579 580 // The shortest representation of f is either rounded up or down, but 581 // in any case, it is a truncation of upper. 582 shift := uint(-upper.exp) 583 integer := uint32(upper.mant >> shift) 584 fraction := upper.mant - (uint64(integer) << shift) 585 586 // How far we can go down from upper until the result is wrong. 587 allowance := upper.mant - lower.mant 588 // How far we should go to get a very precise result. 589 targetDiff := upper.mant - f.mant 590 591 // Count integral digits: there are at most 10. 592 var integerDigits int 593 for i, pow := 0, uint64(1); i < 20; i++ { 594 if pow > uint64(integer) { 595 integerDigits = i 596 break 597 } 598 pow *= 10 599 } 600 for i := 0; i < integerDigits; i++ { 601 pow := uint64pow10[integerDigits-i-1] 602 digit := integer / uint32(pow) 603 d.d[i] = byte(digit + '0') 604 integer -= digit * uint32(pow) 605 // evaluate whether we should stop. 606 if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance { 607 d.nd = i + 1 608 d.dp = integerDigits + exp10 609 d.neg = f.neg 610 // Sometimes allowance is so large the last digit might need to be 611 // decremented to get closer to f. 612 return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2) 613 } 614 } 615 d.nd = integerDigits 616 d.dp = d.nd + exp10 617 d.neg = f.neg 618 619 // Compute digits of the fractional part. At each step fraction does not 620 // overflow. The choice of minExp implies that fraction is less than 2^60. 621 var digit int 622 multiplier := uint64(1) 623 for { 624 fraction *= 10 625 multiplier *= 10 626 digit = int(fraction >> shift) 627 d.d[d.nd] = byte(digit + '0') 628 d.nd++ 629 fraction -= uint64(digit) << shift 630 if fraction < allowance*multiplier { 631 // We are in the admissible range. Note that if allowance is about to 632 // overflow, that is, allowance > 2^64/10, the condition is automatically 633 // true due to the limited range of fraction. 634 return adjustLastDigit(d, 635 fraction, targetDiff*multiplier, allowance*multiplier, 636 1<<shift, multiplier*2) 637 } 638 } 639 } 640 641 // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to 642 // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε. 643 // It assumes that a decimal digit is worth ulpDecimal*ε, and that 644 // all data is known with a error estimate of ulpBinary*ε. 645 func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool { 646 if ulpDecimal < 2*ulpBinary { 647 // Approximation is too wide. 648 return false 649 } 650 for currentDiff+ulpDecimal/2+ulpBinary < targetDiff { 651 d.d[d.nd-1]-- 652 currentDiff += ulpDecimal 653 } 654 if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary { 655 // we have two choices, and don't know what to do. 656 return false 657 } 658 if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary { 659 // we went too far 660 return false 661 } 662 if d.nd == 1 && d.d[0] == '0' { 663 // the number has actually reached zero. 664 d.nd = 0 665 d.dp = 0 666 } 667 return true 668 }